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Abstract
Understanding habitat associations is vital for conservation of at-risk marsh-endemic 
wildlife species, particularly those under threat from sea level rise. We modeled en-
vironmental and habitat associations of the marsh-endemic, Federally endangered 
salt marsh harvest mouse (Reithrodontomys raviventris, RERA) and co-occurrence 
with eight associated small mammal species from annual trap data, 1998–2014, in 
six estuarine marshes in North San Francisco Bay, California. Covariates included 
microhabitat metrics of elevation and vegetation species and cover; and landscape 
metrics of latitude–longitude, distance to anthropogenic features, and habitat patch 
size. The dominant cover was pickleweed (Salicornia pacifica) with 86% mean cover 
and 37 cm mean height, and bare ground with about 10% mean cover. We tested 38 
variants of Bayesian network (BN) models to determine covariates that best account 
for presence of RERA and of all nine small mammal species. Best models had lowest 
complexity and highest classification accuracy. Among RERA presence models, three 
best BN models used covariates of latitude–longitude, distance to paved roads, and 
habitat patch size, with 0% error of false presence, 20% error of false nonpresence, 
and 20% overall error. The all-species presence models suggested that within the 
pickleweed marsh environment, RERA are mostly habitat generalists. Accounting for 
presence of other species did not improve prediction of RERA. Habitat attributes 
compared between RERA and the next most frequently captured species, California 
vole (Microtus californicus), suggested substantial habitat overlap, with RERA habitat 
being somewhat higher in marsh elevation, greater in percent cover of the domi-
nant plant species, closer to urban areas, further from agricultural areas, and, per-
haps most significant, larger in continuous size of marsh patch. Findings will inform 
conservation management of the marsh environment for RERA by identifying best 
microhabitat elements, landscape attributes, and adverse interspecific interactions.
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1  | INTRODUC TION

Tidal marshes constitute a small fraction of land area but typically 
provide diverse habitat for a unique suite of wetland vertebrate 
species and contribute disproportionately to regional biodiversity 
(Greenberg, Maldonado, Droege, & McDonald, 2006; Wiest et al., 
2016; Zedler, Callaway, & Sullivan, 2001). Tidal marshes are becoming 
increasingly vulnerable to a variety of threats and stressors (Kintisch, 
2013), including inundation from high tides caused by local sea level 
rise and storms (Craft et al., 2009; Field, Gjerdrum, & Elphick, 2016; 
Kirwan & Temmerman, 2009; Thorne et al., 2018), differential re-
sponse of wetland plants to flooding (Janousek et al., 2016; Kirwan 
& Guntenspergen, 2015), changes in vegetation productivity from 
local warming (Maegonigal et al., 2016), incursion by invasive species 
(Winder, Jassby, & MacNally, 2011), coastal erosion (Kane, Fletcher, 
Frazer, Anderson, & Barbee, 2015), urban development (Enwright, 
Griffith, & Osland, 2016; Shellhammer, 1989), pollution (McCann et 
al., 2017), and other factors. All such changes can impact suitability 
of tidal marsh habitat for the variety of associated wildlife species, 
especially habitat specialist and endemic species (Takekawa et al., 
2006; Thorne, Takekawa, & Elliott-Fisk, 2012; Torio & Chmura, 2015). 
Due to these direct and indirect human impacts, many marsh wildlife 
species are listed as endangered or threatened pursuant to the U.S. 
Endangered Species Act. It is likely that many changes to ecosystems 
caused by shifting climate patterns have not been recognized, but 
habitats can respond quickly and drastically in unpredictable ways, 
leading to substantial uncertainty about impacts to endemic wildlife. 
Given this, uncertainty defining habitat characteristics is growing in-
creasingly important for the conservation of biodiversity, especially for 
at-risk species.

Many resource management agencies have established a hab-
itat-based approach, rather than an individual species approach, 
for recovery of marsh endemic species (DOI, 2013; Goals Project, 
2015; USFWS, 2013), making it all the more important to under-
stand habitat relationships of at-risk species presumed to be pro-
vided by a habitat-based approach. Our study focused on the salt 
marsh harvest mouse (Reithrodontomys raviventris, RERA, Figure 1), 
federally-, state-, and IUCN-listed as endangered (CDFG, 2015; 
USFWS, 2013; www.iucnr​edlist.org/speci​es/19401/​22385344). 
RERA is endemic to the wetlands of the San Francisco Bay (SFB), 
California, where marsh plant communities and obligate wildlife 
are at risk of habitat loss from local sea level rise over the coming 
decades (Thorne, Buffington, Elliott-Fisk, & Takekawa, 2015; Veloz 
et al., 2013).

RERA currently occupies <25% of its historic range because 
of habitat fragmentation and loss, with >80% loss of historic wet-
land habitat in SFB (Statham et al., 2016). The northern subspecies 
(Reithrodontomys raviventris halicoetes) is found along San Pablo and 
Suisun Bays, and the southern subspecies (R.  r.  raviventris) is found 
in South SFB with the subspecies divide somewhere in Central 
Bay (Shellhammer, 1989; Statham et al., 2016; USFWS, 2013). 
However, detailed habitat associations of both subspecies are not 
well understood. Smith, Riley, Barthman-Thompson, Woo, et al. 

(2018) reviewed the RERA literature to date. Smith, Riley, Barthman-
Thompson, Statham, et al. (2018) recommended research priorities 
to further RERA recovery, including the need for data synthesis to 
assess regional habitat associations and species interactions. On this 
basis, we collated several monitoring datasets to address this priority 
research need.

Several independent monitoring efforts have been conducted to 
assess SMHM abundance with varying sampling design and effort, 
very low SMHM captures, and lack of marking individual captures, 
such that traditional occupancy models would not be appropriate. 
Therefore, we used a probabilistic analysis approach with Bayesian 
network (BN) modeling to determine RERA correlates with environ-
mental and habitat parameters, and to evaluate relationships with 
other sympatric small mammal species.

Bayesian network models link variables with probabilities calcu-
lated using Bayes' Theorem (Korb & Nicholson, 2010; Koski & Noble, 
2011) and are relatively robust to zero inflated data and collinearity. 
We analyzed trap data and associated vegetation, patch (elevation 
and inundation), and landscape covariates, including presence of 
other small mammal species, to determine habitat associations of 
RERA. Explicitly, we aimed to assess (a) microhabitat and landscape 
attributes determining RERA presence, and (b) if RERA presence 
was associated with other small mammal species. We developed all 
BN models from empirical field and spatial data. This modeling ap-
proach can be used to project impacts on RERA from future changes 
in habitat conditions, disturbances, and climate change, and to inform 
management of these tidal marsh environments to facilitate species 
recovery and conservation.

F I G U R E  1   Salt marsh harvest mouse (Reithrodontomys 
raviventris) in pickleweed (Salicornia pacifica) habitat. (Photo used by 
permission, Judy Irving © Pelican Media)

http://www.iucnredlist.org/species/19401/22385344
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2  | METHODS

2.1 | Study area

The SFB ecosystem in the central coast of California has a 
Mediterranean climate with warm dry summers and cool rainy 
winters. North SFB (38°08′N, 122°24′W), comprised of San 
Pablo and Suisun Bays, receives most of its freshwater from the 
Sacramento and San Joaquin Rivers in the form of summer snow-
melt from the Sierra Nevada mountains. This region has a mixed 
semidiurnal tide with a mean tide range of 1.17–1.63 m and a mean 
spring tide range of 1.57–2.09 m (Parker, Callaway, Schile, Vasey, 
& Herbert, 2012). Most tidal marshes are found above mean tide 
level (MTL, defined as the arithmetic mean of mean high water and 
mean low water; Parker et al., 2012) whereas marsh plain eleva-
tions are closer to or above mean high water (MHW, defined as 
the average of all the high water heights observed over 19 years; 
Takekawa et al., 2013) (https​://shore​line.noaa.gov/gloss​ary.html). 
The marsh plain is dominated by pickleweed (Salicornia pacifica, 
syn. Sacrocornia pacifica, formerly Salicornia virginica; Calflora, 
2018), and the lower marsh area is dominated by Spartina foliosa, 
a native of the region.

Examples of local marsh inhabitants are salt marsh common 
yellowthroat (Geothlypis trichas sinuosa), San Pablo song sparrow 
(Melospiza melodia samuelis), and San Pablo vole (Microtus californicus 
sanpabloensis), state-listed species of special concern; California black 
rail (Laterallus jamaicensis coturniculus), a state threatened species; and 
California Ridgway's rail (Rallus obsoletus, formerly clapper rail, Rallus 
longirostris obsoletus). However, RERA is the only mammal species in 
the world that is entirely endemic to coastal marshes (Greenberg & 
Maldonado, 2006) and is found only in tidal marshes in SFB (Figure 1). 
It currently occupies <25% of its historic range because of habitat frag-
mentation and loss, with >80% loss of historic wetland habitat in SFB 
(Statham et al., 2016). The northern subspecies (R. r. halicoetes) is found 
along San Pablo Bay, and the southern subspecies (R. r. raviventris) is 
found in South SFB with the subspecies divide somewhere in Central 
Bay (Shellhammer, 1989; Statham et al., 2016; USFWS, 2013).

2.2 | Field trapping

Small mammal surveys were conducted as separate monitoring ef-
forts, and for these analyses results were collated from estuarine 
marsh study sites in San Pablo Bay (Fagan, Guadalcanal, Tolay Creek, 
and Tubbs Island Setback), Grizzly Bay (Benicia-Martinez Marsh), and 
Central Bay (Corte Madera) (Figure 2). Over the course of the study 
(1998–2014), a total of 12,405 trap nights were conducted (Table 1). 
Sherman live traps (H.B. Sherman Traps, Inc.) were placed in three trap 
layout patterns (Table 2): grid, transect, and random placement. Grids 
varied in size, covering arrays of 5 × 5, 5 × 10, 7 × 7, and 2 × 25 traps, 
depending on local conditions and marsh area. Where local marsh con-
ditions narrowed, not providing adequate area for a grid, one to three 

transects were used, each consisting of ten traps per transect. Random 
placements of traps were used only in the Tubbs Island Setback site be-
cause tidal marsh habitat and the upland transition zone were narrow 
with variable width such that the random placement allowed better 
coverage by which to associate RERA captures to habitat. No one site 
used all three trap layout patterns, and all sites used the grid or tran-
sect patterns except for Tubbs Setback (Table 2).

Traps were spaced at 10-m intervals following Jones, McShea, 
Conroy and Kunz (1996). This spacing was also consistent with find-
ings from Bias and Morrison (1999) who reported that RERA moved 
short distances (mean 11.9 m) between consecutive 2-hr telemetry 
observations, and that RERA home ranges averaged just 2,133 m2. 
Traps were initially deployed twice a year in spring and summer at 
Tolay Creek to capture a range of reproductive conditions. At other 
sites, traps were deployed once a year in late summer or early fall 
to maximize the capture of juveniles who would have been born 
in the spring of the same year. Although individual RERA move-
ments patterns were generally highest in summer (June) and lowest 
in early winter (November), movements of pregnant females were 
low more consistently throughout the seasons (Bias & Morrison, 
1999). Therefore trap distance was kept at a 10-m interval regard-
less of season.

Each trapping session consisted of three consecutive nights 
(with limited exploratory sampling conducted for four nights at 
Tolay Creek to increase detection of RERA). Traps were baited with 
a mix of crushed walnuts, birdseed, and mealworm (for insectivorous 
shrews) and opened in the evenings, checked each morning at sun-
rise, and closed during the day.

Polyester batting was placed within each trap to keep small 
mammals warm. Wooden shingles were placed on top of each trap 
to protect captured animals from exposure. Species identification, 
sex, age, mass (mg), reproductive condition, body length, tail length, 
and presence of wounds or parasites were recorded for all individu-
als. Reproductive condition in males was characterized by presence 
and development of the testes. Reproductive condition in females 
was characterized by the presence and development of mammaries 
and whether the animal was pregnant. Animals captured and identi-
fied to the genus Reithrodontomys also included records of tail width 
20 mm from the base of the tail, hind foot length, ear length, venter 
coloration of tail and belly, bicoloration of tail, and behavior (e.g., 
aggressiveness). Individuals were marked by clipping fur with small 
scissors to identify recaptures.

2.3 | Microsite and patch covariates

We recorded microsite and patch conditions in terms of vegetation, 
topography, and inundation patterns at trap locations. Each trap lo-
cation was defined by a set of covariates including trap data, loca-
tion, plant species, elevation, distance to natural or anthropogenic 
features, and marsh patch size (Appendix S1: Table S1; see Metadata 
S1 for the list and definitions of covariates), as follows.

https://shoreline.noaa.gov/glossary.html
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2.3.1 | Vegetation

We visually assessed percent cover of each vascular plant spe-
cies within a 0.25 m2 vegetation quadrat centered on each trap 
and measured the mean and maximum height (to nearest cm) of 
each species. In wetland restoration sites, habitat at each trap was 
described using the closest and the second-closest vegetation 
quadrats for Tolay Creek (Bias et al., 2006), Tubbs Setback (Woo, 
Takekawa, Rowan, Gardiner, & Block, 2007), Guadalcanal (Woo, 
Takekawa, Gardiner, Dembosz, & Bishop, 2009), and Benicia-
Martinez (Woo, Bishop, & Takekawa, 2010). For our covariate data 
set, we identified from the vegetation plots the plant species or 
other cover categories having the three highest individual cover 
percentages, maximum heights, and average heights; we used all 
these covariates in the initial modeling, discussed below. Other 
cover categories recorded and use in initial modeling included 
presence and percent cover of green algae, brown algae, bare 
ground, litter, dead plants standing, and dead plants not standing. 
Total plant cover in a quadrat could exceed 100% due to vegeta-
tion layering. We followed Jepson Flora Project (2018) for vascular 

plant nomenclature. See Figure 3 for examples of vegetation and 
environmental conditions.

2.3.2 | Topography

We measured topographic variation at each site by surveying marsh 
surface elevation along transects perpendicular to the major tidal 
sediment source, with survey points taken every 12.5 m, and tran-
sects separated by 50  m using a Real Time Kinematics (RTK) GPS 
(Leica Geosystems Inc.). We used the Geoid09 model to calculate or-
thometric heights from ellipsoid measurements (m, NAVD88; North 
American Vertical Datum of 1988) and projected all points to NAD83 
UTM Zone 10 using Leica GeoOffice v7.0.1 (Leica Geosystems Inc.). 
We then combined the elevation survey data to create a digital eleva-
tion model (DEM) at each site in ArcGIS 10.2.1 Spatial Analyst (ESRI 
2011) with exponential ordinary kriging methods (5 × 5 m cell size) 
after adjusting model parameters to minimize the root-mean-square 
error (RMS). Using the DEM data, we were then able to assign a spe-
cific elevation to each trap location.

F I G U R E  2   Locations of small mammal trap sites around North San Francisco Bay, California
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2.3.3 | Inundation

To determine inundation patterns and calculate site-specific tidal 
datums, we used a mix of available local data sources. We deployed 
water level data loggers (Model 3001; Solinst Canada Ltd.) at Corte 
Madera, Tolay Creek and Tubbs Island Setback Marshes (Takekawa, 
Thorne, Buffington, & Freeman, 2014; Takekawa et al., 2013). For 
other sites (Benicia-Martinez, Fagan, Guadalcanal), we used data 
from the nearest NOAA tidal station. Sites with locally collected 
data had one or two loggers that were placed at the mouth and 
upper reaches of second-order tidal channels to capture high tides 
and determine seasonal inundation patterns. Water level readings 
were collected every 6 min starting on the date of deployment and 
continued for at least one year to calculate tidal datums for each 
trapping location.

We used data from the lowest elevation logger at each site to 
develop local hydrographs and inundation rates, and we surveyed 
loggers with RTK GPS at the time of deployment and at each data 
download to correct for any vertical movement and to refer-
ence water levels to NAVD88 elevations. All raw water level data 
were corrected with a local time series of barometric pressure. 
For Solinst loggers, we deployed independent barometric loggers 
(Model 3001; Solinst Canada Ltd.). We used water level data to es-
timate local tidal datums for all sites using procedures outlined in 
the NOAA Tidal Datums Handbook (NOAA 2003), and calculated 
only local mean high water (MHW) and mean higher high water 
(MHHW) because the loggers were positioned in the intertidal and 
therefore could not be used to compute lower datums. We then 
assigned MHW and MHHW values to each trap location based on 
the nearest local water monitoring location and its associated local 
tidal datums (Figure 2).

2.4 | Statistical modeling

2.4.1 | Correlation among variables

We first conducted bivariate Pearson correlations among the covari-
ates to determine which variables may be highly correlated so as to 
exclude them from further modeling. Although the BN models we 
used are more tolerant of multicollinearity among covariates than 
are frequentist multivariate models (Pawson, Marcot, & Woodberry, 
2017), it is still useful to narrow the set of covariates to reduce un-
necessary model complexity.

TA B L E  1   Number of trap nights by year and location (see Figure 2)

Year Benicia-Martinez Marsh Corte Madera Fagan Guadalcanal Tolay Creek
Tubbs Island 
Setback Total

1998 0 0 0 0 600 0 600

1999 0 0 0 0 2,270 0 2,270

2000 0 0 0 0 634 0 634

2001 0 0 0 0 330 0 330

2002 0 0 0 0 660 0 660

2003 0 0 0 225 660 360 1,245

2004 0 0 0 0 618 360 978

2005 0 0 0 195 588 360 1,143

2006 225 0 0 225 225 360 1,035

2007 225 0 0 225 300 360 1,110

2008 195 0 0 0 225 360 780

2009 0 0 0 0 225 0 225

2010 0 0 0 0 225 360 585

2011 0 0 300 0 0 360 660

2014 0 150 0 0 0 0 150

Total 645 150 300 870 7,560 2,880 12,405

TA B L E  2   Number of trap nights by site and trap layout pattern

Site Grid Random Transect Total

Benicia-
Martinez 
Marsh

225 0 420 645

Corte Madera 0 0 150 150

Fagan 300 0 0 300

Guadalcanal 300 0 570 870

Tolay Creek 6,840 0 720 7,560

Tubbs Island 
Setback

0 2,520 360 2,880

Total 7,665 2,520 2,220 12,405
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2.4.2 | Bayesian network structure

We chose BNs as the modeling construct because of several key 
advantages of this approach over frequentist approaches: BN 
models can well handle missing data, can incorporate and display 
uncertainties in frequency distributions of values of variables, can 
account for correlations among covariates, can produce usable re-
sults with uneven sample sizes of covariates, and other advantages 
(Oniśko, 2008; Pawson et al., 2017). BN models can also be used 
to incorporate data from different sources, such as the variety of 
RERA trap layout patterns and trapping intensities in the current 
study.

Each BN model was developed in Netica® (vers. 6.06; Norsys, 
Inc.) using the per-trap results as a case file database (available as 
Metadata S1). Covariates were incorporated by use of the "add case 
file nodes" in Netica, which converts the covariates into BN vari-
ables (network nodes). Continuous variables were discretized (cut-
off values of "bin" states were identified) into exclusive states using 
Netica's "modify/auto discretize" function, specifying no more than 
five states per variable so as to make the sizes of the conditional 
probability tables in the final models tractable and allowing suffi-
cient sample sizes (approximately 20 or greater) in each state.

Next, we induced BN model structures from the case file by 
using the tree-augmented network (TAN) algorithm (Friedman, 
Geiger, & Goldszmidt, 1997; Jiang, Cai, Wang, & Zhang, 2012). This 

identifies key linkages among the BN variable nodes by using a mod-
ified naïve Bayes learning rule. That rule does not presuppose any 
specific dependencies among the variables in the model, and it con-
nects variables according to their correlations once the dependent 
variable is initially identified by the user. In general, a naïve BN is 
structured with links extending from the response variable to co-
variates, representing the degree to which variation in the response 
variable is explained by the covariates. The linkages also connect 
any covariates to each other if they are still correlated in the net-
work structure even after some variables were initially excluded 
for highest correlation. Values of all unconditional and conditional 
probability tables (CPTs) in the model then were specified from the 
case file by using Netica's "incorporate case file" learning algorithm, 
that calculates the probabilities from frequency occurrences in the 
case file.

We created a series of BN models based on various subsets 
of the selected covariates, using the two response variables of (a) 
presence of RERA in trap results, and (b) capture results of all small 
mammal species including RERA. We used the second response 
variable of all small mammal species to determine if the presence 
of other small mammal species could help account for presence or 
nonpresence of RERA, thus potentially improving model perfor-
mance. The model-construction procedure—developing BN models 
entirely induced from the field data case file—was repeated for each 
response variable of RERA presence and all-species trap outcomes. 

F I G U R E  3   Examples of North San 
Francisco Bay salt marsh environments 
(see Figure 1 for place name locations). 
(a) Pickleweed salt marsh, Tolay Creek. 
(b) San Pablo Bay, Tubbs Setback. (c) 
Fallow agricultural hay field, from levee, 
Tubbs Setback. (d) Channel > 3m wide. 
(e) Road on levee. (f) Wetland, levee, and 
agricultural field. (Photos a–c by Bruce G. 
Marcot, d–f by Isa Woo)

(a) (b)

(c) (d)

(e) (f)
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For each of these two response variable outcomes, we developed 
19 variants of BN models, thus 38 total models, to represent differ-
ent combinations of covariates. We grouped covariates into logical 
sets representing trap sampling design, location (latitude–longitude), 
vegetation and cover, elevation, distance to natural or anthropogenic 
features, and marsh patch size, and then developed BN models using 
variables drawn from one or more of those sets (Table 3).

2.4.3 | BN model accuracy, complexity, 
selection, and sensitivity

We identified the best-performing models as those with low com-
plexity and high accuracy (low overall prediction error. and low 
Type I error of false positive). The overall aim of denoting model 
calibration accuracy and complexity was to provide information by 
which to choose best models, which would be those with highest 
classification accuracy (lowest error) and lowest model complexity, 
akin to use of Akaike information criterion (AIC) metrics in frequen-
tist statistical modeling (Akaike, 1973) that is strictly not applica-
ble in BN modeling. Selection of best Bayesian models can be a 

somewhat subjective process (Hooten & Hobbs, 2015). Despite 
the diversity of model performance metrics, there are no agreed-
upon methods for Bayesian model selection. Thus, we present here 
accuracy and complexity outcomes of all models as an objective 
procedure.

We then tested each BN model variant for calibration accuracy 
by calculating classification error rates ("confusion tables" sensu 
Kohavi & Provost, 1998) using the trap data case file. This entailed 
running each BN model for each case in the case file and determining 
if the model would have resulted in a dominant probability outcome 
that is the same as the known case outcome (presence of RERA, or 
presence of a specific mammal species).

We partitioned calibration classification error rates into Type I 
(false positive) and Type II (false negative) errors. We calculated Type 
I errors as the number of cases when the model predicted presence 
of RERA (or some other species) when the actual trapping result 
was RERA nonpresence (or another species outcome), divided by 
the total number of cases when the model predicted presence (thus 
including when the actual outcome was presence). We calculated 
Type II errors as the number of cases when the model predicted non-
presence of RERA (or some other species) when the actual trapping 

TA B L E  3   Variants of Bayesian network (BN) models using combinations of covariates

Model no.

Covariate (predictor variable) sets used

C1. Trap data
C2. 
Latitude–longitude

C3. Vegetation 
& covera

C4. Vegetation 
& coverb C5. Elevation C6. Distance C7. Patch size

1, 20 X            

2, 21   X          

3, 22     X        

4, 23       X      

5, 24         X    

6, 25           X  

7, 26             X

8, 27         X X  

9, 28           X X

10, 29         X   X

11, 30     X   X X  

12, 31     X     X X

13, 32     X   X   X

14, 33     X   X X X

15, 34 X   X   X X  

16, 35 X   X     X X

17, 36 X   X   X   X

18, 37 X   X   X X X

19, 38       X X X X

Note: These variants were applied to BN models with salt marsh harvest mouse presence response (model numbers 1–19) and BN models with all 
small mammal species response (model numbers 20–38). Covariates are described in Table S1.1.
aC3 Vegetation and Cover covariates pertain to the presence, percent cover, maximum height, and average height of the most dominant plant species 
within the closest vegetation plot to the trap. 
bC4 Vegetation and Cover covariates include the C3 Vegetation and Cover covariates and also the same for the second and third most dominant plant 
species within the closest vegetation plot to the trap. 
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result was presence (or another species outcome), divided by the 
total number of cases when the model predicted nonpresence (thus 
including when the actual outcome was nonpresence). We used 
these calculations and separated the error types because they carry 
very different management implications depending on trap results, 
as we discuss below.

We also calculated values of spherical payoff for each model 
variant. Spherical payoff is an index of model calibration perfor-
mance that compares model outcomes to known outcomes across a 
case file, averaging the probability of each predicted state and each 
known state (for calculations, see Marcot, 2012; Morgan & Henrion, 
1990). Values of spherical payoff range [0,1] where 1 denotes best 
performance (lowest classification error) and 0 denotes the worst. 
We include spherical payoff because it provides complementary in-
formation to, and can be poorly correlated with, overall confusion 
error rate (Marcot, 2012).

For each BN model variant, we also denoted three measures 
of model complexity: number of nodes (variables), number of links, 
and number of probability values. We used these three measures of 
complexity because, depending on model structures resulting from 
the model-building algorithms, they are not necessarily significantly 
correlated (Marcot, 2012).

We then conducted 4-fold cross-validation tests of model va-
lidity, on the selected best models, following k-fold procedures 
described in Marcot (2012) and as used in Bayesian modeling by 
Broms, Hooten, and Fitzpatrick (2016), Pawson et al. (2017), and 
others. The purpose of conducting cross-validation was to deter-
mine the degree of fit or overfit of each model; a BN model is 
likely overfit if it has high calibration accuracy (low classification 
confusion error) but low cross-validation prediction accuracy. The 
final selection(s) of best model(s) should have high calibration 
accuracy, low complexity, and high cross-validation prediction 
accuracy.

Lastly, we conducted sensitivity tests of the best models to de-
termine the degree to which the predicted occupancy probabilities 
were sensitive to uncertainty about each covariate. We used sen-
sitivity analysis procedures and metrics detailed in Marcot (2012) 
entailing calculations of entropy reduction which depict incremen-
tal responses of an outcome variable given incremental changes in 
each covariate. Results are useful for comparing relative sensitivity 
among covariates within a model, and relative sensitivity of a given 
covariate among models.

2.4.4 | Habitat relationships

We used the trap results, data on environmental conditions at each 
trap sites, and the BN models, to evaluate habitat conditions of 
RERA. We also compared habitat conditions of RERA to those of 
other small mammals, based on BN model comparisons. We used 
results of unpaired t tests and F tests to compare covariate asso-
ciations between RERA the other small mammal species captured 
during this study.

3  | RESULTS

3.1 | Site attributes

Among all sites, trap locations in Tubbs Island Setback had the high-
est average elevation above MTL and the highest average marsh 
plain elevation above MHW and MHHW, and Tolay Creek had the 
lowest. Benicia-Martinez Marsh and Corte Madera were furthest 
from agricultural lands but among the closest to other anthropo-
genic features; Tubbs Island Setback was furthest from roads and, 
with Tolay Creek, also furthest from urban areas; and Fagan was fur-
thest from the bay and from levees (Figure S1.2). Tolay Creek had 
the largest average habitat patch size, and Guadalcanal had the larg-
est extended habitat patch size not impeded by barriers or channels 
>3 m wide (Figure S1.3).

3.2 | Plant species

Among all trap locations, at least 20 vascular plant species were 
recorded (Table S1.2). Across all trap sites, pickleweed was the 
most dominant cover category (54% of trap sites), followed by bare 
ground (24%), salt grass (9%), alkalai heath (5%), and other species 
and categories (<3% each).

3.3 | Environmental and vegetation covariates

Of the 78 Pearson correlations r among 13 continuous environmen-
tal covariates (elevation, distance, and patch size variables), nine 
were statistically significant (p < .05) with |r| > 0.75 (Table S1.3). From 
these results, we eliminated three covariates (MHHW, distance to 
closest urban area and distance to closest agriculture), leaving the 
remaining 10 to include in the BN models in various combinations 
with low correlation. The 12 vegetation covariates were not part of 
the correlation analysis due to sparsity of these data (low numbers 
of plots in which all variables were present), but we included all of 
them in the BN models.

3.4 | Small mammals

Field trapping resulted in capture of nine species of small mammals 
(Table 4) over 12,405 trap nights, with 73% of trap nights resulting in 
no captures. The most frequently captured species were California 
vole (M. californicus, MICA), RERA, house mouse (Mus musculus), and 
deer mouse (Peromyscus maniculatus). MICA captures in this study 
overlap the geographic region and habitat of the San Pablo sub-
species (M. californicus sanpabloensis, a California State Mammal of 
Concern); however, subspecies identification was not possible for 
our live captures. RERA constituted 20% of all captures and 5% of 
all trap nights. All RERA captures were of the northern subspecies, 
R. r. halicoetes. There were no RERA captures at Corte Madera and a 
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single RERA capture at Benicia-Martinez Marsh. RERA capture rates 
(n/trap night) were highest at Fagan Marsh and Tolay Creek study 
sites (Table 5, Figure 2).

3.5 | Bayesian network models

We developed 38 variants of BN models consisting of 19 dif-
ferent combinations of covariates, each with two variations of 
trap-result response variables: RERA presence, models 1–19; and 
presence of each small mammal species, models 20–38 (Table 3; 
Figure S1.4).

Among the RERA presence models (Table 6, Table S1.4), model 
complexity varied widely among the model variants. Complexity var-
ied from 2 to 23 variables (model nodes), 1–43 links among model 
nodes, and 12–5,140 probability values. Overall calibration classi-
fication error rates varied 19%–47%, with Type I errors varying 
0%–100% and Type II errors varying 15%–20%, and spherical payoff 
ranged from 0.634 to 0.849.

Among the all-species presence models (Table 7, Table S1.5), 
model complexity also varied widely among the model variants. 
The number of nodes and number of links were the same as with 
the RERA presence models, but the number of probability values 
ranged 54–23,130. Overall calibration classification error rates 

Response variable
No. trap 
nightsa

Presence results

RERA Presence of salt marsh harvest mouse, Reithrodontomys 
raviventris

669 (20%)

NOTRERA Salt marsh harvest mouse not present (treated as 
absence of capture)

2,670 (80%)

Species-specific results

MICA California vole, Microtus californicus 1,565 (47%)

MUMU House mouse, Mus musculus 555 (17%)

PEMA Deer mouse, Peromyscus maniculatus 433 (13%)

RANO Norway rat, Rattus norvegicus 14 (<1%)

RARA Black rat, Rattus rattus 1 (<1%)

REME Western harvest mouse, Reithrodontomys megalotis 37 (1%)

RERA Salt marsh harvest mouse, Reithrodontomys raviventris 669 (20%)

SOOR Ornate shrew, Sorex ornatus 65 (2%)

aAdditionally were 9,066 trap nights with no captures (73% of all trap nights including the 3,339 
with captures). 

TA B L E  4   Results of species trap 
captures over a total of 3,339 trap nights

TA B L E  5   Capture results of small mammals by study site: number of trap nights with individual captures and trap outcomes (outcomes 
per 100 trap nights in parentheses)

Species Benicia-Martinez Marsh Corte Madera Fagan Guadalcanal Tolay Creek
Tubbs Island 
Setback Total

MICA 0 (0.0) 0 (0.0) 16 (5.3) 2 (0.2) 1,437 (19.0) 110 (3.8) 1565 (12.6)

MUMU 22 (3.4) 1 (0.7) 10 (3.3) 156 (17.9) 211 (2.8) 155 (5.4) 555 (4.5)

PEMA 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 181 (2.4) 252 (8.8) 433 (3.5)

RANO 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 4 (0.1) 10 (0.4) 14 (0.1)

RARA 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.03) 1 (0.01)

RE 0 (0.0) 3 (2.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 3 (0.02)

REME 0 (0.0) 1 (0.7) 0 (0.0) 0 (0.0) 33 (0.4) 0 (0.0) 34 (0.3)

RERA 0 (0.0) 0 (0.0) 22 (7.3) 19 (2.2) 546 (7.2) 82 (2.9) 669 (5.4)

SOOR 0 (0.0) 0 (0.0) 1 (0.3) 0 (0.0) 63 (0.8) 1 (0.03) 65 (0.5)

All Spp. 22 (3.4) 5 (3.3) 49 (16.3) 177 (20.3) 2,475 (32.7) 611 (21.2) 3,339 (26.9)

TRAP 623 (96.6) 145 (96.7) 251 (83.7) 693 (79.7) 5,085 (67.3) 2,269 (78.8) 9,066 (73.1)

Totala 645 (100) 150 (100) 300 (100) 870 (100) 7,560 (100) 2,880 (100) 12,405 (100)

Note: See Table 4 for species codes; TRAP = traps set but no captures resulted.
aTotal = sum of All Spp. and TRAP results. 
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varied 37%–59%, with Type I errors varying 0%–100% and Type II 
errors varying 15%–20%, and spherical payoff ranged from 0.518 
to 0.700.

For RERA presence, the best-performing models were models 2, 
6, and 7 (Table 6), and for all-species presence, these were models 
25 and 26 (Table 7). The three best RERA presence models con-
sisted of ≤3 nodes, ≤3 links, and ≤62 probability values, and had 20% 
overall calibration classification error, 0% Type I error, 20% Type II 
error, and spherical payoff values >0.82. The two best all-species 
presence models consisted of ≤3 nodes, ≤3 links, and ≤279 proba-
bility values, and had 48% and 49% overall calibration classification 
error, 0% Type I error, 20% Type II error, and spherical payoff values 
≥0.60.

All best-performing models were extremely simple with few co-
variates that adequately predicted RERA outcomes. Model 2 used 
latitude and longitude (among all study sites, greater RERA presence 
in sites further east and in middle latitudes); models 6 and 25 used 
distance to roads (greater RERA presence > 1,000 m from roads); 
and models 7 and 26 used salt marsh patch size and expanded patch 
size (greater RERA presence in continuous marsh ≥20 ha that are not 
impeded by barriers of channels >3 m wide or levees) (see Table S1.1 
for covariate definitions).

Models 1 and 20, based on just study site location, sampling 
time, and sampling method, performed fairly well. However, they 

were more complex and incurred greater Type I error rates than the 
best-performing models. Models 2 and 21, based on just latitude 
and longitude, fared well. This indicted that, for the general study 
region, site location is a fair predictor of RERA presence, although 
these models provided no information on habitat or environmental 
conditions. However, models 3, 4, 22, and 23, based solely on vege-
tation, fared very poorly with high Type I errors. Clearly, something 
other than, or in addition to, vegetation—viz., elevation, distance to 
roads, and marsh patch size—influenced RERA presence. The remain-
ing models were generally increasingly complex with various mixes 
of covariate sets, but improvements to calibration error rates were 
minor at best and not offset by the greatly increased levels of model 
complexity.

Cross-validation results (Table S1.6) were essentially the same 
as the calibration error analyses (Tables 6 and 7), conveying that 
the best-performing BN models were not overfit. Sensitivity analy-
ses of best-performing models (Table S1.7) suggested the following 
regarding presence of RERA. RERA presence was more sensitive 
to longitude (easting) than to latitude (northing). Also, presence of 
all-species, compared with presence of RERA, was slightly more 
sensitive to distance to roads and much more sensitive to patch 
size.

None of the 19 BN models of RERA presence provided a clas-
sification confusion error rate of <19%. Four models resulted in no 

TA B L E  6   Results of evaluation of Bayesian network (BN) model complexity and accuracy (calibration performance), using salt marsh 
harvest mouse presence as the response variable

Model no.

Model complexity Model accuracy (calibration performance)

No. nodes No. links No. probs.

Overall 
confusion 
error (%)

Type I error (false 
presence, %)

Type II error (false 
nonpresence, %) Spherical payoff

1 6 9 1,400 19% 22% 19% 0.849

2a 3 3 62 20% 0% 20% 0.833

3 5 7 272 20% 100% 20% 0.828

4 13 22 902 44% 79% 20% 0.688

5 5 7 170 20% 0% 20% 0.832

6a 2 1 12 20% 0% 20% 0.826

7a 3 3 62 20% 0% 20% 0.832

8 9 15 370 21% 56% 17% 0.829

9 7 11 262 21% 56% 17% 0.827

10 7 11 280 21% 56% 18% 0.827

11 13 23 682 22% 57% 17% 0.825

12 11 19 572 21% 56% 17% 0.819

13 11 19 612 21% 56% 18% 0.819

14 15 27 792 22% 57% 17% 0.813

15 18 33 4,620 19% 34% 19% 0.840

16 16 29 4,260 19% 33% 19% 0.840

17 16 29 4,100 19% 34% 19% 0.841

18 20 37 5,140 19% 35% 19% 0.839

19 23 43 1,642 47% 76% 15% 0.634

aSelected models that best balance low model complexity with high model accuracy (low error rates). 
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Type I errors of false presence predictions, but those models each 
incurred a 20% Type II error of false nonpresence.

3.6 | Habitat differences of salt marsh harvest 
mouse and California vole

Reithrodontomys raviventris and MICA generally spanned a similar 
range of site attributes (Figure S1.4). However, some differences in 
distributions were suggested by results of unpaired two-sample t 
tests of covariate values at locations where RERA and MICA were 
both trapped (Table 8; Table S1.8). At sites where both species 
were trapped, values of ten covariates, denoting microsite condi-
tions, differed significantly between the species. Attributes of trap 
sites with RERA captures differed from those with MICA captures 
in the following ways. RERA capture sites had significantly greater 
percent cover and a greater maximum height of the most dominant 
plant species (pickleweed). RERA sites also had a higher marsh el-
evation, higher MHW and MHHW levels (these two variables were 
significantly positively correlated; see Table S1.2), and higher eleva-
tion of trap location relative to MHW. RERA sites also had greater 
distance to agriculture, closer distance to nearest urban area, and 
greater marsh patch area not impended by barriers or channels >3m 
wide.

4  | DISCUSSION

Our study found that most of the RERA captures were associated 
with sites having pickleweed as the dominant ground-cover category. 
Fewer RERA sites had bare ground as the dominant ground-cover 
category, although about half of the RERA captures were associ-
ated with bare ground as the secondary ground-cover category. 
RERA individuals are thought to disperse randomly during prebreed-
ing, but are associated with pickleweed sites with midrange salinity 
levels during breeding and postbreeding (Padgett-Flohr & Isakson, 
2003). In Suisun Bay, RERA were associated with sites dominated 
with mixed vegetation or pickleweed (Sustaita, Quickert, Patterson, 
Barthman-Thompson, & Estrella, 2011).

Reithrodontomys raviventris have long been associated with dense 
wetland cover with pickleweed as preferred habitat (Shellhammer, 
1989; Shellhammer et al., 1982). Shellhammer et al. (1982) summa-
rized trapping data from Suisun Bay and SFB, found that RERA was 
highly dependent on cover and was captured predominantly in areas 
of tall and dense pickleweed, did not detect RERA in pickleweed <6 
in (15 cm) tall, and concluded that high tide refugia was an import-
ant feature for RERA habitat. Recent studies indicate that RERA are 
also present in significant numbers in brackish marshes and wetlands 
with managed hydrology (Smith, Riley, Barthman-Thompson, Woo, 
et al., 2018; Sustaita et al., 2011). In Suisun Marsh, Sustaita et al. 

TA B L E  7   Results of evaluation of Bayesian network (BN) model complexity and calibration performance for presence of salt marsh 
harvest mouse (RERA), using all 9 small mammal species captured as the response variable

Model no.

Model complexity Model accuracy (calibration performance for RERA)

No. nodes No. links No. probs.

Overall 
confusion 
error (%)

Type I error (false 
presence, %)

Type II error (false 
nonpresence, %) Spherical payoff

20 6 9 6,300 37% 39% 18% 0.700

21 3 3 279 46% 55% 20% 0.624

22 5 7 1,224 46% 100% 20% 0.621

23 13 23 4,959 52% 80% 20% 0.566

24 5 7 765 43% 50% 20% 0.639

25a 2 1 54 49% 0% 20% 0.600

26a 3 3 279 48% 0% 20% 0.617

27 9 15 1,665 44% 56% 18% 0.628

28 7 11 1,179 43% 55% 20% 0.632

29 7 11 1,260 43% 0% 20% 0.643

30 13 23 3,069 44% 57% 18% 0.618

31 11 19 2,799 43% 56% 17% 0.627

32 11 19 2,754 44% 58% 18% 0.631

33 15 27 3,564 43% 55% 18% 0.612

34 18 33 20,790 37% 35% 19% 0.689

35 16 29 19,170 37% 36% 19% 0.691

36 16 29 18,450 37% 34% 19% 0.691

37 20 37 23,130 37% 34% 19% 0.687

38 23 43 7,704 59% 74% 15% 0.518

aSelected models that best balance low model complexity with high model accuracy (low error rates). 
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(2011) reported that higher RERA densities and reproductive po-
tential, and postwinter persistence occurred in areas of pickleweed 
or in mixed wetland vegetation without pickleweed, whereas fewer 
RERAs were found in upland grassland.

Other studies of RERA have noted variable plant or habitat as-
sociations in San Pablo Bay, Suisun Marsh, and South SFB. At Mare 
Island by Vallejo, California, along San Pablo Bay, Bias and Morrison 
(1999) found that RERA mean home range was 2,133 m2, that RERA 
moved on average about 12 m per 2 hr, and that distances moved and 
home range sizes were largest in June and smallest in November. At 
the same study site, they later determined that plant species associa-
tions for RERA included denser areas of forbs, particularly fat hen or 
spear orach (Atriplex patula) being used more by males than females 
during summer through fall, and open areas of common pickleweed 
being used by both sexes at other times of the year (Bias & Morrison, 
2006). In Suisun Bay, RERA feeding trials demonstrated dietary flex-
ibility over season and habitat type where RERA consumed a variety 
of plants including rabbitsfoot grass (Polypogon monspeliensis), fat 
hen, pickleweed, watergrass (Echinochloa crusgalli), and alkali bulrush 
(Bolboschoenus maritimus; Smith & Kelt, 2019). Geissel, Shellhammer, 
and Harvey (1988) reported RERA use of more open areas with pick-
leweed in the presence of higher numbers of California voles (M. cal-
ifornicus), and RERA use of more closed areas with less pickleweed 

as numbers of voles declined. From a capture of 36 RERA in a man-
aged marsh in Fremont, California, along South SFB, Basson (2009) 
reported finding the species to be randomly distributed with no as-
sociation with pickleweed salinity, pickleweed height, distance to 
levees, distance to dry or filled water bodies, percent cover of veg-
etation, or sympatric rodents. Differential use of pickleweed sites 
by sex and season, as well as movement across various conditions 
(Geissel et al., 1988), might explain the findings by Basson (2009), 
as well as those by Botti, Warencyia, and Becker (1986) of several 
RERA in areas lacking pickleweed in the Suisun Marsh region of SFB.

We found that RERA presence correlates positively with marsh 
elevation, MHW level, and elevation of the trap location compared 
to MHW, particularly as compared with distributions of sympatric 
MICAs. This is consistent with other findings that RERA remained 
within the marsh in tall vegetation rather than swim to upland areas 
for high tide refugia sites (Smith, Barthman-Thompson, Gould, & 
Mabry, 2014).

We found evidence of some degree of tolerance of RERA with 
levees and water (<200 m distance), and also with agricultural areas 
and paved roads (<2 km distance). This was consistent with Bias and 
Morrison's (1999) radio-telemetry study of RERA at Mare Island, 
Solano County, California (Figure 2), who concluded that the species 
crossed roads, levees, and canals. However, RERA in our study did 

TA B L E  8   Unpaired, two-sample t tests with Bonferroni adjusted p-values comparing trap site attributes for presence of salt marsh 
harvest mouse (RERA) and California vole (MICA)

Variable t-Value df p-Value MICA or RERAa

Marsh_Elev—marsh elevation measured from the trapping loca-
tion extracted from DEMs, in cm

−5.236 1,165 <.001** RERA

P1_V_PERC—percent cover of most dominant plant species −3.224 1,298 .001** RERA

P1_V1_MAX—maximum height of most dominant plant species, 
in cm

2.168 924 .030* RERA

P1_V1_AVG—average height of the most dominant plant spe-
cies, in cm

−1.117 921 .264 nd

MHW—mean high water level, in m −5.152 783 <.001 ** RERA

Elev_MHW—elevation of trap location compared to mean high 
water, in m

−5.035 1,174 <.001** RERA

MHHW—mean higher high water, in m −5.152 783 <.001** RERA

Elev_MHHW—mean higher high water −5.018 1,174 <.001** RERA

Dist_Levee—distance to closest levee, in m −1.147 881 .252 nd

Dist_Water—distance to closest water, in m −0.735 1,137 .462 nd

Dist_Bay—distance to bay, in m 1.437 1,316 .151 nd

Dist_Urban—distance to closest urban, in m 4.432 820 <.001** MICA

Dist_Ag—distance to closest agriculture, in m −4.039 816 <.001** RERA

Dist_Road—distance to closest paved road, in m −0.943 1,099 .346 nd

Patch_Size—size of patch of continuous marsh not impeded by 
barriers or channels >3 m wide or by levees, in ha

0.183 1,368 .854 nd

Patch_Size_Expanded—size of patch of continuous marsh not 
impeded by barriers or channels >3 m wide, in ha

−3.497 744 <.001** RERA

aMICA or RERA = denotes which species had the higher mean value for the variable; nd = no significant difference in values between the two species. 
*p < .05. 
**p < .01. 
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not apparently select for such conditions, as they were also asso-
ciated with larger marsh patch sizes not interrupted by levees and 
roads.

We captured nine species of small mammals and found no spe-
cific evidence RERA being obligately associated with other small 
mammal species. Overall, the tidal marshes in the areas sampled 
have low small mammal detections where empty traps were en-
countered 73% of all trap nights. RERA captures constituted only 
20% of all captures, compared with the more ubiquitous MICA 
(47%). In contrast, Bias and Morrison (2006) found RERA in 63% 
of all captures, with the next most frequently captured (29%) spe-
cies being house mouse and with MICA constituting only 6% of all 
captures.

Few studies are available on RERA interactions with other small 
mammal species, such as with nonnative house mice or the occur-
rence of voles. Bias and Morrison (2006) found differences in hab-
itat use between RERA and house mouse in tidal sites suggesting 
that house mice were using habitats that were more patchy or 
fragmented than habitats of RERA. Our current study found what 
seemed to be some differentiation of habitat and site attributes be-
tween RERA and MICAs, which might suggest some niche differenti-
ation at the trap-site scale, but we cannot definitively conclude that 
interaction (e.g., competition) between the species accounted for 
the differences. We did not detect evidence of either a positive or a 
negative relationship of RERA with other small mammal species, al-
though it is possible that any competitive interactions may not have 
been detected because of the low numbers of trap captures of RERA 
and other small mammal species in North SFB.

We found that RERA presence, as compared with MICA pres-
ence, is characterized as being higher in marsh elevation, higher in 
MHW level, and higher in elevation compared with MHW. Also, as 
compared with MICA, RERA occurred in sites with greater height 
and percent cover of pickleweed, that were closer to urban areas but 
further from agricultural areas (these two variables were strongly 
negatively correlated; see Table S1.3), and that were larger in marsh 
patch size. Similarly, in a study of Spartina marshes along the south-
west Atlantic coast of the United States, Canepuccia, Pascual, 
Biondi, and Iribarne (2015) found that occurrence of small mammals 
was related to vegetation cover and diversity, and that small mammal 
species composition varied by landscape context and configuration.

A Type II error may be more egregious if models predict RERA 
nonpresence than when this State- and Federally listed endangered 
species is actually present. That is, false absences (Type II error) of an 
endangered species have a greater potential negative consequence 
for conserving population viability than do false presences (Type I 
error). Predicting absence when the species is present could result in 
no specific habitat management being directed to such locations, po-
tentially resulting habitat degradation or loss for the species. In such 
cases, models cannot substitute for on-the-ground surveys. This 
type of habitat association model is better suited to assess RERA 
presence than to conclude absence. We note, too, that we have not 
analyzed any temporal trends or differences in habitat associations 
over the course of the trapping seasons and years, assuming that 

the availability of environmental conditions in each trapping location 
remained constant over time. We also note that studies are lacking 
on identifying specific threats to population viability of the species, 
other than inferences made on threats of habitat changes, which 
aligns with the recommended research priorities to further RERA 
recovery, including range-wide population estimates, demographics, 
and dynamics (Smith, Riley, Barthman-Thompson, Statham, et al., 
2018).

Additional threats to small mammals in tidal marshes and po-
tentially to RERA conservation may yet appear or confound re-
covery, such as uptake of environmental toxins as documented by 
Clark, Foerster, Marn, and Hothem (1992). BN models for habitat 
associations can be informative for tidal marsh restorations that 
may be able to accommodate higher marsh elevations in relation 
to inundation and larger marsh patches in their designs. Ultimately, 
management and conservation of RERA, particularly under threats 
of climate change, sea level rise, and anthropogenic alteration of 
habitats, may need to take an ecosystem-level approach (e.g., 
Stagg et al., 2016) that includes tracking increased inundation and 
flooding of pickleweed habitat from rising sea level (Field, Bayard, 
et al., 2016; Kirwan et al., 2010; Rosencranz et al., 2018).

The current study could not compare RERA occurrence with at-
tributes of random-site locations, so resource selection functions of 
the mouse for particular habitat attributes could not be determined. 
This could be a valuable topic for future studies, to better under-
stand RERA habitat selection for guiding site management, espe-
cially considering landscape level changes associated with sea level 
rise and climate change. Further studies could also address existing 
or emerging threats to the species.
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