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Mitochondrial dysfunction generates a growth-restraining signal linked to
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ABSTRACT
The Drosophila bang-sensitive mutant tko25t, manifesting a global deficiency in oxidative phosphoryla-
tion due to amitochondrial protein synthesis defect, exhibits a pronounced delay in larval development.
We previously identified a number of metabolic abnormalities in tko25t larvae, including elevated
pyruvate and lactate, and found the larval gut to be a crucial tissue for the regulation of larval growth
in the mutant. Here we established that expression of wild-type tko in any of several other tissues of
tko25t also partially alleviates developmental delay. The effects appeared to be additive, whilst knock-
down of tko in a variety of specific tissues phenocopied tko25t, producing developmental delay and
bang-sensitivity. These findings imply the existence of a systemic signal regulating growth in response
to mitochondrial dysfunction. Drugs and RNAi-targeted on pyruvate metabolism interacted with tko25t

in ways that implicated pyruvate or one of its metabolic derivatives in playing a central role in
generating such a signal. RNA-seq revealed that dietary pyruvate-induced changes in transcript repre-
sentation were mostly non-coherent with those produced by tko25t or high-sugar, consistent with the
idea that growth regulation operates primarily at the translational and/or metabolic level.
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Introduction

Mitochondrial dysfunction is a common underlying
cause or manifestation of human disease [1–3].
Whilst mammalian models such as the mouse have
provided insights into the underlying processes, the
use ofDrosophila to understandmitochondrial patho-
physiology has been relatively neglected, despite its
versatility and the availability of a wide variety of
easily applied genetic tools.

Deficient mitochondrial protein synthesis is fre-
quently associated with mitochondrial diseases [4],
and Drosophila provides a valuable model to study
the physiological effects of limitations on mitochon-
drial translation in the context of animal development.
The Drosophila tko gene, encoding mitoribosomal
protein S12, a core component of the mitoribosomal
decoding centre, has been a particular object of study
in this regard. The canonical mutant tko25t displays
a range of phenotypic features that resemble mito-
chondrial disease in humans, including developmen-
tal delay, impaired sound-responsiveness, bang-

sensitivity (paralytic seizures induced by mechanical
shock) and antibiotic sensitivity [5]. Other tko25t phe-
notypes are unique toDrosophila, such as male court-
ship defect [5]. These phenotypic features reflect an
underlying deficiency of mitoribosomes [5] and con-
sequent global deficiency of the enzymatic functions
of oxidative phosphorylation (OXPHOS) that depend
uponmitochondrial translation products, manifesting
in both adults [5] and larvae [6]. All of these pheno-
types are reversed by ubiquitous expression of
a transgenic copy of the wild-type tko gene, using the
UAS/GAL4 system [6]. Since developmental delay
occurs during the larval stages [5], this prompts the
question as to which of the larval tissues mediates the
crucial signalling that regulates growth in response to
limitations onmitochondrial protein synthesis, and by
what mechanism.

In a follow-up study [7], we obtained some relevant
clues as to the underlying mechanism(s) whereby the
growth rate of tko25t larvae is adjusted, so as to take
account of the decreased capacity for processing
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nutritional resources caused by mitochondrial dys-
function. In particular, we observed that components
of the apparatus of cytosolic protein synthesis and
secretion were down-regulated in tko25t larvae, both
at the transcript level and via a key regulatory step of
cytosolic protein synthesis, the ribosomal protein S6
kinase (S6K). tko25t larvae were also found to be unaf-
fected by low levels of the cytosolic protein synthesis
inhibitor cycloheximide, which retarded the develop-
ment of wild-type larvae, also implicating the cytor-
ibosome as a crucial target in larval growth regulation.
Many other genes that were downregulated in tko25t at
the RNA level encoded secreted proteins of the gut
and cuticle, suggesting that growth rate in tko25t could
be adjusted to compensate for stress in the protein
secretory system caused by disruption of redox
homeostasis.

In the same study [7] we determined that the
strength of the tko25t phenotype depends upon the
culture conditions, specifically the sugar content of
the growth medium. When tko25t flies were cultured
on high-sugar medium, their growth was further
impaired compared with those grown on low-sugar
medium, and many of the observed changes in gene
expression were more pronounced. The effect of
high sugar was accompanied by increases in the
level of pyruvate and lactate in the larvae, whilst
supplementation of the medium with pyruvate or
lactate exacerbated developmental delay. tko25t lar-
vae also manifested low levels of ATP and a greatly
decreased NADPH/NADP ratio, both of which were
enhanced by high-sugar medium [7].

A key result from the previous study was the
observation that expression of wild-type tko specifi-
cally in portions of the larval gut, a major secretory
tissue, partially alleviated the developmental delay of
tko25t [7]. Since the driver used in this experiment did
not express at a high level in all regions of the gut, we
reasoned that other gut-specific drivers used in com-
bination might provide a more complete rescue of the
phenotype. To embark on such a study, we initially
implemented what we assumed would be negative
controls, directing wild-type tko expression in other
regions of the larva with high specificity. However,
this produced the unexpected result that partial rescue
of developmental delay was conferred by expression
in each of the tissues tested (muscle, fat-body, neu-
rons, as well as gut), with some evidence of additive
effects. Conversely, tko knockdown in each specific

tissue produced a partial developmental delay, accom-
panied by bang sensitivity, the canonical adult pheno-
type of tko25t.

These new findings indicate the existence of
a systemic and possibly metabolic signal integrating
growth across the entire larva, in response to limita-
tions on mitochondrial translational or OXPHOS
capacity. Given the previous findings implicating pyr-
uvate and/or lactate as key regulatory metabolites, we
studied the effects of drugs and RNAi targeted on
pyruvate and its metabolic transactions. The findings
are consistent with pyruvate metabolism playing
a central role in generating the signal that links growth
and mitochondrial function in Drosophila larvae.

Materials and methods

Drosophila strains and culture

Drosophila strains were procured from stock centres,
supplied by colleagues ormaintained long term in our
laboratory. A full list of GAL4 drivers, RNAi lines and
other strains used in the study are provided in Tables
1, 2 and 3, respectively. Markers carried on standard
balancers were used to distinguish experimental from
control progeny. Except where stated, flies were cul-
tured on standard high-sugar medium (HS), as
detailed in [7]. A variant, ‘zero-sugar’ medium (ZS),
containing standard dietary supplements but no
added sugars [7], was used where indicated. Note
that HS and ZS media are not isocaloric: in an earlier
study [7] the extent of developmental delay in tko25t

flies was shown to depend only on the sugar content of
the medium, not its calorific value. Sodium pyruvate,
dichloroacetate or UK5099 (Sigma-Aldrich), were
added to these media from aqueous stock solutions
after the medium had been cooled to below 65°C,
giving the final concentrations indicated in the figures.

Developmental and bang-sensitivity assays

Mean developmental time to eclosion and bang-
sensitivity were measured as previously [5,7], in
temperature-controlled incubators, with tempera-
ture verified daily throughout the experiment. In
all crosses where developmental time to eclosion
was measured, at least 3 (usually 4) replicate vials
were studied, and the entire experiment was
repeated to validate the findings.
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RNA analysis

Quantitative reverse-transcription PCR (qRTPCR)
to confirm the effectiveness of RNAi was con-
ducted as previously [7,37], using RpL32 as an

internal standard and verified primer pairs (all
shown 5´ to 3´) as follows: for Pdk – GGATTCG
GAACAGATGCAAT and CGCGATAGAACTTT
GAGCTTG, for Mpc1 – GCCGACACACAAA
AGAGTCC and GCTGGACCTTGTAGGCAAAT,
for Men – ACTCGATCCTACGACGCTGT and
TGAGGAAGGACTCTGCGAAT. RNA sequen-
cing and data analysis were carried out as pre-
viously [7], using RNA from Oregon R or tko25t

L3-stage larvae cultured on different media. Note
that initial statistical filtering by Cuffdiff (chipster.
csc.fi) excludes genes in any pairwise comparison
where the differences fail significance testing,
regardless of their magnitude. For further analysis
(see Results), arbitrary thresholds were then
applied to restrict the analysis to genes showing
substantial differences in expression, as measured
by either of two parameters: >8 fold change

Table 1. GAL4 drivers used in the study.

Namea
Stock centre IDb

or source Alias, if any Chromosome Expression patternc Referencesd

da-GAL4 BL 8641 3 ubiquitous [8]
gut-GAL4 KY 113094 NP3084 2 midgut, proventriculus, gastric ceca, salivary glands [7,9], Fig. S1
elav-GAL4 BL 458 c155 X neurons, embryonic neuroblasts and glioblasts [10,11]
nrv2-GAL4 BL 6800 2 glial cells, weak expression in some neurons [12–16], Fig. S1
G14 kind gift of John

Sparrow
G14-Gal4 2 muscle, salivary glands [17–19]

Mef2-GAL4 BL 27390 GAL4-Mef2, DMef2-GAL4 3 muscle [20]
Kr-GAL4 kind gift of John

Sparrow
2 early embryo, larval midgut [21,22], Fig. S1

Lsp2-GAL4 BL 6357 3 Fat body (third larval instar and adult) [23,24], Fig. S1
aas used here.
bBL = Bloomington, KY = Kyoto.
cconsensus or most recent revision from published literature, or based on figures of this paper.
dliterature citation(s) or figure of this paper.

Table 2. RNAi lines used in the study.
Symbol of
targeted
gene Stock centre IDa Library

Chromosome
(insertion) Referenceb

tko BL 38251 TRiP 2 [25,26]
Mpc1 BL 67817 TRiP 2 [25,27]
Pdk BL 28635 TRiP 3 [25,26]
Men BL 38256 TRiP 2 [25,26]
Men VDRC 330428 shRNA 2 [28]
Men VDRC 104016 KK 2 [28,29]
Men-b BL 57489 TRiP 2 [25,27]
Men-b VDRC 100812 KK 2 [28,29]
Ldh VDRC 110190 KK 2 [29]

aBL = Bloomington, VDRC = Vienna Drosophila Research Centre.
bliterature citation(s).

Table 3. Other Drosophila strains used in the study.

Namea
Stock

centre IDb Alias, if any
Chromosome (insertion,
mutation or balancer) Other featuresc Referencesd

tko25t n/a tko(25t) X Bang-sensitive; coding-region mis-sense mutant [30–32]
UAS-tko+(1) n/a 3 transgenic for wild-type copy of tko cDNA; without driver

does not alleviate bang sensitivity of tko25t
[6]

UAS-tko+(8) n/a 2 transgenic for wild-type copy of tko cDNA; without driver
does not alleviate developmental delay of tko25t

[6]

FM7 BL 995 X balancer chromosome [33]
CyO BL 4959 2 balancer chromosome [34]
TM3Sb n/a TM3-Sb 3 balancer chromosome, currently available from stock

centre combined with CyO
[34]

UAS-Stinger BL 65402 UAS-GFP, UAS-
Stinger

2 transgenic expressor of nuclear-targeted GFP [35]

UAS-mCD8-GFP KY 108068 mCD8-GFP, +
many variants

2 transgenic expressor of membrane-targeted GFP [36]

aas used here.
bBL = Bloomington, KY = Kyoto, n/a not currently available from stock centres.
cconsensus or most recent revision from published literature, or based on figures of this paper.
dliterature citation(s) or figure of this paper (Figure 1).
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or >100 units of FPKM (mass fraction).
Raw sequence data have been deposited at
ArrayExpress (www.ebi.ac.uk/ArrayExpress/).

Metabolite analysis

Batches of 20 larvae were homogenized in 100 µl of
6M guanidine hydrochloride on ice. The homogenate
was incubated at 95°C for 5 min and centrifuged at
12000gmax for 5 min at 4°C. The supernatants were
stored at −80°C, and later diluted 1:10 and with PBS
(pH 7.4) for analysis. Pyruvate and lactate were mea-
sured with commercially available fluorescence-based
determination kits (Abcam) according to manufac-
turer’s instructions. 10 µl of sample was combined
with 50 µl of either lactate or pyruvate reaction mix,
incubated at room temperature for 30min after which
fluorescence was measured (excitation at 535 nm,
emission at 590 nm) using a plate reader. Lactate
and pyruvate standards were used to generate stan-
dard curves and concentrations were normalized to
soluble protein as measured using the Bradford
method.

Statistics

For pairwise comparisons between groups, the two-
tailed (unpaired) Student’s t test (Microsoft Excel) was
applied. For multiple comparisons, we used one-way
ANOVAwithTukey post hocHSD test online (astatsa.
com). For comparisons where multiple factors were
being assessed, two-way ANOVA (GraphPad Prism
or online tool at vassartstats.net/anova2u.html, as
indicated) was used, together with Dunnett’s or
Tukey’s post hoc multiple comparisons tests as indi-
cated, where interactions were detected, or where
more than two levels were compared.

Results

Wild-type tko expression in diverse tissues
alleviates developmental delay in tko25t

Using the line UAS-tko+(8) [6], in which a wild-type
tko transgene is expressed under the control of GAL4,
we tested the tissue-specificity of developmental delay
in the tko25t background, by combining it with differ-
ent GAL4 drivers directing distinct tissue patterns of
expression. In addition to almost complete rescue

using da-GAL4 and the partial rescue with gut-
GAL4 documented previously, we found that drivers
specific for the fat body (Lsp2-GAL4), muscle (G14
and Mef2-GAL4) and CNS (neurons, elav-GAL4) all
gave a partial rescue (Figure 1), although this wasmost
pronounced or significant in each case at different
characteristic temperatures (Table S1).

We confirmed the specificity of patterns of expres-
sion of these drivers using GAL4-dependent con-
structs for GFP (Fig. S1). The alleviation of the
phenotype was due to a positive effect of the trans-
gene/driver combination, and not due to a negative
effect of the CyO balancer chromosome in the tko25t

background (Fig. S2). Note, however, that this was not
true of the TM3Sb balancer (Fig. S2), the use of which
was therefore avoided in all experiments described.

The partial rescue produced by several drivers
appeared to be additive, based on two lines of evi-
dence. First, we attempted to combine pairs of drivers
and the UAS-tko+(8) transgene. This experiment was
technically challenging for several reasons: the proble-
matic nature of the TM3Sb balancer precluded its use;
some transgenic combinations had poor viability,
especially as homozygotes, and the drivers did not all
perform optimally at the same temperature. However,
the combination of the fat-body and muscle drivers
Lsp2-GAL4 and G14 appeared to give an additive
enhancement at 22°C (Fig. S3), although this should
be interpreted cautiously, due to the imperfect experi-
mental design. The second piece of evidence for
a combinatorial effect was that a second transgenic
line, UAS-tko+(1), which already showed a one-day
alleviation of developmental delay compared with
tko25t flies bearing no transgene [6], showed a further
alleviation of developmental delay when combined
with different GAL4 drivers (Figure 2). These findings
suggest the operation of a systemic signal that inte-
grates the degree of mitochondrial dysfunction across
tissues, calibrating growth to the ability of the organ-
ism to process nutritional resources.

RNAi-mediated tko knockdown in diverse tissues
phenocopies tko25t

To further test this hypothesis, we used RNA-
mediated knockdown of tko to profile the tissues
in which the resulting mitochondrial translational
deficit leads to a tko25t-like phenotype. Ubiquitous
tko knockdown using the da-GAL4 driver and the
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Bloomington TRiP line 38251 targeted on tko
resulted in a phenotype resembling an exaggerated
version of tko25t. At 25°C tko knockdown was
lethal, whilst at 22°C, it was lethal to males and
semilethal to females, which eclosed with a long
delay (5–9 d) and were too weak to permit
a meaningful test of their bang-sensitivity. At 18°C
females eclosed with a 7 to 8-d delay (Figure 3(a))
and were highly bang-sensitive (Figure 4(a)), whilst
the few males that eclosed were even more delayed
(Figure 3(a)) and extremely weak. Knockdown

using tissue-specific drivers produced a milder ver-
sion of the same phenotype, whether knockdown
was targeted specifically to neurons (using elav-
GAL4, Figures 3(b), 4(b)) or muscle (Mef2-GAL4
at 18°C, Figures 3(c), 4(c)). Even more limited
knockdown targeted on the early embryo, and por-
tions of the midgut (Kr-GAL4, Figure 3(d), Fig. S1)
also produced a significant, though very modest
developmental delay, but without bang-sensitivity
(Figure 4(e)). Mef2-GAL4-driven tko knockdown
at higher temperatures (22, 25°C) again gave
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Figure 1. tko25t developmental delay is partially alleviated by tko+ expression directed by different drivers. Time to eclosion (means
± SD, n ≥ 3 replicate vials for each cross), of flies of the indicated genotypes, using UAS-tko+(8) with the indicated drivers. Controls
were FM7 balancer flies with (a, b and d – right-hand panel) driver but no transgene, (c), driver or transgene (these classes could not
be distinguished due to the nature of the cross, since the G14 driver is not viable as a homozygote), and (d – left-hand panel)
neither transgene nor driver, as dictated by the chromosomal location of the drivers. Because the elav-GAL4 driver is located on the
X chromosome, one of the two reciprocal crosses used in (d) generates only informative females and not males. Horizontal lines
denoted by asterisks (*, **, ***) indicate significant differences in pairwise comparisons of flies of a given sex and tko genotype, with
and without actively driven tko+ (Student’s t test, p < 0.05, 0.01, 0.001, respectively. The specificity of each driver was confirmed by
parallel crosses in which it was used to direct the synthesis of nuclear- or membrane-localized GFP (see Fig. S1). Note that we
avoided the use of the TM3 balancer because we established that it conferred a developmental delay in conjunction with tko25t,
whereas the chromosome 2 balancer CyO did not (Fig. S2). The partial rescue of developmental delay was also observed at other
temperatures with some drivers (see Table S1) and using the alternate transgene UAS-tko+(1) – see Figure 2. Note that most GAL4
drivers exhibit the classic pattern of temperature dependence [38], i.e. increased activity at higher temperature. However, for the
strongest drivers, this may also lead to deleterious effects of over-expression at high temperature, such that a lower temperature
produces optimal effects.
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semilethality and severe weakness, which was more
severe in males. elav-GAL4-driven knockdown
also gave sex- and temperature-dependent bang-
sensitivity: at 25°C flies were extremely weak,
whilst developmental delay was seen at all tempera-
tures but was generally significant only in males
(Figure 4(b)). Driving tko knockdown with the
glial driver nrv2-GAL4 gave no bang sensitivity
(Figure 4(d)).

Drugs that affect pyruvate metabolism impact
larval growth

In principle, a systemic signal regulating growth
according to mitochondrial function could be endo-
crine or metabolic in nature. Candidate metabolites

for such a role that were previously shown to be
markedly abnormal in tko25t larvae, include pyruvate
and lactate, which were approximately threefold ele-
vated, and NADPH and ATP, which were highly
depleted [7]. Since ATP and NADPHmay be consid-
ered too labile to perform an intercellular role, we
focused our attention on pyruvate and lactate, which
are interconvertible through lactate dehydrogenase,
and which were previously found to exacerbate and
phenocopy the developmental delay of tko25t, when
added to the medium ([7], Figure 5(a)). We investi-
gated the developmental effect of two drugs known to
affect pyruvate metabolism, dichloroacetate (DCA),
an inhibitor of pyruvate dehydrogenase kinase (Pdk)
and UK5099, an inhibitor of the mitochondrial pyr-
uvate carrier, which could be predicted to have
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Figure 2. Alleviation of tko25t developmental delay in a second UAS-tko+ line. Time to eclosion at 25°C (means ± SD, n ≥ 3 replicate
vials for each cross), of flies of the indicated genotypes, using various drivers plus the UAS-tko+(1) transgene, shown previously to
confer a modest rescue of developmental delay without any driver [6]. Controls were FM7 balancer flies with transgene but without
driver, as shown. Horizontal lines denoted by asterisks (*, **, ***) indicated significant differences in pairwise comparisons of flies of
a given sex and tko genotype, with and without actively driven tko+(Student’s t test, p < 0.05, 0.01, 0.001, respectively. The
specificity of each driver was confirmed by parallel crosses in which it was used to direct the synthesis of nuclear- or membrane-
localized GFP (see Figure S1). Note that we avoided the use of the TM3 balancer because we established that it conferred
a developmental delay in conjunction with tko25t, whereas the chromosome 2 balancer CyO did not (Fig. S2).
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opposite effects onmitochondrial pyruvate utilization.
We tested different concentrations of pyruvate and
DCA for their effects on the development of wild-type
and tko25t females in ZS medium (Figure 5(b)), and
performed a more extensive study at single, effective
concentrations on different media and both sexes,
including heterozygous tko25t females (Figure 5(a)).
Like pyruvate, DCA produced an additional, dose-
dependent developmental delay in both tko25t as well
as in wild-type flies (Figure 5(a, b, S5)).

UK5099 (25 μg/ml) also exacerbated the develop-
mental delay of tko25t, but had no significant effect on
the eclosion timing of wild-type flies (Figure 5(a, S5)).

Genetic manipulations that affect pyruvate
metabolism impact larval growth and survival

Next, we analyzed the effects of knocking down the
genes coding for the key proteins of pyruvate

metabolism targeted by these drugs. The mitochon-
drial pyruvate carrier is a heterodimer of the ubiqui-
tous subunit Mpc1 (CG14290) and a differentially
expressed second subunit, Mpc2, encoded in
Drosophila by a small gene family (CG9396, CG9399
and CG32832, the latter being testis specific). Pdk is
encoded by a single-copy gene (Pdk, CG8808). Using
the available RNAi lines for Mpc1 and Pdk from the
Harvard Medical School TRiP library, we first con-
firmed that knockdown for each of the two genes
using the ubiquitously acting daGAL4 driver gave
viable flies, and used qRTPCR to verify that knock-
down was effective at the RNA level (Figure 6(a)). We
then evaluated the effects of knockdown on wild-type
and tko25t flies gown in standard high-sugar medium,
or onmedium supplemented with 25mg/ml pyruvate
(Figure 6(b)). Mpc1 or Pdk knockdown produced no
effect on eclosion timing in wild-type flies cultured on
standard medium. However, when pyruvate was
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Figure 3. RNAi knockdown of tko by different drivers results in developmental delay. Times to eclosion (means ± SD, n ≥ 3 replicate
vials for each cross) for flies of the indicated sex and genotype, using the various drivers at the temperatures shown. Horizontal lines
denoted by asterisks (*, **, ***) indicate significant differences in pairwise comparisons between knockdown and control flies of
a given sex, using a given driver (Student’s t test, p < 0.05, 0.01, 0.001, respectively). Note that males were in general more severely
affected and in some cases (e.g. da-GAL4) too few males eclosed to permit a statistically meaningful analysis. Note that most GAL4
drivers exhibit the classic pattern of temperature dependence [38], i.e. increased activity at higher temperature. However, for the
strongest drivers this may also lead to highly deleterious effects at high temperature, such that, at a lower temperature, results are
more informative.
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added to the medium,Mpc1 knockdown exacerbated
the developmental delay produced in wild-type flies,
but not that of tko25t (Figure 6(b), panel i), whilst Pdk
knockdown had no effect on eclosion timing of wild-
type flies on either medium, but mildly alleviated the
developmental delay of tko25t (Figure 6(b), panel ii) on
pyruvate-supplementedmedium (see Fig. S6 for sum-
mary of the relevant statistical analyses by two-way
ANOVA).

Knockdown of two other genes of pyruvate meta-
bolism, coding, respectively, for the cytosolic and
mitochondrial isoforms of malic enzyme, produced
more dramatic results in combination with tko25t. In
our previous study, we observed that knockdown of
Men, the gene encoding the cytosolic isoenzyme, pro-
duced no significant effects on tko25t (Figure 4(c) of
[7]). In the present study we were able to make use of
more potent and specific TRiP lines forMen, as well as
one further dsRNA line from the VDRC collection, all
of which gave a strong knockdown of the gene
at the RNA level under the control of da-GAL4
(Figure 7(a)), but had no significant effect

on the development of otherwise wild-type flies
(Figure 7(b)). However, in combination with tko25t

they were all developmentally lethal or semilethal at
both 29°C and 25°C (Figure 7(c)). Both of theMen-b
knockdown lines produced a developmental delay in
wild-type flies, andwere again synthetically lethal with
tko25t (Fig. S4), but this result should be interpreted
cautiously, since we were not able to demonstrate
convincing and consistent knockdown of Men-b at
the RNA level by qRTPCR, using several different
primer sets. Knockdown of lactate dehydrogenase
(Ldh) was lethal to both wild-type and tko25t larvae,
making comparable experiments uninformative.

Despite their similar effects on eclosion timing
(Figure 5), the addition of pyruvate and DCA to the
low-sugar culturemedium had opposite effects on the
tissue levels of pyruvate and lactate in L3 larvae
(Figure 8), although the changes were only significant
for pyruvate levels (Tables S3). Pyruvate addition
increased both lactate and pyruvate to levels compar-
able with those seen in high-sugar medium, whilst
DCA lowered them, in accord with the expectation
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that it would augment pyruvate metabolism by
removing inhibition from (i.e. activating) PDH. The
different effects of pyruvate and DCA imply that
growth rate cannot be determined directly or solely
by pyruvate concentration averaged across the tissues.
Instead, a metabolite of pyruvate, or pyruvate in
a specific intracellular or tissue-compartment, is likely
to be instrumental.

Gene expression changes induced by pyruvate
are non-coherent with those induced by tko25t

Growth of tko25t in high sugar was previously
observed to downregulate some components of
the protein synthetic and secretory machinery, as
well as a number of key genes involved in devel-
opmental progression. These effects were seen also

seen in zero-sugar medium but were less pro-
nounced. We used RNA-seq to test whether pyr-
uvate addition produced the same changes in gene
expression, applying similar criteria as in the pre-
vious study [7]. Using each of two parameters (i)
absolute magnitude of changes measured by mass
fraction (FPKM), and (ii) fold-change, we created
lists of the genes showing the most pronounced
alterations in expression due to pyruvate supple-
mentation (Table S4). We considered both pro-
tein-coding and non-coding RNAs, as well as
increases and decreases. From these ‘base-
comparison’ lists of pyruvate-regulated genes
(198 in the mass-fraction list and 248 in the fold-
change list, applying arbitrary thresholds of >100
FPKM units or >eightfold change, Tables S4) we
asked how many are regulated similarly in each of
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six additional comparisons (Figure 9). In each out-
put we considered the genes from the base-
comparison list in five categories: those regulated
in the same direction, either (i) above or (ii) below
the arbitrary thresholds, those regulated in the
opposite direction, again (iii) above or (iv) below
threshold, and (v) those missing from the com-
pared list, due to the initial statistical filtering. This
analysis enabled us to draw the following conclu-
sions, illustrated in Figure 9. First, most of the
genes up- or down-regulated by pyruvate in wild-
type larvae were regulated similarly by pyruvate

in tko25t (comparison 1 in Figure 9). Second, only
a minor subset of genes (≤15%) were regulated in
the same direction by high-sugar (comparisons 2
and 3). Many genes were oppositely regulated by
the presence of tko25t (comparisons 4 and 5), and
many pyruvate-regulated genes in wild-type
showed either no effect or a change in the opposite
direction in tko25t larvae (comparison 6). The two
approaches (mass-fraction and fold-change) gave
similar outcomes. The functionally identified
genes regulated similarly by pyruvate and by
sugar were mostly linked to development
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(cuticular, muscle and a few gut proteins: Tables
S5, sheet 1). Many of them, or others in the same
functional categories, were oppositely altered in
tko25t (Tables S5, sheet 2). Many of the remaining
genes regulated by dietary pyruvate, that were not
affected by sugar or by tko25t, code for components
of the gene expression machinery or for OXPHOS
and other mitochondrial functions (Table S4).

Discussion

Developmental delay in tko25t depends on
a systemic signal

Three lines of evidence presented in this paper
support the idea that a systemic signal links

mitochondrial function to growth rate in
Drosophila development. First, the developmental
delay of tko25t mutant larvae could be partially
corrected (Figure 1) by expression of the wild-
type allele via any of several different tissue-
specific drivers, showing little or no overlap in
the specificity of their expression (Fig.
S1). Second, as far as could be demonstrated,
these effects were additive (Figure 2, S4). Third,
RNAi-mediated knockdown of tko using similarly
specific drivers regenerated the mutant phenotype
of tko25t, including both developmental delay as
well as (at least in some cases) bang-sensitivity.
These observations imply that diminished mito-
chondrial function in a specific tissue is somehow
integrated across the entire larva, presumably by
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the sharing of metabolites and their processing.
Furthermore, this is not an all-or-none phenom-
enon, where growth is switched between two alter-
nate programs whenever mitochondrial function
crosses some threshold: the amount of develop-
mental delay is variable, implying that the overall
metabolic capacity of the larva is somehow being
measured physiologically, and growth rate
adjusted accordingly. These findings could be
further strengthened by the use of additional dri-
vers, especially in combination, although the pro-
blematic nature of the TM3 balancer means that
we would need first to identify those carried on
chromosome 3 that were viable as homozygotes
(also with no maternal effects) and which had no
unreported off-target expression patterns.

As indicated above, we hypothesized that such
a signal could be either endocrine or metabolic in
nature, or a combination of both. Endocrine signals

of metabolic – specifically mitochondrial stress are
well established in other organisms, such as FGF21
or GDF15 in mammals [39]. Although both of these
growth-factor superfamilies have representatives in
insects, neither has a clear orthologue in Drosophila.
The closest match to human GDF15, Glass bottom
boat, is much more similar to other members of the
BMP/TGFβ superfamily, whilst none of the three
Drosophila FGFs (Pyramus, Thisbe and Branchless)
is a convincing match to human FGF21, and each of
them plays a well-studied role in specific develop-
mental programs (see [40] for review).

Two other well-known endocrine systems in
Drosophila do provide a more direct connection
between growth regulation and mitochondrial meta-
bolism, namely the insulin-like peptides and the ster-
oid hormone ecdysone. The insulin/IGF signalling
system in the fly [41,42] is responsive to metabolic
and nutritional signals to co-ordinate growth and
behaviour, whilst ecdysteroids, partly synthesized in
mitochondria [43,44], regulate progression between
the different developmental stages, especially the
onset of metamorphosis [45]. It will be worthwhile
to study whether either interacts with tko25t.

Tissue-specificity of the bang-sensitive
phenotype

Bang-sensitivity is reported as a feature of mutants in
two other genes for core functions of mitochondria,
namely sesB (adenine nucleotide translocase) [46]
and kdn (citrate synthase) [47]. These mutants, as
well as tko25t, show ATP depletion [47–49]. Global
tko knockdown was here shown to phenocopy both
the developmental delay (Figure 3) and bang-
sensitivity (Figure 4) of the original tko25t mutant,
supporting the view that tko25t is a simple hypo-
morph. However, the two phenotypes are clearly
separable, based on the fact that the transgenic line
UAS-tko+(8) shows no rescue of developmental
delay in the absence of a GAL4 driver, but does
exhibit effective rescue of bang-sensitivity [6], due,
presumably, to an insertional effect [50]. The use of
tissue-specific drivers to knock down tko sheds
further light on this, since exclusively neuronal or
muscle drivers both gave a bang-sensitive phenotype
(Figure 4(a–c)), whereas a glial driver or one active in
embryogenesis and in parts of the larval midgut (Fig.
S1A) did not (Figure 4(d,e)). These findings imply
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that adequate mitochondrial OXPHOS capacity in
muscle and in neurons, but not in other tissues, is
required to avoid the prolonged paralytic seizures
characteristic of tko25t. The severity of the bang-
sensitive phenotype produced by knockdown of tko
using different GAL4 drivers is comparable with, or
in some cases stronger, than that produced by tko25t.
However, since the relative strength of the various

tissue-specific drivers is not easily measured, the
significance of this cannot be assessed.

Lactate and pyruvate metabolism is linked to
growth regulation in tko25t

Candidates for a metabolic signal of mitochondrial
dysfunction were already suggested by the previous
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observation of elevated pyruvate and lactate levels in
tko25t larvae [7], and the fact that their addition to the
culture medium phenocopied the effects of high-
sugar on tko25t. Serum lactate is already considered
a key biomarker for diagnosing OXPHOS disorders
in humans [39], whilst pyruvate has been identified
as a crucial regulator of stemness and growth in
mammalian cells [51]. In flies, the enzyme that inter-
converts lactate and pyruvate, lactate dehydrogenase
(Ldh, or ImpL3) has previously been implicated as
a target of growth signalling by the estrogen-related
receptor [52]. This offered an attractive starting
point for the present study.

Drugs and genetic manipulations that affect pyr-
uvate metabolism (summarized in Figure 10)
impacted the development of tko25t (and, in some
cases, wild-type flies), broadly supporting the view
that pyruvate accumulation is a marker for
a metabolic process that limits growth. The growth-
inhibiting effects of pyruvate and of DCA were also
dose-dependent. However, measurements of lactate
and pyruvate levels in flies grown on different media
(Figure 8) implied that neither was a direct predictor
of developmental phenotype, which may instead
depend on a downstream product of pyruvate meta-
bolism. Thus, pyruvate or lactate supplementation
resulted in only a modest increase in the steady-state
level of pyruvate, whereas DCA, which substantially
decreased pyruvate and lactate levels (Figure 8), pro-
duced paradoxical effects on developmental timing,
accelerating the growth of tko25t on zero-sugar med-
ium, but retarding that of wild-type flies, whilst in
high-sugar medium it compounded rather than alle-
viated tko25t developmental delay (Figure 5(b)). Pdk
knockdown exacerbated the developmental delay of
tko25t (Figure 6(b), ii), but only under conditions of
pyruvate overload. Although DCA is a potent inhi-
bitor of Pdk [53], it may also have other targets [54–
56] and is accumulated in cells via the plasma-
membrane monocarboxylate transporters, MCTs
[57]. Moreover, in cancer cells, it has been reported
to inhibit the pentose phosphate pathway [58] and
thereby decrease the level of NADPH, which is
already depleted in tko25t, especially when grown
on high-sugar medium [7]. Such off-target effects
may account for the different outcomes of DCA
treatment and Pdk knockdown.

UK5099, predicted to limit mitochondrial pyru-
vate utilization by inhibiting the mitochondrial

pyruvate carrier, produced a clear exacerbation of
the tko25t developmental phenotype (Figure 5(b)),
whist Mpc1 knockdown produced different effects,
slowing the growth of wild-type flies under pyruvate
overload, but exhibiting only minor effects on tko25t

development that were essentially epistatic to the
effect of added pyruvate (Figure 6(b), i). Although
originally identified as an inhibitor of the mitochon-
drial pyruvate carrier [59], UK5099 was subsequently
shown to block MCTs as well [60–63]. If it blocks
lactate efflux in vivo, its net effect may be to increase
cytosolic lactate and/or pyruvate independently of its
effects on mitochondria, potentially accounting for
the different outcome of Mpc1 knockdown. Other,
more specific inhibitors, such as PS10 for Pdk [64],
or GW604714X and GW450863X for the mitochon-
drial pyruvate carrier [65], may prove useful in dis-
entangling these effects, although their efficacy and
specificity would need to be verified for Drosophila.

The findings with Men are also consistent with
pyruvate being a criticalmetabolite, although the effect
on tko25t was lethality rather than extended develop-
ment. One possibility is that a high level of pyruvate
facilitates NADPH depletion via the NADPH-
dependent conversion of pyruvate to malate catalyzed
byMen. If, as hypothesized earlier, NADPHdepletion
is a critical element of growth signalling in tko25t [7],
a decreased capacity of pyruvate to malate conversion
could undermine this signalling, with catastrophic
consequences for a larva with severe limitations on
TCA-cycle and biosynthetic flux, and ATP depletion.

Overall, whilst we can infer that manipulations
affecting pyruvate and lactate metabolism affect
growth-regulation in tko25t, possible off-target or sec-
ondary effects of the drugs and knockdowns preclude
a definitive mechanistic conclusion at this time.
Unravelling the many possibilities will require the
development of methods for assaying fluxes of the
key metabolites at the subcellular level in vivo, con-
sidering separately the mitochondrial and cytosolic
pools of pyruvate, malate, NADPH, ATP and their
derivatives.

Pyruvate modulates growth rate translationally
and/or post-translationally

Growth of tko25t in high-sugar medium was pre-
viously observed to affect gene expression in two
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ways: first, via a post-translational mechanism
affecting S6K, second, via changes in transcript
representation [7]. In the present study, we found
that only a minor fraction of the genes regulated at
the RNA level by pyruvate were regulated in the
same way by high sugar, whilst those responding to
tko25t were mostly altered in the opposite direction.
This was unexpected, given the fact that tko25t

responded similarly to pyruvate and high sugar,
and suggests that global growth regulation in
response to mitochondrial dysfunction and meta-
bolic disturbance occurs mainly at the (post-)trans-
lational level. Regulation at the protein level is also
suggested by the fact that the list of similarly or
oppositely regulated genes at the RNA level
includes very few that are connected either to meta-
bolism or to transcription. It remains possible
that relevant changes remain buried in the list
of transcriptional targets because they change
only by rather modest amounts that are below
the thresholds set here but are nevertheless criti-
cal to the regulation of growth. More plausibly,
a global regulator like the cyclin-dependent
kinases or AMPK, which would not have to com-
pete with cell-specific transcriptional programs,
can respond to a systemic signal in broadly simi-
lar ways in all cells.

In conclusion, this study provides evidence that
mitochondrial dysfunction triggers a systemic
response that curtails the rate of growth of
Drosophila larvae, and confirms a key role for
pyruvate or its metabolic products in eliciting
this signal.
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