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Abstract

The placenta plays a central role in the epigenetic programming of neurodevelopment by

prenatal stress (PS), but this pathway is not fully understood. It difficult to study in humans

because the conditions for intense, traumatic PS are almost impossible to create ethically.

This study was able to capitalize on a 2012 disaster that hit New York, Superstorm Sandy,

to examine the impact of traumatic stress on placental gene expression while also examin-

ing normative PS, and compare the two. Of the 303 expectant mothers participating in the

Stress in Pregnancy Study, 95 women were pregnant when Superstorm Sandy struck. Dur-

ing their pregnancy, participants completed self-report measures of PS and distress that

were combined, using latent profile analysis, into one global indicator of normative PS.

Placental tissue was collected at delivery and frozen for storage. RNA expression was

assessed for 40 placental genes known to associate with the stress response system and

neurodevelopment in offspring. Results showed that normative PS increased expression of

just MECP2, HSD11B2, and ZNF507, whereas Superstorm Sandy PS decreased expres-

sion of CDKL5, CFL1, DYRK1A, HSD11B2, MAOA, MAOB, NCOR1, and ZNF507. Interac-

tion analyses indicated that Superstorm Sandy PS was associated with decreased gene

expression for the low and high PS group for CFL1, DYRK1A, HSD11B2, MAOA, and

NCOR1 and increased expression for the moderate PS group for FOXP1, NR3C1, and

NR3C2. This study supports the idea that a moderate amount of normative PS may buffer

the impact of traumatic PS, in this case caused by Superstorm Sandy, on placental gene

expression, which suggests that the placenta itself mirrors the organism’s ability to develop

an epigenetic resilience to, and inoculation from, stress.
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Introduction

Prenatal stress (PS) has been shown to impact offspring development over the lifespan [1–5].

Psychiatrically, PS increases the risk of behavioral and attentional disorders, autism and

schizophrenia in male offspring and later-onset anxiety and affective disorders in females

[3,6]. The biological impact of PS can include dysregulation of the hypothalamic pituitary

adrenal (HPA) axis, broad alterations in brain growth, size or density, specific alterations to

functional brain regions or neural components such as white matter abnormalities and hypo-

myelination in the hippocampus, prefrontal cortex, amygdala, and hypothalamus [7–13].

One of the biological pathways underlying this fetal programming is through the placenta,

a maternal and fetal endocrine organ and the sole transporter and filter for nutrients, waste

and teratogens. PS can have a direct impact on the placenta itself by altering its development

especially early in pregnancy, changing structures that can lead to vasoconstriction of placental

arteries or altering gene expression encoding for important functional proteins [4]. The epige-

netic regulation of placental gene expression has been extensively explored in recent research,

examining mechanisms such as DNA methylation, microRNA molecules, and histone modifi-

cation [14–17].

One set of genes of great interest in the placental transmission of PS have been those involved

in placental regulation of cortisol, the central stress hormone, and certain stress-related neuro-

transmitters [18]. The genes with the most substantive human research support areNR3C1,

HSD11B2,MAOA, and SLC6A4.HSD11B2 converts cortisol into its inactive form, cortisone. Cor-

tisone is extremely important because fetal over-exposure to cortisol can lead to growth restric-

tion, premature maturation of proliferative neural precursors, pre-term birth and altered HPA-

axis development [18,19].NR3C1 encodes the glucocorticoid receptor that binds to cortisol [20].

In the placenta, it is postulated to be an upstream regulator of placentalHSD11B2 [21]. Methyla-

tion of NR3C1 has been associated with a reactive, poorly regulated neurobehavioral profile in

newborns [22] and behavior disorders in childhood [23].MAOAmetabolizes stress-related neuro-

transmitters such as serotonin and norepinephrine [24], and SLC6A4 encodes the serotonin trans-

porter [25]: over-exposure to stress-related neurotransmitters can have a significant impact on

fetal development, synaptogenesis and neuronal cell division [26,27] and increase the risk for

autism [28] and Attention Deficit /Hyperactivity Disorder (ADHD) [29].

PS can have an impact on the expression of placental genes, though the direction of impact

varies for different genes and may depend on whether PS is measured as depression, anxiety or

stress [2]. For the neurotransmitter genes, MAOA expression was found to decrease with

greater maternal depression, whereas, SLC6A4 expression increased with depression and anxi-

ety [30,31]. Research on HPA-axis genes has produced even more complex findings. NR3C1
increased with depression [32] but decreased with war trauma and normative stress [33].

HSD11B2 has generally been found to decrease with normative stress, perceived stress and

anxiety [34–36], though there are also a few studies reporting an increase in HSD11B2, but in

response to traumatic stress [37,38].

Given the ethical limitations to stress research in humans, researchers have to capitalize

where possible on natural disasters as proxies for the experimental introduction of traumatic

PS. The largest natural disaster studied is the Quebec Ice Storm in 1998 [39,40]. There,

researchers differentiated the objective impact of the storm in terms of loss, injury and physical

impact from subjective perceptions of distress. Their results suggest that while objective and

subjective PS are correlated, objective PS is associated with subsequent cognitive, linguistic

and physical developmental outcomes [41–44], while subjective PS is associated with child-

hood anxiety, depression and aggression [40]. A study of the 2005 hurricane in New Orleans,

Katrina, found that neither objective nor subjective PS predicted difficult infant temperament,
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but prenatal maternal mental health did [45]. A study of the 2008 flood in Iowa found that

objective and subjective PS were related to cortisol reactivity in female toddlers alone [46]. Of

note, none of these disaster studies investigated placental genomics, which we are suggesting

may help us to understand the underlying mechanisms.

To advance our understanding of how PS impacts the placenta, we measured normative PS

as maternal depression, anxiety, and lifetime histories of negative life events and traumatic

Superstorm Sandy PS as prenatal exposure to Superstorm Sandy of 2012—the most destructive

hurricane to ever strike New York City and at 50 billion dollars in damages, the second costli-

est natural disaster in the United States up to that point [47]. The impact in New York included

53 deaths, 305,000 homes destroyed, 250,000 vehicles damaged, massive power outages, flood-

ing, and major disruption to the transit system [48]. We hypothesized that both normative and

traumatic PS would impact placental gene expression, though the direction of impact would

depend on type of PS and type of gene. We also explored whether normative PS might alter

the impact of traumatic Superstorm Sandy PS on placental gene expression.

Materials and methods

Participants

Participants came from the Stress in Pregnancy (SIP) Study [49]https://paperpile.com/c/

rh5zV9/EFym, an ongoing longitudinal study begun in 2009, that examines the impact of PS

on child neurodevelopment. Expectant mothers in the second trimester were recruited from

obstetrics clinics at Mount Sinai Hospital and New York-Presbyterian/Queens in New York

City. Women were excluded based on HIV infection, maternal psychosis, maternal age< 15

years, life-threatening maternal medical complications, and congenital or chromosomal

abnormalities in the fetus. Written informed consent was obtained in all cases. The Institu-

tional Review Boards at the City University of New York, Icahn School of Medicine at Mount

Sinai, and New York Presbyterian/Queens approved the study.

Superstorm Sandy hit New York City in October 2012, affecting 408 SIP Study families, of

which 303 had complete data for this study. These 303 did not differ demographically from the

full cohort. Among the 303, 95 dyads experienced the storm during pregnancy.

The mean (±standard deviation) age of mothers was 27 (±6.0) years. The mothers were His-

panic/Latino (53%), Black (24%), White (9%), Asian (8%) and other (6%). Though 58% of

mothers attended college, only 18% had completed a bachelor or graduate degree. A small

majority of mothers were single (57%), while 40% were married or in a common law marriage.

Among offspring, 52% were male.

Exposure to superstorm sandy

The specific gestational timing during which Superstorm Sandy occurred was calculated based

on the date of birth of the child and the day the storm hit the metropolitan New York area

(October 29, 2012), and serves as our primary measure of exposure to Superstorm Sandy. Fol-

lowing the classification, a dichotomous variable was created to categorize mothers as either

pregnant during Superstorm Sandy (Exposed, n = 95) or pregnant before or after the storm

(Non-Exposed, n = 208). Of the 95 exposed, 66 participants experienced the storm during the

first trimester and 29 during the 2nd or 3rd trimesters.

Normative prenatal stress

Mothers completed the following five self-report scales of normative PS during the second tri-

mester. The 10-item Edinburgh Postnatal Depression Scale (EPDS) rates the severity of
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depressive symptoms from 0 to 3. Items were summed, with scores above 13 suggesting clinical

levels of depression [50]. The inventory is well-validated in different languages and has accept-

able reliability, sensitivity and specificity [51]. The 10-item Pregnancy Related Anxieties Ques-

tionnaire-Revised (PRAQ-R) measures pregnancy related fears and worries, rated from 1

(definitely not true) to 5 (definitely true) [52], with three subscales: fear of giving birth, fear of

bearing a handicapped child, and concerns about changes in appearance. Subscale scores are

an average of item scores, and the total score, ranging from 3 to 15, is the sum of subscale

scores. PRAQ-R has good reliability and validity in predicting adverse child behaviors and

developmental delays [53]. The 40-item State-Trait Anxiety Inventory (STAI) assesses tempo-

rary “state anxiety” and long-standing, characterological “trait anxiety” [54]. Each subscale

consists of 20 items rated from 1 to 4, summed to produce subscale scores ranging from 20 to

80. In one normative sample, working females aged 19–39 reported average subscale scores of

36.17 (SD = 10.96) [55]. A meta-analysis found the STAI to have very good internal consis-

tency [56]. The 14-item Perceived Stress Scale (PSS-14) assesses how often raters appraise situ-

ations in the past month as stressful from 0 to 4 [57]. The total score was computed by reverse

scoring positively stated items and then summing the scores. Total scores ranged from 0 to 56.

PSS-14 has adequate internal consistency and test-retest reliability [57,58]. The 23-item Psy-

chiatric Epidemiology Research Interview Life Events Scale (PERI LES) [59] has widely been

used to study the effects of adverse life events during pregnancy [60–62]. PERI LES assesses

five major areas of life: relationships, health, legal matters, work and finances, and friendships.

Participants further categorize the stressors as either a “good” or “bad” experience, the total

number of which represents the positive and negative scales. The LES has been validated

against narrative reports of life events [63].

The six PS measures were amalgamated into one normative PS scale, because (1) they were

all significantly correlated (rs = .18 to .83; p< .01; S1 Table), (2) they were always correlated in

the same direction with individual gene expression levels (S1 Table), and (3) other researchers

have amalgamated maternal distress variables in prior research [64–66]. The amalgamated PS

scale was created using latent profile analysis (LPA) with MPlus. Missing data were negligible

(EPDS, 2.3%; PRAQ-R, 3%; PSS-14, 0.7%; STAI, 2.3%; and negative PERI LES, 1%), and were

imputed using full maximum likelihood estimation. LPA produced models with two to four

levels. The three-level model, representing Low, Moderate, and High PS, best fit the data based

on Bayesian Information Criteria [67], adjusted BIC [68], Lo-Mendell-Rubin test [69] and

entropy values (S2 Table). Sample sizes for each PS group were 116 for Low, 132 for Moderate

and 55 for High PS.

Placenta collection and gene expression profiling

At delivery, research staff gathered medical birth records and collected placentas. Placenta

biopsies, free of maternal decidua, were collected from each quadrant midway between the

cord insertion and the placenta rim within one hour of delivery to prevent RNA degradation.

The placentas were snap-frozen in liquid nitrogen and stored at -80˚C. RNA was extracted

with the Maxwell 16 automated DNA/RNA extraction equipment (Promega: Madison, WI)

using the proprietary extraction kits following the manufacturer’s protocol. RNA was quanti-

fied with Nanodrop spectrophotometer (Thermo Electron North America: Madison, WI).

Forty candidate genes were identified a priori for their involvement in HPA-axis function-

ing and neurodevelopment, based on an extensive literature search and using the Ingenuity1

Knowledge Base (http://www.ingenuity.com). Placental RNA was profiled using nCounter by

nanoString Technologies (Seattle, WA) as described elsewhere [70,71]. Nanostring data were

normalized using the NanoString Norm package [72]. First, raw code counts were normalized
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against the geometric mean of spike-in controls to account for differences in hybridization

and recovery. Differences in sample content were accounted for by normalizing the data

against the geometric mean of housekeeping genes (GAPDH, RPL19, and RPLP0). The back-

ground threshold was set to the limit of detection divided by the square root of two to maintain

sample variability. Thirteen genes were considered unexpressed and omitted from analysis

because more than 50% of the sample fell below the limit of detection. Of the remaining 27

genes, 14 genes were related to HPA-axis function, and 13 genes were related to neurodevelop-

ment (S3 Table).

Statistical analyses and covariates

Differences across demographic variables among the PS groups were examined using ANOVA

for continuous variables and Chi-square/Fisher’s exact tests for categorical variables. The

impact of normative and traumatic PS, and their interaction, on placental gene expression was

assessed using a general linear model (GLM), controlling for infant gender, maternal race and

education, and delivery mode, selected based on prior research [24,73,74] (significance set at

p< 0.05). In order to control for Type I errors due to multiple testing, we made an adjustment

using the Benjamini–Hochberg procedure [75,76].

Results

Descriptive analyses

Differences between PS groups were examined using descriptive analyses on demographic and

stress variables. As shown in Table 1, the PS groups did not differ on maternal demographic

characteristics, but there were relatively more female infants in the Moderate PS group (p =

.008). Table 2 shows the differences between Superstorm Sandy and the control groups in

birthweight, race, marital status, and education levels. Means and SDs for all stress measures

by PS groups are listed in Table 3. Based on commonly used clinical norms available for the

EPDS and STAI, the High PS group was above the clinical cutoff for depression on the EPDS

and in the Moderate Anxiety range for State Anxiety, which provides an informal validation of

the classification.

Associations between Superstorm Sandy exposure and placental gene

expression

Table 4 shows genes that were significantly or marginally significantly associated with the

main effects of normative, Superstorm Sandy PS, or their interactions. Prenatal storm expo-

sure significantly or marginally significantly predicted decreased expression of CDKL5 (p =

.053), CFL1 (p = .046), DYRK1A (p = .002), HSD11B2 (p< .001), MAOA (p = .002), MAOB
(p< .001), MECP2 (p = .056), NCOR1 (p = .052), and ZNF507 (p< .001). The one exception,

DBH was related to a marginally significant increase in expression with storm exposure (p =

.076). Graphs of the mean expression levels of each gene are presented in Fig 1A–1J. The

results were calculated using the GLM models. Not all genes expressed in the sample. In the

sections regarding PS and placental gene expression, we did not describe all non-significant

associations. Reported p-values are FDR-adjusted.

Association between PS and placental gene expression

The overall group difference in normative PS levels was shown to be marginally significantly

and positively related to MECP2 (p = .090) using GLM. Pairwise comparisons of means

showed mean gene expression levels for Moderate PS were marginally greater than for Low PS

Prenatal stress and placental genes
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(p = .073). A similar, though only marginally significant, pattern in overall group differences

was found for HSD11B2 (p = .099) and ZNF507 (p = .092). Pairwise comparisons showed that

the mean expression level of HSD11B2 and ZNF507 was marginally greater for high PS versus

low PS (p = .099, .099 respectively). Graphs of the means of gene expression are presented in

Fig 2A–2C.

One gene, CRHBP, was significantly related to PS (p = .007) in a curvilinear, inverted-U

shape, when analyzing overall group differences. The marginal mean of CRHBP expression

was significantly smaller for high PS compared to moderate PS (p = .011). FOXP1 and NR3C1
also showed similar, though only marginally significant, curvilinear patterns (p = .077 and .077

respectively). Fig 3A–3C shows the means for these curvilinear patterns.

Differential impact of superstorm sandy PS by normative PS

To assess whether normative PS might moderate the impact of prenatal storm exposure, an

interaction term for the two was included in the original GLM with normative PS, traumatic

PS and the noted covariates. The most prevalent pattern of findings was where Superstorm

Sandy PS was associated with decreased gene expression for the low and high PS groups but

not Moderate PS. This pattern was significant or marginally significant for CFL1 (p = .053),

Table 1. Demographic characteristics of participants in total and by normative prenatal stress groups.

Total Sample Low PS Moderate PS High PS p value

(n = 303) (n = 116) (n = 132) (n = 55)

Infant sex 0.008

Males N (%) 158 (52%) 64 (55%) 57 (43%) 37 (67%)

Females N (%) 145 (48%) 52 (45%) 75 (57%) 18 (33%)

Gestational age (wks) Mean (SD) 39.1 (2.07) 39.2 (2.22) 39.04 (2.02) 39.04 (1.89) 0.8

Birthweight (g) Mean (SD) 3268 (594) 3308 (643) 3255 (574) 3211 (536) 0.6

Maternal race 0.2

White N (%) 27 (9%) 7 (6%) 13 (10%) 7 (13%)

Black N (%) 74 (24%) 32 (28%) 35 (27%) 7 (13%)

Hispanic/Latino N (%) 159 (52%) 64 (55%) 61 (46%) 34 (62%)

Asian N (%) 23 (8%) 6 (5%) 12 (9%) 5 (9%)

Others N (%) 18 (6%) 7 (6%) 9 (7%) 2 (4%)

Missing 2 (1%)

Maternal education 0.7

Primary school N (%) 6 (2%) 2 (2%) 2 (2%) 2 (4%)

Some high school N (%) 53 (17%) 22 (19%) 20 (15%) 11 (20%)

High school graduate N (%) 67 (22%) 25 (22%) 35 (27%) 8 (15%)

Some college N (%) 91 (30%) 39 (34%) 36 (27%) 16 (29%)

Associate degree N (%) 30 (10%) 8 (7%) 15 (11%) 7 (13%)

Bachelor’s degree N (%) 30 (10%) 9 (8%) 15 (11%) 6 (11%)

Graduate degree N (%) 25 (8%) 11 (9%) 9 (7%) 5 (9%)

Marital status 0.7

Married N (%) 101 (33%) 37 (32%) 45 (34%) 19 (35%)

Common law N (%) 21 (7%) 6 (5%) 12 (9%) 3 (5%)

Single N (%) 174 (57%) 71 (61%) 71 (54%) 32 (58%)

Widowed N (%) 2 (1%) 0 (0%) 1 (1%) 1 (2%)

Divorced/separated N (%) 3 (1%) 1 (1%) 2 (2%) 0 (0%)

Missing N (%) 1 (1%) 1 (1%)

https://doi.org/10.1371/journal.pone.0226605.t001
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DYRK1A (p = .042), FOXP1 (p = .042), HSD11B2 (p = .057), NR3C1 (p = .076), NR3C2 (p =

.076), MAOA (p = .095), and NCOR1 (p = .095). While only marginal, the pattern was partially

supported for MECP2 (p = .095) and CDKL5 (p = .10) in that expression level was low only for

the High PS group. Fig 4A–4K show the means for the interaction effects.

Discussion

In this study, we examined whether traumatic and/or normative PS impacted the expression

of placental genes related to HPA-axis function and neurodevelopment. Further, we examined

whether the impact of Superstorm Sandy PS depended on the level of normative PS. Norma-

tive PS was defined as depression, anxiety, pregnancy-related stress, and negative life events.

Superstorm Sandy PS was defined as prenatal exposure to Superstorm Sandy.

Our findings presented a complex narrative for how normative and Superstorm Sandy PS

might impact expression patterns of some, but not all, placental genes. Our result runs counter

to other studies that found an increase in expression in response to PS [36]. First, in terms of

main effects, Superstorm Sandy PS generally downregulated placental gene expression

Table 2. Demographic characteristics of participants by sandy prenatal stress groups.

No Sandy Sandy

PS PS p value

(n = 208) (n = 95)

Infant sex 0.542

Males N (%) 106 (51%) 52 (55%)

Females N (%) 102 (49%) 43 (45%)

Gestational age (wks) Mean (SD) 39.05 (2.23) 39.22 (1.69) 0.5

Birthweight (g) Mean (SD) 3202.44 (620.78) 3408.69 (507.09) 0.003

Maternal race 0.015

White N (%) 15 (7%) 12 (13%)

Black N (%) 58 (28%) 16 (17%)

Hispanic/Latino N (%) 111 (53%) 48 (51%)

Asian N (%) 10 (5%) 13 (14%)

Others N (%) 13 (6%) 5 (5%)

Missing 1 (~0%) 1 (1%)

Maternal education < .001

Primary school N (%) 5 (2%) 1 (1%)

Some high school N (%) 47 (23%) 6 (6%)

High school graduate N (%) 48 (23%) 20 (21%)

Some college N (%) 66 (32%) 25 (26%)

Associate degree N (%) 16 (8%) 14 (15%)

Bachelor’s degree N (%) 14 (7%) 16 (17%)

Graduate degree N (%) 12 (6%) 13 (14%)

Marital status < .001

Married N (%) 50 (24%) 51 (54%)

Common law N (%) 14 (7%) 7 (7%)

Single N (%) 140 (67%) 34 (36%)

Widowed N (%) 2 (1%) 0 (0%)

Divorced/separated N (%) 1 (~0%) 2 (2%)

Missing N (%) 1 (~0%) 1 (1%)

Normative Stress Mean (SD) 1.8 (0.74) 1.79 (0.70) 0.882

https://doi.org/10.1371/journal.pone.0226605.t002

Prenatal stress and placental genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0226605 January 29, 2020 7 / 21

https://doi.org/10.1371/journal.pone.0226605.t002
https://doi.org/10.1371/journal.pone.0226605


(CDKL5, CFL1, DYRK1A, HSD11B2, MAOA, MAOB, NCOR1, and ZNF507). Their downregu-

lation suggests one pathway through which expression of other genes might be altered by stress

from extreme events such as disasters.

The most interesting of these impacted genes is HSD11B2, which is centrally involved in

prenatal stress because it buffers fetal exposure to cortisol. MAOA metabolizes stress-related

neurotransmitters such as serotonin and norepinephrine [24]. MAOB regulates the stress-

related neurotransmitter, dopamine, but is minimally present in the placenta [77]. CFL1 and

DYRK1A are involved in cell division and proliferation. DYRK1A has been linked to the mem-

ory and learning deficits associated with Down syndrome [78,79]. The remaining four genes

(CDKL5, MECP2, NCOR1, and ZNF507) are transcription regulators. CDKL5 and MECP2
have been associated with Rett’s Disorder [80–82]. ZNF507 has been implicated in schizophre-

nia [83].

In contrast to the large impact of Superstorm Sandy PS, normative PS alone only marginally

impacted expression of MECP2, ZNF507 and HSD11B2, all in the direction of increased

expression, which is opposite to the impact of Superstorm Sandy PS. Notably, the upregulation

Table 3. Mean scores on individual normative prenatal stress (ps) measures among total sample and ps levels

identified through latent profile analysis.

Total Low PS Moderate PS High PS

(N = 303) (n = 116) (n = 132) (n = 55)

M (SD) M (SD) M (SD) M (SD)
Prenatal depression (EPDS) 7.36 (5.40) 3.02 (3.13) 7.87 (3.43) 15.09 (3.22)

Pregnancy-related anxiety (PRAQ-R) 5.86 (2.29) 4.69 (1.65) 6.03 (1.95) 7.94 (2.65)

Perceived prenatal stress (PSS-14) 36.39 (7.38) 31.07 (6.35) 37.85 (5.32) 44.02 (4.93)

State anxiety (STAI-S) 37.94 (11.59) 27.13 (4.97) 40.94 (6.72) 53.65 (7.88)

Trait anxiety (STAI-T) 38.39 (10.76) 27.97 (4.74) 41.03 (4.98) 54.13 (5.83)

Number of negative stressful life event (LES) 1.57 (2.02) 0.91 (1.50) 1.39 (1.54) 3.38 (2.81)

https://doi.org/10.1371/journal.pone.0226605.t003

Table 4. Significant p-values (FDR-adjusted p-values) in the Prediction of Gene Expression using Normative Prenatal Stress (PS), Superstorm Sandy PS and their

Interaction: GLM Model.

Gene Normative PS Main Effect Normative PS Quadratic Superstorm Sandy PS Main Effect Normative x Superstorm Sandy

CDKL5 0.042 (0.053) 0.095 (0.10)

CFL1 0.028 (0.046) 0.026 (0.053)

CRHBP 0.014 (0.04) 0.007 (0.007)

DBH 0.076 (0.076)

DYRK1A 0.001 (0.002) 0.012 (.042)

FOXP1 0.071 (0.077) 0.011 (.042)

HSD11Β2 0.099 (0.099) < 0.001 (<0.001) 0.049 (0.057)

MAOA 0.001 (0.002) 0.085 (0.095)

MAOB < 0.001 (<0.001)

MECP2 0.046 (0.090) 0.051 (0.056) 0.09 (0.095)

NCOR1 0.039 (0.052) 0.083 (0.095)

NR3C1 0.077 (0.077) 0.036 (0.076)

NR3C2 0.038 (0.076)

ZNF507 0.068 (0.092) < 0.001 (< .001)

Note: P-values are calculated based on GLM controlling for infant gender, maternal race and education, and delivery mode. Values in the parentheses are the FDR-

adjusted p-values

https://doi.org/10.1371/journal.pone.0226605.t004
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of HSD11B2 is opposite to the results of prior studies that showed PS downregulating

HSD11B2 expression [34,36,84]. It may be that our definition of Superstorm Sandy PS was too

general, in contrast to, for example, a very discrete event like an amniocentesis [85]. A natural

disaster, especially including an extended aftermath, might be better be defined as an intense

normative stressor. However, this explanation does not account for why the natural disaster

would impact gene expression in the opposite direction to normative PS as we defined it in

this study. Perhaps, the best conclusion is to be left wondering at the complex and dynamic

ways in which stress in all its forms appears to impact the placenta rather than drawing simple,

unidirectional and reductionistic conclusions.

Fig 1. Marginal Mean (SE) Gene Expression Level (represented on the Y axis) by Traumatic Prenatal Stress (yes = Storm Exposure, no = No Storm

Exposure). (A) CDKL5 gene expression by traumatic prenatal stress. (B) CFL1 gene expression by traumatic prenatal stress. (C) DBH gene expression by

traumatic prenatal stress. (D) DYRK1A gene expression by traumatic prenatal stress. (E) HSD11B2 gene expression by traumatic prenatal stress. (F) MAOA
gene expression by traumatic prenatal stress. (G) MAOB gene expression by traumatic prenatal stress. (H) MECP2 gene expression by traumatic prenatal

stress. (I) NCOR1 gene expression by traumatic prenatal stress. (J) ZNF507 gene expression by traumatic prenatal stress.

https://doi.org/10.1371/journal.pone.0226605.g001
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Results from our interaction analysis suggest a framework of dynamic complexity. For five

of the eight genes downregulated by Superstorm Sandy PS alone (CFL1, DYRK1A, HSD11B2,

MAOA, and NCOR1), moderate normative PS appeared to nullify the effect of Superstorm

Sandy PS such that only the Low or High normative PS groups showed significant reductions

in gene expression associated with traumatic PS. CDKL5 and MECP2 showed a similar result

though only the High or the Low normative PS group, respectively, showed significantly dif-

ferent estimated marginal means in gene expression. FOXP1, NR3C1 and NR3C2 showed a

variant of the pattern in which the Moderate normative PS group showed a significant or mar-

ginally significant increase in gene expression. FOXP1 is a transcription repressor involved in

brain function and neurodevelopment [86]. Altered levels of FOXP1 expression have been

linked to abnormal neurodevelopment and autism [87–89]. NR3C1 and NR3C2 produce the

glucocorticoid and mineralocorticoid receptors, which bind to cortisol, and may increase sen-

sitivity to glucocorticoids [18] and regulate expression of HSD11B2 [21]. They are some of the

most widely studied genes and generally have been found to decrease in expression in response

to prenatal stress [90].

Finally, CRHBP, which regulates the stress response by binding to corticotropin-releasing

hormone [91–94], was the one gene that produced a divergent but related pattern to the others.

It was downregulated in response to normative PS but appeared to follow a curvilinear,

inverted-U shaped pattern, resulting in the moderate normative PS group having the highest

Fig 2. Marginal Mean (SE) Gene Expression Levels (represented on the Y axis) by Normative Prenatal Stress (PS): Linear Patterns (Low = low

PS; Mod = moderate PS; High = high PS). (A) HSD11B2 gene expression levels by normative prenatal stress: linear pattern. (B) MECP2 gene

expression levels by normative prenatal stress: linear pattern. (C) ZNF507 gene expression levels by normative prenatal stress: linear pattern.

https://doi.org/10.1371/journal.pone.0226605.g002

Fig 3. Marginal Mean (SE) Gene Expression Levels (represented on the Y axis) by Normative Prenatal Stress: Inverted-U Shaped Patterns

(Low = low PS; Mod = moderate PS; High = high PS). (A) CRHBP gene expression levels by normative prenatal stress: Inverted-U shaped pattern.

(B) FOXP1 gene expression levels by normative prenatal stress: Inverted-U shaped pattern. (C) NR3C1 gene expression levels by normative prenatal

stress: Inverted-U shaped pattern.

https://doi.org/10.1371/journal.pone.0226605.g003

Prenatal stress and placental genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0226605 January 29, 2020 10 / 21

https://doi.org/10.1371/journal.pone.0226605.g002
https://doi.org/10.1371/journal.pone.0226605.g003
https://doi.org/10.1371/journal.pone.0226605


Fig 4. Marginal Mean (SE) Gene Expression Levels (represented on the Y axis) by Normative Prenatal Stress X Superstorm Sandy Prenatal Stress

(Storm Exposure) (Solid Line = No Storm Exposure; Dotted Line = Storm Exposure) (Low = low PS; Mod = moderate PS; High = high PS). (A)

CDKL5 by normative prenatal stress X Superstorm Sandy prenatal stress. (B) CFL1 by normative prenatal stress X Superstorm sandy prenatal stress. (C)

DYRK1A by normative prenatal stress X Superstorm Sandy prenatal stress. (D) FOXP1 by normative prenatal stress X Superstorm Sandy prenatal stress.

(E) HSD11B2 by normative prenatal stress X Superstorm Sandy prenatal stress. (F) MAOA by normative prenatal stress X Superstorm Sandy prenatal

stress. (G) MECP2 by normative prenatal stress X Superstorm Sandy prenatal stress. (H) NCOR1 by normative prenatal stress X Superstorm Sandy
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average gene expression levels. However, neither main effect of Superstorm Sandy PS nor the

interaction with normative PS altered its expression.

The interaction analyses suggest that moderate, normative PS may protected he placenta

from Superstorm Sandy PS; whereas, low normative PS left the placenta unprepared, and high

normative PS may have overwhelmed the placenta’s tolerance for stress. The possibility that

moderate normative PS might buffer the placenta from Superstorm Sandy PS was anticipated

by various theories encapsulated under the Developmental Origins of Health and Disease

hypothesis (DOHaD) [95], such as Allostatic Load [96], Predictive Adaptive Response [97]

and the three-hit concept of vulnerability and resilience [98], which generally conceptualize

epigenetic responses as anticipatory adaptations to an environment such as the one the mother

experiences during pregnancy. In these models, PS signals an environment that is either

impoverished or dangerous and thus programs offspring, especially male offspring, to grow to

become smaller (to need less energy), slower in metabolism (to better conserve it), faster to

mature and more vigilant, impulsive, aggressive and unemotional (to better fend off competi-

tors and predators) [99]. Additionally, these DOHaD theories can be viewed as consonant

with a stress inoculation model [100] in which moderate stress exposure protects the organism

from future stress—a model consistent with our results.

Limitations and future research

First, our hypotheses about how changes in gene expression operate in the placenta must be

recognized mostly as speculation since the level of variance explained by normative and/or

traumatic PS on placental gene expression was minimal (Fig 1). Several genes, especially

HSD11B2 and SCL6A4, have been extensively studied as they regulate maternal neurotrans-

mitters, thus consequently affecting the developing fetus more directly, whereas a gene such as

MAOA is less studied, requiring the present findings to be replicated in different studies.

While our findings wait for replication and validation in other studies, we are planning to eval-

uate subsequent neurobehavioral outcomes in the offspring in relation to the current, complex

findings of PS and placenta genes. It is our belief that this will further aid understanding the

DOHaD hypotheses that involve genes censoring the prenatal environment and adaptation to

the predicted postnatal environment for the best survival trajectory. These hypotheses need to

be substantiated through more research including longitudinal studies on child development

looking at epigenetic mechanisms. Our hypotheses are based on the known functions of the

various genes in question and the function of the proteins they program. Further, although

our total sample was relatively large, especially for an opportunistic study that capitalized on a

natural disaster, the size of the high normative PS group was much smaller than the others

(n = 55 for the High PS as compared to 132 for Moderate PS and 116 for Low). These sample

size differences are unavoidable when looking for extremes of distress in a normative sample.

Future studies with different community and clinical samples would help substantiate our

findings. Another limitation of a natural disaster study is limited control of the timing of

storm exposure– 66 of the 95 storm-exposed pregnancies came during the first trimester. Our

current understanding, through previous studies such as the Dutch Cold Winter Study,

broadly suggests that stress exposure across different trimesters give rise to different program-

ming outcomes [101–103]. It is generally believed that exposure to stress during early preg-

nancy is often associated with greater risk for disrupted developmental programming and

increased risk for neurodevelopmental disorders in offspring. Also, much of our original

prenatal stress. (I) NR3C1 by normative prenatal stress X Superstorm Sandy prenatal stress. (J) NR3C2 by normative prenatal stress X Superstorm Sandy

prenatal stress.

https://doi.org/10.1371/journal.pone.0226605.g004
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baseline data were collected during the second trimester, so storm exposure may have impacted

ratings of normative PS before we measured normative PS. However, we found a very small cor-

relation between storm exposure and normative PS classification. Further, although normative

PS was measured primarily in the 2nd trimester, current research suggests that normative PS rat-

ings are highly consistent throughout pregnancy [32,104,105]. We are aware that we are exam-

ining placental gene expression at term, and therefore we are examining how PS throughout

pregnancy interacts with a traumatic Superstorm Sandy stressor that may have occurred early

in pregnancy, but whose residual impact may have continued for much longer. Recent research

on the 2011 Queensland Flood revealed placental glucocorticoid and glucose systems gene

expression were associated with natural disaster-related PS (i.e., objective hardship and subjec-

tive distress) [106]. One limitation of our study is that we only assessed exposure to the storm

and not the more nuanced physical or psychological impact of the storm such as objective hard-

ship, measured by Storm32 and developed by King and Laplante [107, 108] or subjective dis-

tress, measured by the Impact of Event Scale-Revised [109]. In order to explore whether the

degree of traumatic exposure to Superstorm Sandy (either subjectively or objectively) was asso-

ciated with gene expression levels in a dose response fashion, we conducted a post-hoc analysis

using the placentas of the exposed (N = 95). In this post-hoc analysis, we found no notable asso-

ciations between either objective hardship or subjective distress, with the exception of SRD5A3.

SRD5A3 was upregulated as the degree of objective hardship (p = .03) and subjective distress (p

= .04) increased. As our sample size for this subsample analysis was relatively low, future studies

with a larger sample size should include a more elaborate measure of the subjective or objective

impact of the storm, such as Project Ice Storm [39] managed, and the duration of impact. In

addition, we did not investigated the role of pregnancy diseases such as endometriosis, pre-

eclampsia, and intrauterine growth restriction, which may affect both reported stress and pla-

centa epigenetics [16,110–113]. The restriction of our analyses on placentas from healthy preg-

nancies may have constrained variances in the stress impacts and placental gene expression.

However, the addition of HPA axis functioning measures (e.g., maternal cortisol) would

strengthen the present findings with the placental glucocorticoid genes.

The most important question is whether and how specific alterations in placental gene

expression shape the lifelong development and functioning of the offspring and perhaps future

generations. The adaption of placental gene expression in response to PS may be seen as medi-

ating between PS and an increased propensity for future neurobehavioral dysregulation and

disorders. This can be investigated by combing neurodevelopmental and biological assess-

ments (e.g., brain imaging and cortisol measures) in the offspring. The pathway is certainly

complex, nonlinear, and dynamic, and further shaped by interacting endogenous, exogenous,

and epigenetic factors. In this study we focused on mRNA expression and did not measure epi-

genetic mechanisms that regulate gene expression (e.g., miRNAs, DNA methylation)

[1,17,114]. Though the research has focused on the impact of placental genes on fetal program-

ming, we recognize that the placenta plays a central role in priming maternal behavior as well

[115] and acknowledge the existing research on the epigenetics of early child-rearing

[1,4,88,98]. So far we believe that stress during early pregnancy may begin to shape the mother,

the fetus and the placenta itself both phenotypically and epigenetically, which then primes but

does not predestine the adaptation of the maternal-offspring complex to future environments

and lead to further alterations in phenotypic and epigenetic function.

Conclusion

Though DOHaD researchers have applied theories of predictive adaptability and stress inocu-

lation to explain the impact of PS on fetal programming (96–98), to our knowledge this is the
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first study to document evidence in support of these theories in relation to the life of the pla-

centa itself. Our results suggest that the life of the placenta may represent a fractal of the life of

the organism in its attempt to manage and prepare for the vicissitudes of life. With further lon-

gitudinal follow-up, it may become possible to use genetic analysis of the placenta to anticipate

the risks for stress-related developmental psychopathology and identify children and families

who might benefit from psychosocial prevention programs.
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