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Abstract
1.	 Changes in insect biomass, abundance, and diversity are challenging to track at 

sufficient spatial, temporal, and taxonomic resolution. Camera traps can capture 
habitus images of ground-dwelling insects. However, currently sampling involves 
manually detecting and identifying specimens. Here, we test whether a convo-
lutional neural network (CNN) can classify habitus images of ground beetles to 
species level, and estimate how correct classification relates to body size, number 
of species inside genera, and species identity.

2.	 We created an image database of 65,841 museum specimens comprising 361 
carabid beetle species from the British Isles and fine-tuned the parameters of a 
pretrained CNN from a training dataset. By summing up class confidence values 
within genus, tribe, and subfamily and setting a confidence threshold, we trade-off 
between classification accuracy, precision, and recall and taxonomic resolution.

3.	 The CNN classified 51.9% of 19,164 test images correctly to species level and 
74.9% to genus level. Average classification recall on species level was 50.7%. 
Applying a threshold of 0.5 increased the average classification recall to 74.6% at 
the expense of taxonomic resolution. Higher top value from the output layer and 
larger sized species were more often classified correctly, as were images of spe-
cies in genera with few species.

4.	 Fine-tuning enabled us to classify images with a high mean recall for the whole 
test dataset to species or higher taxonomic levels, however, with high variability. 
This indicates that some species are more difficult to identify because of proper-
ties such as their body size or the number of related species.

5.	 Together, species-level image classification of arthropods from museum collections 
and ecological monitoring can substantially increase the amount of occurrence 
data that can feasibly be collected. These tools thus provide new opportunities in 
understanding and predicting ecological responses to environmental change.
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1  | INTRODUC TION

Recent reports suggest that insect biomass and abundance have 
been declining dramatically in recent decades (Agrawal & Inamine, 
2018; Hallmann et al., 2017; Lister & Garcia, 2018; Loboda, Savage, 
Buddle, Schmidt, & Høye, 2018; Seibold et al., 2019; Wagner, 2019), 
even though trends vary if measured across or on individual habitats 
and species (Loboda et al., 2018). Estimating and tracking changes in 
abundance and diversity of insects at species level through time and 
space is critical to understand the underlying drivers of change and 
to devise possible mitigation strategies. Methods that enable error 
estimation in observations, with high data quantity, quality, and res-
olution on spatial, temporal and taxonomic scales are crucial.

To date, no efficient method enables tracking of insect activ-
ity, abundance, and diversity in a nondestructive, cost-effective, 
and standardized way. Common sampling methods including direct 
observations, a variety of trapping methods, direct sampling meth-
ods, and DNA-based methods all fail on one or two of these crite-
ria. A much criticized but widely used method is pitfall traps (Brown 
& Matthews, 2016; Engel et al., 2017; Skvarla, Larson, & Dowling, 
2014). Like other trapping methods such as malaise traps and pan 
traps, they remove study specimens from the environment, thus 
being invasive. Furthermore, each trapping method comes with its 
own set of biases or methodological idiosyncratic behaviors, making 
interpretations across habitats difficult (Skvarla et al., 2014). Given 
the sampling method and in order to increase the number of indi-
viduals trapped this often comes at the expense of coarse tempo-
ral information (several days or weeks; Schirmel, Lenze, Katzmann, 
& Buchholz, 2010). The resulting low temporal resolution in activity 
estimate defined by the sampling frequency can only be related to 
environmental factors over the same time scale (Asmus et al., 2018; 
Høye & Forchhammer, 2008). Direct observations, being nonde-
structive, currently require identification of organisms by trained 
ecologists or taxonomists at the study site throughout the sampling 
period, greatly reducing the number of feasible samples.

The camera trap method has distinct advantages over traditional 
methods in entomology. Compared to the often used pitfall traps, 
camera traps sample more individuals (Collett & Fisher, 2017; Halsall 
& Wratten, 1988), and cause no depletion of specimens or habi-
tat destruction (Digweed, Currie, Carcamo, & Spence, 1995; Zaller 
et al., 2015). Furthermore, camera traps require less maintenance 
(Caravaggi et al., 2017; Collett & Fisher, 2017). The average move-
ment speed and various behavioral traits of a species can be directly 
measured between single frames of one camera trap (Caravaggi et 
al., 2017), allowing true abundance of species to be estimated based 
on their movement speed and range. Rarely, but increasingly, cam-
era traps have been used to monitor insects and other arthropods 
(Collett & Fisher, 2017; Dolek & Georgi, 2017; Zaller et al., 2015). 

Even though identifications of species based on images are well 
known for mammals and birds (Norouzzadeh et al., 2018; Yu et al., 
2013), camera trap studies designed for arthropods conclude that 
image-based species identification by humans is generally not possi-
ble (Collett & Fisher, 2017; Zaller et al., 2015).

Image-based species identification methods on arthropods have 
been applied with success on samples in the laboratory (Joutsijoki 
et al., 2014). In order to fully implement the advantages of camera 
traps, there is a need for implementing image classification tech-
niques to automatically identify and recognize species (Weinstein, 
2017). Deep convolutional neural networks have together with the 
release of machine learning frameworks like TensorFlow (Abadi et 
al., 2015) and available models like Inception or GoogleNet (Szegedy 
et al., 2015; Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016) have 
advanced significantly in recent years (Wäldchen & Mäder, 2018). 
Image classifications used for species identification have dramatically 
increased in accuracy, performance, and in the number of taxa ana-
lyzed (Marques et al., 2018; Martineau et al., 2017; Norouzzadeh et 
al., 2018; Schneider, Taylor, & Kremer, 2018; Van Horn et al., 2017). 
On a limited number of species, identification by computers can be 
as good as human experts and with less variation in accuracy (Ärje et 
al., 2019). Automated species identification has also been successfully 
implemented on the citizen science portal iNaturalist.org, enabling a 
suggested list of species for an observation, based on the existing ar-
chive of image data (Van Horn et al., 2017).

We test the ability of a convolutional neural network (CNN) to clas-
sify ground beetles (Coleoptera: Carabidae) to genus, species, or higher 
taxonomic level from images of specimens within the British collec-
tion at the Natural History Museum, London. This collection provides 
a good test case as it has been well curated and assessed for correct 
species identity, represents a commonly prepared type of insect col-
lection for which this method is directly applicable to, and has access 
to the SatScan® (SmartDrive Limited; Blagoderov, Kitching, Livermore, 
Simonsen, & Smith, 2012; Mantle, LaSalle, & Fisher, 2012), a rapid 
whole drawer imaging system. Beetle specimens are placed in unit 
trays inside drawers, prepared either glued onto card or pinned and 
are generally positioned in dorsal view with head in the same direction, 
reducing the variability in the data. These prepared specimens can 
serve a simplified model for what a camera trap would record. Thus, 
these images represent a good indicator of the potential taxonomic 
resolution of automatic species identification with current state of the 
art classification methods, based on data from a camera trap, when 
compared to expert identifications of the specimens. Specifically, we 
quantify the number of correct species identifications of carabid bee-
tles based on image classification of habitus images. Furthermore, we 
assess variation in correctly classified images among taxa. In particular, 
we test how classification recall (number of images classified to a group 
from the total number of images within the group) varies among genera 
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and for specimens of different body size. To increase accuracy and to 
critically assess reliability, we postprocess the output and apply thresh-
olds on confidence values for each of the included taxonomic levels to 
avoid low confidence in predictions.

2  | MATERIAL S AND METHODS

2.1 | Obtaining images

In August 2017, we scanned the British collection of ground bee-
tles (Coleoptera: Carabidae) at the Natural History Museum London 
using the SatScan® (Blagoderov et al., 2012; Mantle et al., 2012). 
The collection comprised 207 drawers with specimens curated and 
identified to species level (Figure 1). All drawers were scanned with 
the same light and exposure settings following the imaging protocol 

described by Blagoderov et al. (2012) and resulted in images of 
15,828 × 15,565 pixels (36 pixels/mm) per drawer.

Drawer images were segmented into specimens using Inselect ver-
sion 0.1.36 (Hudson et al., 2015) followed by manual refinement by 
two people, resulting in 65,841 single-specimen images (per species 
mean = 182, range = 1–892). To reduce variability and avoid images 
of exceptional preparations, specimens mounted with dorsal side 
facing down, or with head, pronotum, or elytra missing, and larvae 
were tagged during the manual quality check and refinement step. 
Each specimen image was also tagged with the taxon name (genus 
and species), according to the collection data (361 taxa). We excluded 
specimens without a taxon name (66 specimens) or without proper 
identification to species level (100 specimens), larvae (27 specimens) 
and specimens mounted with dorsal side downward (296 specimens) 
or missing either the head, pronotum, or elytra (504 specimens). In 
order to secure sufficient image data to test the classification success, 

F I G U R E  1   Specimens used to train 
or test the convolutional neural network. 
(a) Species with accuracy (images of 
species in test dataset classified to correct 
species) on 90% or more. First row: 
Cylindera germanica, Cychrus caraboides, 
Calosoma inquisitor, Carabus glabratus, and 
Lebia chlorocephala. Second row: Broscus 
cephalotes, Cicindela campestris, Nebria 
complanata, Carabus problematicus, and 
Chlaenius nigricornis. (b) Species drawn 
randomly from the remaining 281 species. 
First row: Bembidion atrocaeruleum, Amara 
famelica, Dyschirius politus, Acupalpus 
meridianus, and Blemus discus. Second row: 
Bembidion ephippium, Ophonus melletii, 
Amara lunicollis, Dromius angustus, and 
Demetrias imperialis

(a)

(b)
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only species with 50 specimens or more were included, thus excluding 
additional 70 species and 1,550 specimens. The taxonomic classifica-
tion used for the species was from gbif.org via the taxize R-package 
(Chamberlain & Szöcs, 2013). Afterward additional taxonomic levels 
were added such as family, subfamily, tribe, subgenus, and the ordered 
taxonomic hierarchy from the British checklist of beetles (Duff, Lott, 
Buckland, & Buckland, 2012).

2.2 | Training and testing the convolutional 
neural network

The complete dataset comprised 63,364 specimen images from 
291 species (images per species mean  =  218, range  =  50–888; 
Figure 1) comprising 80 genera. For each species, specimen im-
ages were divided into three groups for training (50%), validat-
ing (20%), and testing (30%) the network, respectively. In order 
to assign images consistently to the three datasets, we gener-
ated a probability value for each image based on the output from 
encrypting the filename. Images with percentage 0–20 were as-
signed as validation, 20–50 as testing and above 50 as training. 
Thus, the division percentages did not entirely reflect the num-
ber of images in each of the datasets with 31,533 (49.8%), 25,334 
(20.0%), and 19,164 (30.2%) images used for training, validation, 
and testing, respectively. While the training and validation im-
ages were used only for training of the model, the test images, 
not known by the retrained model, were used for further analysis. 
We used the scripts developed by TensorFlow (Abadi et al., 2015) 
for training an Inception-v3 model (Szegedy et al., 2016) initially 
trained on ImageNet database (Deng et al., 2009), following the 
tutorial from Tensorflow (Tensorflow, 2019). The retraining was 
run in TensorFlow version 1.13.1, python version 3.7.3. Input im-
ages were resized to 299 × 299 pixels regardless of input image 
size and shape to follow the model specification. The model was 
trained with gradient decent optimizer for 225,000 iterations and 
a batch size of 100 for both training and validation datasets to 
reach at least 700 epochs. We did not apply augmentation of im-
ages; however, we tested that the learning rate of the model was 
optimized by training the model with learning rates of 0.5, 0.3, 0.1, 

0.045, 0.01, 0.001, and 0.0001. We choose the default learning 
rate, that is, 0.045, which produced similar validation accuracy as 
0.5, 0.3, and 0.1 with lower learning rate. Thus choosing the hy-
perparameter with smallest optimization update while the valida-
tion accuracy converged during training steps. The output layer of 
the CNN, activated by a softmax function, gave a predicted con-
fidence value for each of the 291 species in each image ranging 
between 0 and 1.

2.3 | Evaluating predictions and setting thresholds 
to separate low- and high-confidence predictions

The output layer of the convolutional neural network consisted of a 
vector with a confidence value for each class (i.e., species) included 
in the neural network. The class with the highest value (top 1 or top 
5) from the output layer was interpreted as the predicted class for 
an image. We assessed if the image was predicted correctly, if the 
ground truth name appeared in top 1 or, in a separate measure, in 
top 5.

For each species we calculated from all test images, true posi-
tives (tp): ground truth and predicted as ground truth, false positives 
(fp): not ground truth and predicted as ground truth, true negative 
(tn): not ground truth and not predicted as ground truth, false neg-
ative (fn): ground truth and not predicted as ground truth. Based on 
these numbers, we evaluated classification precision: tp/(tp  +  fp), 
classification recall: tp/tp  +  tn), classification accuracy: (tp  +  tn)/
(tp +  tn +  fp +  fn), True positive rate (TPR): tp/(tp +  fn), true neg-
ative rate (TNR): tn/(tn +  fp), and balanced classification accuracy: 
(TPR + TNR)/2.

The neural network included only species-level classes. To assess 
the number of correctly classified images on levels above the species 
level, we calculated a new set of confidence values through the sum 
of all classes in the higher taxonomic level (e.g., the confidence value 
sum of all species belonging to the same genus). We repeated this 
procedure for all taxonomic levels (subgenus, genus, tribe, subfamily, 
and family).

We introduced a minimum confidence value threshold to assess at 
which taxonomic resolution an image could be classified. Starting at 

Taxon rank No. specimens

Mean 
balanced 
accuracy Mean precision Mean recall

Species 10,348 82.4 70.0 64.9

Subgenus 1,799 73.1 75.3 46.5

Genus 3,212 65.0 72.3 30.6

Tribe 1,231 64.1 72.0 30.1

Subfamily 2,573 70.0 66.6 66.6

Family 1 NA 100 100

Weighted mean 19,164 75.8 70.6 55.4

Note: Bottom row gives the mean of measures weighted by the number of specimens at each taxon 
rank.

TA B L E  1   Number of specimens at each 
taxonomic resolution, mean balanced 
accuracy, mean precision, and mean recall 
when setting a minimum acceptable 
confidence threshold to 0.5 before 
decreasing taxonomic resolution
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species-level resolution, we evaluated if the highest confidence value 
was below the threshold value. If the highest confidence value was 
lower than the threshold value, we repeated the evaluation for classes 
at the next taxonomic level, that is, at lower taxonomic resolution.

2.4 | Analysis

In total 19,164 images of 291 species (mean images per spe-
cies = 65.9, range = 11–272) were used as test images, not involved 
in the training and validation. As the number of images was not equal 
for all species, classification recall was calculated for each species as 
the proportion of images correctly classified. We used two general-
ized linear models with binomial distribution to assess if a classifica-
tion of an image was correct or not. In model 1, only species identity 
was used as explanatory variable. In model 2, we used image size 
measured in megapixels extracted from the image metadata (exif) 
using exiftool v.11.06 through exifr r-package (Dunnington & Harvey, 
2019) as a measure of body size (hereafter referred to as body size), 
the number of species within its genus, and the top 1 value from the 
output layer in the convolutional neural network as explanatory vari-
ables. A sensitivity analysis was performed for model 2, to separate 
effects from the three explanatory variables on the prediction. This 
analysis kept all but one variable constant at mean value for number 
of training images, body size, and top1 value or median for number 
of species inside genus.

3  | RESULTS

Of the 19,164 test images, 9,949 (51.9%) were predicted to the cor-
rect species (threshold = 0, n species = 291), while when extracting 
genus names of predictions and ground truths 14,357 (74.9%) were 

predicted to the correct genus (n genera = 80). For predictions on 
species level, mean classification precision, recall, accuracy, and bal-
anced accuracy were 54.7%, 50.7%, 99.7%, and 75.3%, respectively 
(Table S1).

The confusion matrix, based on all species-level predictions, re-
vealed that species were often confused with other species within 
the same genus (Figure S1). Some typical confusions were also be-
tween tribes: Bembidiini species were often mistaken as Lebiini 
species and vice versa. On the other hand, Bembidiini were rarely 
mistaken as Zabrini, while Zabrini were mistaken as Bembidiini in 
more images. On the subfamily level, two tiger beetles (Cicindelinae) 
were misidentified as belonging to one of the other subfamilies, 
while six species of Carabinae had at least one image predicted as 
Cicindelinae (Figure S1).

By excluding images with low confidence (<0.25) on any one spe-
cific species (top 1 value), 56.6% and 77.8% of a total of 16,812 im-
ages were predicted to the correct species and genus, respectively. 
The resulting mean classification precision, recall, accuracy, and 
balanced accuracy were 58.2%, 54.0%, 99.7%, and 76.9%, respec-
tively. Average recall per species was 50.7% (min 10.6, max 100%, 
SD 20.8%, SE 1.2%; Figure S2).

Setting a minimum acceptable confidence threshold to 0.5 
before decreasing taxonomic resolution by one hierarchical level 
(i.e., summing all species-level confidence values from species be-
longing to that group e.g., all species in a genus), 75.8% of a total 
of 19,164 images were classified correctly to the decided taxo-
nomic level and average classification recall across all specimens 
increased to 74.6% (min 21.3%, max 98.2%, SD 13.2%, SE 0.8%). 
Mean balanced accuracy, precision, and recall varied with taxo-
nomic resolution (Table 1). Classification recall and taxonomic res-
olution varied considerably among the 291 species and 80 genera 
(Figure 2). For most species, the proportion of images correctly 
classified was above 76.9% (median, Figure 2a). Of the 14,527 

TA B L E  2   Species with 90% or more of specimens predicted to correct species if no threshold was set

Species
Number of 
specimens

No threshold Threshold 0.5

True positive (%) False positive True positive (%) Not species level False positive

Cylindera germanica 39 100 12 94.9 2 4

Cychrus caraboides 57 98.2 13 96.5 2 4

Calosoma inquisitor 39 97.4 8 97.4 0 3

Carabus glabratus 27 96.3 2 88.9 2 NA

Lebia chlorocephala 67 95.5 3 94.0 1 3

Broscus cephalotes 111 93.7 14 92.8 3 4

Cicindela campestris 88 93.2 NA 92.0 3 NA

Nebria complanata 55 92.7 1 89.1 4 NA

Carabus problematicus 107 91.6 16 87.9 7 14

Chlaenius nigricornis 40 90.0 4 82.5 5 3

Note: Number of specimens in test dataset, percentage of specimens predicted to the correct species, and false positives (i.e., the number of 
specimens predicted to the wrong species). For threshold 0.5, the percentage of specimens in species predicted to the correct species, the number 
of specimens that did not meet the threshold, thus not predicted on species level, and false positives (i.e., the number of specimens predicted to the 
wrong species).
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F I G U R E  2   Classification performance, when setting minimum acceptable confidence threshold to 0.5. (a) Distribution and (c) genus-
summary of classification recall (i.e., proportion of images of a species classified to correct taxon regardless of the predicted taxonomic level, 
e.g., to species, genus). (b) Distribution and (d) genus-summary of images classified to species level (i.e., proportion of images of a species 
classified to species level), as an indicator of classification taxonomic resolution. A large proportion of images identified to species level 
indicate a high taxonomic resolution, while the taxonomic resolution gradually decreases when larger proportions are identified correctly 
only to higher taxonomic levels (e.g., genus, tribe, or subfamily)
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correctly classified images, 7,362 were correct at the species level, 
while the remaining 7,155 were classified correctly with less taxo-
nomic resolution than species level. Most species had some images 

predicted with a varying taxonomic resolution. Very few species 
had all images classified to a specific taxonomic resolution level 
(Figure 2b).

F I G U R E  3   (a) Model coefficients from GLM model 1 (explanatory variable: species identity), representing species coefficients and (b) 
residuals from model 2 (explanatory variables: body size, top 1 value from last layer in convolutional neural network, number of species in 
genus, and number of training images) representing residuals for images. Species identity and number of species in genus were strongly 
linked, in order to keep species identity separate from other explanatory variables two models were used and residuals from model 2 
compared with coefficients from model 1 compared on genus level. Higher residual values indicate that other explanatory variables than 
included in model 2, explain more of the variation
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Without setting a threshold, ten species had a classification re-
call of 90.0% or greater (Table 2; Figure 1a). With the 0.5 confidence 
threshold, six species had a classification recall of 90.0% or greater; 
however, the number of false predictions (false positives) was re-
duced for all ten species (i.e., increasing the recall; Table 2). With 
the 0.5 confidence threshold, 27 species had more than 85.0% of 
their test images classified at the species level, while seven species 
had less than 20.0% images classified at the species level (Figure S3). 
Genera with many species and including species which are tradition-
ally hard to identify such as Bembidion, Agonum, Amara, Harpalus, 
and Pterostichus had a mean proportion of images classified to spe-
cies level per species in the range 41.7%–45.5% (Figure S3). Inside 
these genera, the mean minimum and mean maximum proportion of 
test images classified to species level was 16.0% and 77.0%, indicat-
ing a high variability inside some genera (Figure S3).

Images classified to correct species were explained by top 1 
value from the last layer in the convolutional neural network, body 
size, number of species within the same genus, and species identity 
(Figure 3; Table 3; Figure S4). The number of species within the same 
genus had a negative relationship with the probability of classifying 
to correct species while body size and the top 1 value from the last 
layer in CNN were positively correlated with the probability of cor-
rectly classifying the species (Table 3; Figure S4). Species identity 
did affect the estimate of model 1, while residuals from model 2 co-
varied with the estimates, suggesting that explanatory variables not 
included in the model could be important.

4  | DISCUSSION

Within the tested species of British Carabidae, 51.9% of the 19,164 
images were classified to the correct species, when testing the model 
classifying to species level, and 74.9% to the correct genus, using 
the same trained model with genus names from ground truth and 
predicted species. However, the classification success for images 
varied significantly between species and genera, with species being 
everything from very difficult or very easy for the model to predict 
to species level. Specifically ten of 291 species had more than 90% 
of their images classified correctly at species level, without setting a 
threshold. When setting a threshold to 0.5 as minimum confidence 
value before decreasing taxonomic resolution, most species did, 

however, not reach taxonomic resolution at species level. The av-
erage classification recall increased from 50.7% to 75.8% using the 
threshold. A range of hyperparameters could have been optimized 
further, like learning rate and augmentation of images. This would 
likely have increased the overall classification recall. However, the 
general patterns in body size and number of species in genus would 
most likely remain the same. Body size of the specimens positively 
contributed to the models ability to classify an image. When set-
ting a minimum threshold to the confidence level, more images were 
classified correctly; however, this came at the cost of losing taxo-
nomic resolution in their prediction. In spite of the reduced taxo-
nomic resolution, such a model can prove extremely useful in applied 
situations where no taxonomic information is attached beforehand, 
for example, reducing workload of counting, classifying on broader 
taxonomic levels, and creating an overview of a collection being re-
ceived by a museum.

Modifying the top layer of the CNN based on the images that 
we extracted from the collection enabled us to distinguish among 
291 classes. That is most of all species known to occur in the British 
Isles within ground beetles, a family belonging to one of the most 
species-rich orders of animals, Coleoptera with 380,000 described 
species (Zhang, 2011). As in other taxonomic groups, carabid beetles 
contain species that are morphologically only differentiated with 
subtle differences, which the result of this model reflected and han-
dled to some extent by decreasing the taxonomic resolution on those 
image predictions, that is prediction to genus. Studies have used 
convolutional neural networks to classify species of a wide range of 
taxa, including arthropods and mammals (Norouzzadeh et al., 2018; 
Van Horn et al., 2017). However, this is the first to use a dataset 
within a well-defined geographical and taxonomic species-rich unit 
as well as providing information on how the postprocessing of the 
classification can trade-off taxonomic resolution and classification 
recall. As all of the images in this dataset were taken with the same 
fixed camera settings and distance to object, the image size could be 
used as a proxy for body size. Larger specimens thus have more pix-
els in this dataset, which is the case when scanning drawers in col-
lections and on camera traps faced toward a ground surface, using 
a camera with a fixed distance to the objects. Importantly, this also 
suggests that images from cameras only capture a limited body size 
range, as images with fewer pixels are less likely to be predicted to 
correct species.

Parameter Lower CI (2.5%) Estimate Upper CI (97.5%)

(Intercept) 0.0639 0.0713 0.0793

Top 1 value 0.986 0.988 0.990

Body size 0.616 0.659 0.701

Number of species 0.497 0.498 0.498

Number of training images 0.500 0.500 0.500

Note: Explanatory variables included the top1 value in the output layer, body size in megapixels, 
number of species in the same genus as the ground truth species, number of training images of the 
ground truth species.

TA B L E  3   Model coefficients and 95% 
confidence interval from a generalized 
linear model (model 2), predicting if an 
image is classified to correct species 
by the convolutional neural network as 
binomial variable (true/false)
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Comparing our results to those obtained from other convolu-
tional neural networks, built for the specific purpose of identifying 
other groups of arthropods (e.g., Marques et al., 2018), there is scope 
for increasing both classification recall and taxonomic resolution. 
Either image quality, network structure, number of classes to predict, 
or the image recording perspective could explain the differences. 
When comparing precision and accuracy of dorsal perspective im-
ages of ants by Marques et al. (2018) we achieve comparable results 
(precision 54.7% and balanced accuracy 75.3% vs. 52.0% and 59.0%). 
For a range of other studies that classify arthropods to species level, 
the results are comparable, even though fewer species are typi-
cally used in classification (Martineau et al., 2017). van Horn et al. 
(2017) presented a species level trained network based on Inception 
ResNet v2 and 675,000 images among 5,000 species of plants and 
animals. Their mean accuracy level within 1,021 insect species was 
74.5%, which is comparable with our balanced accuracy of 75.3% of 
images in our study. When critically assessing confidence values and 
information of taxonomy, we increased the average accuracy above 
the level of van Horn et al. (2017) at species level, however, losing 
taxonomic resolution for nearly half of the images.

Automated or semi-automated identification of insects on spe-
cies or higher taxonomic levels has multiple potential applications, 
including in museum collections, ecological studies, and biodiver-
sity monitoring. In museum collections, classification could iden-
tify specimens of accessions on entry into the museum and help 
taxonomic experts to find unusual specimens in the collections for 
focused taxonomic work. Classification of images enables cameras 
to be utilized as direct observers in ecological studies, providing 
detailed knowledge of species habitat preferences, activity levels, 
and species interactions. In monitoring, a continuous sampling of 
arthropod image data could also provide abilities to historically 
document and forecast abundances and activities of arthropods. 
However, all of the potential uses will only become achievable with 
considerable improvements of the accuracy as presented here. 
Proper testing and validation in applied contexts and in a broader 
range of taxa and habitats are crucial to achieve species-level 
classification.

Even though we did not find a consistent error in all species, the 
results indicate that CNN can be used for a variety of classification 
tasks with high accuracy and for some species, high taxonomic reso-
lution. Importantly, the results indicate that habitus images are suf-
ficient to classify images to species level, albeit not for all species. 
Taxonomic classification based on habitus images is needed for cam-
era trap-based studies, where detailed images are not available. We 
show that assessing whether there is sufficient evidence to predict 
a specimen to a certain taxonomic resolution can be informed by 
the classification model output, through setting a confidence value 
threshold. Data from camera traps are possibly more complex and 
images from camera traps also need detection of objects, as multiple 
individuals may occur in the same frame. Object detection in camera 
traps has already been utilized for large mammals (Schneider et al., 
2018), suggesting that object detection with CNN can be suitable for 
arthropods as well.

With the ability, from habitus images, to classify and know the 
classification error among arthropods including ground beetles, 
convolutional neural networks provide a practical tool. For ecolo-
gists, conservationists, and museum curators applied species-level 
classification on massive datasets can provide new opportunities 
for predicting the consequences of environmental changes for living 
organisms.
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