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Abstract

Histologic assessment of stromal tumor infiltrating lymphocytes (sTIL) as a surrogate of the host 

immune response has been shown to be prognostic and potentially chemo-predictive in triple-

negative and HER2-positive breast cancers. The current practice of manual assessment is prone to 

intra- and inter-observer variability. Furthermore, the inter-play of sTILs, tumor cells, other 

microenvironment mediators, their spatial relationships, quantity, and other image-based features 

have yet to be determined exhaustively and systemically. Towards analysis of these aspects, we 

developed a deep learning based method for joint region-level and nucleus-level segmentation and 

classification of breast cancer H&E tissue whole slide images. Our proposed method 

simultaneously identifies tumor, fibroblast, and lymphocyte nuclei, along with key histologic 

region compartments including tumor and stroma. We also show how the resultant segmentation 

masks can be combined with seeding approaches to yield accurate nucleus classifications. 

Furthermore, we outline a simple workflow for calibrating computational scores to human scores 

for consistency. The pipeline identifies key compartments with high accuracy (Dice= overall: 0.78, 

tumor: 0.83, and fibroblasts: 0.77). ROC AUC for nucleus classification is high at 0.89 (micro-

average), 0.89 (lymphocytes), 0.90 (tumor), and 0.78 (fibroblasts). Spearman correlation between 

computational sTIL and pathologist consensus is high (R=0.73, p<0.001) and is higher than inter-

pathologist correlation (R=0.66, p<0.001). Both manual and computational sTIL scores 

successfully stratify patients by clinical progression outcomes.
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1. INTRODUCTION

Tumor Infiltrating Lymphocytes (TiL’s) have seen increasing interest in recent years as 

important surrogate markers of immune response and cancer prognosis in multiple tumor 

types 1. In breast cancer, and specifically in the Her2+ and triple-negative subtypes (lacking 

markers for estrogen, progesterone, and Her2), they are known to have strong prognostic 

value, and have recently been incorporated into clinical guidelines 2. The most important 

metric used in clinical practice is sTIL, stromal TILs, which is defined as the fraction of 

intra-tumoral stroma occupied by lymphocytes. Unlike many histopathology workflows, 

however, the manual quantification of sTIL (m-sTIL) is particularly well-known for its 

subjectivity and inter-observer variability, given the difficulty of accurate gauging of which 

regions to include, and how to accurately estimate the area occupied by lymphocytes 2. To 

address this challenge, we developed a streamlined pipeline for integrated, joint region- and 

cell-level semantic segmentation of Whole-Slide histopathology Images (WSI’s). 

Specifically, we quantified lymphocytic infiltration of the tumor microenvironment in triple-

negative breast cancer (TNBC) (Figure 1).

Whereas traditional approaches rely on feature engineering, we exploited fully-convolutional 

neural networks (FCN-8), using ImageNet-pretrained VGG16 architecture, for an unbiased 

approach that outputs pixel-wise class probability maps 3. Moreover, we avoided step-wise 

“classical” computational pathology approaches, where nuclei are segmented, 

postprocessed, and then used to infer region types 4. Instead, we encoded both the cell- and 

region- level information in the ground truth itself, hence ensuring that biologically-

infeasible (or irrelevant) region-cell combinations are excluded during training; for example, 

fibroblasts cannot be found in tumor regions. This combined approach helps focus the 

training process in an integrated fashion, with reduced or minimized expert review or post-

processing. Combining this deep-learning workflow with traditional seeding methods results 

in accurate segmentation and cell classification results, which are used to obtain 

computational sTIL scores (c-sTIL) that correlate well with pathologist consensus.

2. METHODS

The overall workflow used to obtain segmentation and classification result is illustrated in 

Figure 2.

2.1 Dataset used and ground truth generation

The cohort used in this study consists of 120 anonymized H&E stained slides, which were 

obtained from the Cleveland Clinic Foundation, and scanned using a single Aperio scanner 

at 20× magnification. The slides had m-sTIL scores from two practicing pathologists, who 

resolved inconsistent scores via consensus. 14 slides had available ground truth, 5 of which 

were held-out to measure segmentation and classification generalization accuracy. Two 
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models were trained: 1. A model to calculate segmentation and classification testing set 

accuracies (trained on 9 slides); and 2. A model to calculate sTIL scores over the entire 

dataset (trained on all 14 slides with available ground truth). The 14 slides with available 

annotations were divided into overlapping tiles of size 1024×1024. The annotated slides 

were chosen to represent as many of the histological structures as possible within the 

dataset. Note that the ground truthing process is extremely labor-intensive, and the regions 

chosen for annotation are fairly large (on the order of ~5K pixels squared) to ensure 

adequate training and trustable accuracy metrics. Two types of segmentation ground truth 

were obtained:

1. Region level ground truth: this was manually annotated by drawing polygon 

boundaries at tissue interfaces.

2. Cell-level segmentation ground truth: this was obtained in a semi-automatic 

manner. Traditional methods based on radial symmetry were used to extract 

seeds and segment nuclei, whose class was then determined using size and shape 

heuristics to provide a first-cut approximation of nucleus classification 5.

The results were overlooked and corrected by a senior pathologist.

2.2 Combining region and nucleus ground truths

Region and nucleus segmentation masks were combined such that pixel value encodes both 

region and nucleus membership information; essentially the fully-convolutional model was 

trained to classify pixels into 12 different classes (Table 1). Combining different 

classification problems in the same framework had two advantages. First, it reduces reliance 

on postprocessing heuristics, such as ensemble learning or parameter tuning approaches, to 

combine the two sets of results. Second, it utilizes a priori biological knowledge to generate 

consistent results. For example this framework disallows any cell classifications within 

necrotic regions (nuclear debris and dead cells are counted as part of the necrotic region and 

not delineated individually). It also disallows stromal cells (fibroblasts) within non-stromal 

regions. To incorporate non-nuclear components of a histologic region, including cell 

cytoplasm, extracellular matrix and other structural elements, we also included region 

categories that correspond to non-nuclear elements.

2.3 Fully Convolutional model training and inference

We tried two architectures for training: VGG16-FCN8 and FC-DensNet103 3,6 (Figure 3). 

VGG16-FCN8 showed better training and convergence properties and was hence chosen.

Our model that has been pre-trained on ImageNet in tensorflow, but we only used pre-

training as a weight initialization strategy, and allowed the full 16 layer weights to be 

optimized during the training process. We used Adam optimizer and learning rate of 1e-5 3,7. 

Single machine, 4-GPU data parallelism with gradient averaging was used. The main model 

was instantiated on each of GPUs with weight sharing. A batch of 4 images is sent to each of 

the GPUs for gradient calculation. These are sent back to the CPU and averaged to get the 

overall gradient update 8. Weighted categorical cross entropy loss was used to train the 

model, with the class-specific weights being determined as:
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Wc = 1 −
Nc

Σc = 1
12 Nc

(1)

Where Nc is the number of pixels belonging to class c in the training dataset. This helps 

handle class imbalance during training by assigning higher weight to less abundant classes. 

Categorical accuracies reported are defined as the argmax of soft class prediction 

probabilities. Two methods of data augmentation were used to improve robustness of the 

training process: 1. Tiles were generated with an a shift overlap of 250 pixels; 2. A random 

FOV of size 768×768 was cropped on the fly and is what is actually input to train the model. 

After the network has been trained, the tile size used for inference ranged from 1024×1024 

to 2048×2048. Note that the trained convolutional weights in a fully-convolutional network 

can be applied to any tile size as long as it fits in GPU memory. The combined prediction 

mask from the trained network is then decomposed back into region and cell-specific masks 

by reverse-mapping the coding scheme in Table 1. Note, however, that the “background in 

lymphocyte region” (i.e. pixel does not belong to a cell, but region was annotated as 

lymphocyte-rich) was mapped to stromal regions. It is important to note that, technically-

speaking there is no “lymphocyte region”, and that while lymphocytes may tend to 

aggregate there is no clear threshold for the density at which lymphocytic aggregates are 

considered to be a region. The lymphocyte region class, therefore, was just used to facilitate 

ground-truthing (create a single boundary rather than click on hundreds of cells) and to train 

the model to detect these aggregates. For all slides (training/testing), a hard threshold of 220 

(for all R, G, B channels) was used to map all white regions to the exclude class. 

Segmentation accuracy was quantified using the DICE coefficient (2× intersection over bag 

union).

2.4 Seed classification by pixel class majority

The soft scores for seed class membership are obtained by counting the proportion of a 

circle of radius r pixels that belongs to the class of interest. The final classification of a seed 

is therefore determined by the equation:

Seed Classi f ication = argmaxc ∈ tumor, f ituroblast, tymphocyte, other nc (2)

Where nc is the number of pixels belonging to class c within a radius r of the nucleus seed. 

This helps de-noise some of the segmentation inaccuracies. A radius of 5 pixels was used in 

our experiments.

2.5 c-sTIL scoring and progression outcomes analysis

We focused on sTILs, as opposed to intra-tumoral TILs (tTILs) to faithfully adhere to the 

clinical scoring guidelines. The guidelines mention a set of rules that determine which 

regions are suitable for calculating sTIL scores, most notably 2:

1. Do not focus on “hot spots” too much: This rule was set to facilitate manual 

scoring, but is not very relevant to computational quantification, since we 

calculate the statistics globally across all included tiles without the inherent 

biases of manual scoring.

Amgad et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2020 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Do not include cells in necrotic regions: we segment necrotic regions and 

exclude them in the calculation.

3. Focus on stromal areas proximal to the tumor: we addressed this by discarding 

the bottom x percentile of tiles by tumor fraction, where x is determined by 

supervised hyperparameter tuning. The slides used to train the segmentation 

algorithm were combined with 16 others (randomly chosen) to construct a new 

training set. The process was repeated 30 times (Monte-Carlo cross validation). 

During each “trial”, the training set was used to:

a. Find the optimal exclusion threshold which maximizes correlation with 

pathologist sTIL scores on the training set; and b. Learn the linear 

calibration bias to map absolute algorithmic scores to manual scores.

A threshold value of 10% (based on clinical guidelines), was used to dichotomize the sTIL 

scores for outcome correlative analysis 2. A “progression” event was defined as the earliest 

occurrence of local, regional, or distant metastasis events.

3. RESULTS AND DISCUSSION

Model predictions on the held-out testing set are accurate and correspond well to ground 

truth and underlying tissue boundaries (Figure 4). Discrepancies between the model and 

ground truth arise from inaccuracies in either the prediction or the ground truth itself. 

Ground truth may be inaccurate for a number of reasons:

1. Human limitations. Human annotators tend to prefer smooth contours and 

connected regions, even when the true underlying tissue structures have jagged 

edges and are composed of multiple scattered regions. Moreover, there is 

considerable difficulty in noticing and segmenting every lymphocyte in the 

dataset, whether manually or through vetting of moderately accurate H&E radial 

symmetry segmentation algorithms. Essentially, the model is learning the latent 

representation within a noisy ground truth, resulting in predictions that 

oftentimes surpass the limitations of ground truth 9.

2. Limitations related to the accuracy of deconvolution, seeding and segmentation 

used to generate the cell-level ground truth.

The accuracy of region segmentation, as measured using the Dice coefficient, was: 0.78 

(overall), 0.83 (tumor) and 0.77 (stroma). Seed classification area under receiver-operator 

characteristics curve was 0.89 (micro-average), 0.89 (lymphocytes), 0.90 (tumor), and 0.78 

(fibroblasts) (Figure 5).

Computational sTIL scores were strongly and significantly correlated with consensus 

pathologist scores (Figure 6). Spearman Correlation between computational sTIL and 

pathologist consensus is high (R=0.73, p<0.001) and is higher than inter-pathologist 

correlation (R=0.66, p<0.001), though smaller in magnitude (hence the rationale for learning 

the linear calibration). We believe this magnitude difference is related to the inherent biases 

and ambiguity in estimating area by human observers.
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The dichotomized sTIL score is 85% accurate in identifying low sTIL slides. This low sTIL 

group is characterized by poor survival outcomes, both using m-sTIL and c-sTIL scoring, 

consistent with existing literature and providing an additional layer of validation to the 

computational pipeline described here (Figure 7).

4. LIMITATIONS AND CONCLUSIONS

This work, like most others in the current computational pathology space, is limited by the 

lack of large-scale validated ground truth for segmentation of salient tissue components in 

breast cancer H&E images. Nonetheless, the limited dataset we have illustrates the validity 

of methods presented, both analytically (segmentation and classification accuracy) and 

clinically (TIL score and disease outcomes). The rarity of TNBC resulted in a relative 

scarcity of progression events, causing the Kaplan-Meier analysis to be slightly under-

powered. Nevertheless, the trends are in the right direction and are almost indistinguishable 

for m-sTIL and c-sTIL scoring. Future work will investigate generalization of this algorithm 

to independent datasets derived from institutions not included in the model training and 

optimization process.

Our results illustrate how an end-to-end framework enables accurate and consistent 

estimation of tumor infiltrating lymphocytes in breast cancer. The results are highly 

concordant with consensus scores from pathologists and successfully stratify patients by 

clinical progression outcomes. In the future we intend to extract various spatial sTIL metrics 

for correlation with clinical and genomic variables.

REFERENCES

[1]. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, Christie M, van de Vijver K, 
Estrada MV, Gonzalez-Ericsson PI, Sanders M, Solomon B, Solinas C, Van den Eynden GGGM, 
Allory Y, Preusser M, Hainfellner J, Pruneri G, Vingiani A, et al., “Assessing Tumor-Infiltrating 
Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a 
Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 
2: TILs in Melanoma, Gastrointestinal Tract Carcinom,” Adv. Anat. Pathol. 24(6), 311–335 
(2017). [PubMed: 28777143] 

[2]. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden 
G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, Richardson AL, 
Brock J, Criscitiello C, Bailey H, Ignatiadis M, Floris G, et al., “The evaluation of tumor-
infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs 
Working Group 2014.,” Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 26(2), 259–271 (2015).

[3]. Long J, Shelhamer E and Darrell T, “Fully Convolutional Networks for Semantic Segmentation” 
(2014).

[4]. AP R, Khan SS, Anubhav K and Paul A, “Gland Segmentation in Histopathology Images Using 
Random Forest Guided Boundary Construction” (2017).

[5]. Xing F and Yang L, “Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and 
Microscopy Images: A Comprehensive Review.,” IEEE Rev. Biomed. Eng. 9, 234–263 (2016). 
[PubMed: 26742143] 

[6]. Jégou S, Drozdzal M, Vazquez D, Romero A and Bengio Y, “The One Hundred Layers Tiramisu: 
Fully Convolutional DenseNets for Semantic Segmentation” (2016).

[7]. Kingma DP and Ba J, “Adam: A Method for Stochastic Optimization” (2014).

[8]. Tensorflow., “Cifar 10 multi-GPU training tutorial” (2018).

Amgad et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2020 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[9]. Khoreva A, Benenson R, Hosang J, Hein M and Schiele B, “Simple Does It: Weakly Supervised 
Instance and Semantic Segmentation” (2016).

Amgad et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2020 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Problem setting. Quantification of tumor infiltrating lymphocytes is a complex task 

involving segmentation of diverse histological structures. (Left) A representative tile from a 

testing set slide containing dense sTIL infiltration. (Right) Segmentation output from our 

model, trained to jointly segment region and cell-level information. Necrotic regions and 

excluded areas (white spaces, artifacts, etc) are important to segment so that they do not 

skew the sTIL score calculations.
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Figure 2. 
Overall workflow used to obtain region and nucleus classification, as well as seed 

classification from tiled slides. A. Seeds are extracted from RGB images after 

deconvolution. B. Region-level ground truth is annotated and semi-automated nucleus 

segmentation ground truth is vetted by a pathologist. C. Region and nucleus-level ground 

truth is combined into one common mask to be used for training. This process ensures 

consistency and excludes biologically-infeasible combinations. D. A fully-convolutional 

network is trained to output a combined mask. E. Output is decomposed into region and 

nucleus segmentation masks. F. Seed classifications are obtained from the cell segmentation 

mask.
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Figure 3. 
Effect of architecture on training categorical accuracy (model fitting). Light colors represent 

the batch-level accuracy, while darker colors represent epoch-level accuracies. Pre-trained 

VGG16-FCN8 has better model fitting properties than the deeper and more complex fully-

connected DenseNet-103 for this problem setting. Also note the remarkably higher batch-

tobatch variability in FC-DenseNet compared to VGG. Both networks were trained on the 

same set of slides with exactly the same set of hyperparameters, including batch size, 

optimizer type and learning rate, for comparability.
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Figure 4. 
Qualitative examination of segmentation results on the testing set. Representative tiles from 

each the testing set. Slide 1 (right) and Slide 5 (right): Non-cellular components of 

“lymphocyte regions” (grey) were present in ground truth (for training) but were mapped to 

stroma in output. Slide 2 (left): enclosed stromal region within a tumor nest is missed in 

ground truth but is picked up by trained model. Slide 2 (right) and Slide 3 (right) algorithm 

misclassified small necrotic region as stroma. Slide 5 (left): Ground truth connects small, 

scattered tumor nests under one tumor “region”, whereas the model learns to more 

accurately delineate region boundaries.
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Figure 5. 
Accuracy of segmentation and classification. (Left) Overall semantic segmentation accuracy, 

measured by the DICE coefficient. The accuracy was calculated after decomposition of the 

model output into separate region and nucleus segmentation masks. Every point represents 

the accuracy over one tile in the testing set. Note the general correspondence between 

segmentation accuracy for regions and for nuclei. (Middle) Segmentation accuracy for tumor 

classification. (Right) Receiver-Operator Characteristics curve for final seed classification by 

pixel class majority.
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Figure 6. 
Calculating sTIL scores and correlating with consensus manual pathologist scores. A. 

Supervised tile selection process using the training set. The 30 training slides are used to 

learn a threshold for excluding irrelevant tiles by tumor fraction and to learn a linear 

calibration to map true c-sTIL fraction to what would be perceived as the sTIL fraction by a 

practicing pathologist. B. Agreement between the two pathologists. C. Agreement between 

algorithmic TiL scores and pathologist consensus. Each point represents one testing set slide 

from one of the 30 shuffles. D. Same as C, but after linear calibration.
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Figure 7. 
Kaplan-Meier curves for dichotomized human and computational sTIL scores. A threshold 

of 10% was used to distinguish low- from moderate or high infiltrates, consistent with the 

published guidelines.
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Table 1.

Combined mask code and corresponding region and cell information encoding.

Code Region Nucleus Code Region Nucleus

1 Background N/A 7 Stroma Lymphocyte

2 Tumor Tumor 8 Lymphocyte Lymphocyte

3 Stroma Tumor 9 Tumor N/A

4 Lymphocyte Tumor 10 Stroma N/A

5 Stroma Stroma 11 Necrosis N/A

6 Tumor Lymphocyte 12 Lymphocyte N/A
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