1162 - The Journal of Neuroscience, January 29, 2020 - 40(5):1162—-1173

Neurobiology of Disease

Short-Chain Fatty Acids Improve Poststroke Recovery via
Immunological Mechanisms
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Recovery after stroke is a multicellular process encompassing neurons, resident immune cells, and brain-invading cells. Stroke alters the
gut microbiome, which in turn has considerable impact on stroke outcome. However, the mechanisms underlying gut- brain interaction
and implications for long-term recovery are largely elusive. Here, we tested the hypothesis that short-chain fatty acids (SCFAs), key
bioactive microbial metabolites, are the missing link along the gut- brain axis and might be able to modulate recovery after experimental
stroke. SCFA supplementation in the drinking water of male mice significantly improved recovery of affected limb motor function. Using
in vivo wide-field calcium imaging, we observed that SCFAs induced altered contralesional cortex connectivity. This was associated with
SCFA-dependent changes in spine and synapse densities. RNA sequencing of the forebrain cortex indicated a potential involvement of
microglial cells in contributing to the structural and functional remodeling. Further analyses confirmed a substantial impact of SCFAs on
microglial activation, which depended on the recruitment of T cells to the infarcted brain. Our findings identified that microbiota-derived
SCFAs modulate poststroke recovery via effects on systemic and brain resident immune cells.
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Previous studies have shown a bidirectional communication along the gut- brain axis after stroke. Stroke alters the gut microbiota
composition, and in turn, microbiota dysbiosis has a substantial impact on stroke outcome by modulating the immune response.
However, until now, the mediators derived from the gut microbiome affecting the gut-immune-brain axis and the molecular
mechanisms involved in this process were unknown. Here, we demonstrate that short-chain fatty acids, fermentation products of
the gut microbiome, are potent and proregenerative modulators of poststroke neuronal plasticity at various structural levels. We
identified that this effect was mediated via circulating lymphocytes on microglial activation. These results identify short-chain
fatty acids as a missing link along the gut- brain axis and as a potential therapeutic to improve recovery after stroke. j

ignificance Statement

flammatory phase within the brain (Dirnagl et al., 1999; Tadecola
and Anrather, 2011). Moreover, stroke can be regarded as a sys-
temic disease affecting also remote organ function, including the
lung (Austin et al., 2019), heart (Bieber et al., 2017), and immune
system and intestinal function (Singh et al., 2016). Recently, it has
been shown that a dysbiotic gut microbiota is correlated with a

Introduction
Stroke induces a multiphasic pathophysiological cascade, which
consists of an initial excitotoxicity followed by a longer neuroin-
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worsened outcome in patients (Xia et al., 2019), and that these
changes are evident up until 3 weeks after hospitalization (Swidsin-
skietal., 2012). We have previously demonstrated an important role
of the gut microbiome on stroke outcome in proof-of-principle
experiments using germ-free and recolonized mice (Singh et al.,
2018). Further experimental studies in rodent stroke models have
identified a key role for the immune system, particularly brain-
invading lymphocytes originating from the intestinal immune
compartment, in mediating along the gut—brain axis (Benakis et
al., 2016; Singh et al., 2016).

The gut microbiome produces a large number of bioactive
metabolites which may affect brain function via modulating the
immune system or afferent neuronal pathways (Kau et al., 2011;
Cryan and Dinan, 2012). In particular, the metabolite group of
short-chain fatty acids (SCFAs) acetate, butyrate, and propionate
have been shown to readily cross the blood—brain barrier (Frost
et al., 2014; Morrison and Preston, 2016) and affect brain func-
tion in development, health, and disease. For example, SCFA
treatment improved the disease course in experimental autoim-
mune encephalitis by promoting anti-inflammatory mechanisms
and reducing axonal damage (Haghikia et al., 2015). In mouse
models of chronic stress, mice that received SCFA treatment
exhibited significant improvements in antidepressant and anxi-
olytic behaviors, which was accompanied by reduced plasma cor-
ticosterone levels and differential gene regulation (van de Wouw
et al., 2018).

More recently, the role of SCFAs in modulating the immune
system has been studied in great detail. Through these investiga-
tions, they have been shown to play a role in the polarization of
T cells in the intestinal immune compartment and inducing anti-
inflammatory T-cell subset (Smith et al., 2013; Tan et al., 2016).
Other studies have shown a critical role for microbiota-derived
SCFAs in the maturation of microglial cells, the brain’s resident
immune cells (Erny et al., 2015). However, SCFAs can have far-
reaching pleiotropic effects also beyond the immune system, in-
cluding a direct effect on neuronal function through their potent
function as histone deacetylase inhibitors (Bourassa et al., 2016).
Accordingly, the importance of SCFA function has been impli-
cated in neurodegenerative diseases and even in postischemic
neurogenesis (Chuang et al., 2009; Kim et al., 2009).

Despite the key contribution of the gut microbiome to stroke
outcome and the identification of SCFA as one of the micro-
biome’s primary bioactive mediators, the role of SCFAs and their
potential therapeutic use for poststroke recovery in the chronic
phase after brain ischemia have not yet been investigated. In this
study, we comprehensively investigated the effect of SCFA ad-
ministration on poststroke recovery using advanced behavior
analyses, in vivo wide-field calcium imaging, transcriptomic studies,
and histological analyses to study and link SCFA-mediated recovery
mechanisms from the molecular level up to behavior.

Materials and Methods

Animals and treatment. All experimental protocols were approved by the
responsible governmental committees (Regierung von Oberbayern,
Munich, Germany and Institutional Animal Care and Use Committee,
University of Texas Southwestern, Dallas). Specific pathogen-free
C57BL/6] female and male mice were purchased from Charles River
Laboratories or The Jackson Laboratory. On the day of arrival, mice were
6—8 weeks of age. Male mice were used for all experiments, except for
analysis of dendritic spine densities (see Fig. 2A—F ), in which female mice
were used. Mice were given SCFAs (25.9 mM sodium propionate, 40 mm
sodium butyrate, and 67.5 mm sodium acetate) or salt-matched control
(133.4 mm sodium chloride) (9265.1, ROTH) in drinking water ad libi-
tum for 4 weeks as previously reported (Smith et al., 2013; Erny et al.,
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2015). Mice were continuously given supplemented water until the end
of the experiment. For antibiotic treatment, mice received metronidazol
0.5 mg/ml (Millipore Sigma, #46461), neomycin 0.5 mg/ml (Millipore
Sigma, # N1142), ampicillin 0.5 mg/ml (Millipore Sigma, #31591), and
vancomycin 0.5 mg/ml (Millipore Sigma, #V8138) and with 5% sucrose
in drinking water. All drinking water solutions were prepared and
changed twice a week and blinded for experimenters.

Experimental stroke model. For the photothrombotic stroke model
(PT), mice were anesthetized with isoflurane, delivered in a mixture of
30% O, and 70% N,O. Mice were placed into a stereotactic frame; and
throughout the surgical procedure, body temperature was maintained at
37°C with a mouse warming pad. Dexpanthenol eye ointment was ap-
plied to both eyes. A skin incision was used to expose the skull. Bregma
was located and using the laser the lesion location was marked in the left
hemisphere (1.5 mm lateral and 1.0 mm rostral to bregma). Mice were
then injected intraperitoneally with Rosa Bengal (Millipore Sigma,
#198250). Shielding was placed on the skull, allowing a 2-mm-diameter
circular exposure over the lesion area. After 10 min, the laser (Cobolt Jive,
561 nm, 25 mV output power with fiber collimation at f = 7.66 mm) was
applied to the lesion area for 17 min.

For the distal, permanent occlusion of the middle cerebral artery
(dMCAo), the distal middle cerebral artery (MCA) was permanently
electrocoagulated as previously described (Llovera et al., 2014). In brief,
under isoflurane anesthesia, mice were placed in the lateral position. A
skin incision was made to expose the skull. Using a drill, a burr hole into
the skull revealed the bifurcated MCA. Using electric forceps, the artery
was occluded and checked for no blood flow. Mice were then sutured
across the skull incision.

For the filament, transient occlusion of the MCA (fMCAo), the inter-
nal carotid artery was transiently occluded for 60 min as previously
described (Singh et al., 2016). In brief, mice were anesthetized with iso-
flurane, and an incision was made to expose the temporal bone. A laser
doppler probe was affixed to the MCA territory to determine blood flow.
Mice were included when a >80% cerebral blood flow drop was induced.
At the neck, an incision to the skin exposed the common carotid and
external carotid artery, which were ligated. The filament was inserted
into the internal carotid artery for 60 min, and the MCA was occluded.
Mice were sutured across the neckline. In total, 13 mice per group were
used. In the control group, 8 mice died. In the SCFA-supplemented
group, 3 mice died and 3 mice had no quantifiable infarct.

After all surgeries, mice were recovered in a nursing box at 37°C for
15 min and then returned to home cages.

Wide-field calcium imaging. In vivo wide-field calcium imaging was
performed as previously published (Cramer et al., 2019). Briefly, we used
ThylGCaMPé6s heterozygous reporter mice. Mice were scalped, and
transparent dental cement was placed upon the intact skull at least 3 d
before the start of the experiment. Resting-state in vivo imaging was
performed under mild anesthesia (0.5 mg/kg body weight of medetomi-
din with 0.75% isoflurane inhalation). Mice were placed in a stereotactic
frame below a customized macroscopic imaging setup, and the mouse
cortex was illuminated with 450 nm blue LED light. We recorded for 4
min in resting state with a CCD camera at 25 Hz frame rate. Functional
connectivity was computed for seed-based analysis with a seed pixel time
series centered in the right caudal forelimb cortex, contralesional to the
infarcted cortex. Pearson’s correlation between the time course of this
seed, and any other signal time course within the masked area was
computed; then Fisher’s z-transformed and topographically displayed.
Analogous functional connectivity between seed pairs was calculated as
correlation between signal time courses of two seeds within the sensori-
motor cortex. Seeds were defined as previously described (Cramer et al.,
2019). Mean correlation per group was calculated for each time point. We
used two-sample ¢ test and Bonferroni correction for statistical testing.

Automated skilled reaching. Behavioral training and assessments were
measured using an automated reach task previously described (Becker et
al., 2016). Mice are trained to pull an isometric lever using the contral-
esional forelimb, with each successful application of force criteria re-
warded by a drop of peanut oil. For the first week, mice were trained in
groups of 23 littermates for 6 h. During this time, spontaneous peanut oil
deliveries occurred at randomly spaced time intervals ranging from 30 s
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to 5 min. Additionally, the isometric handle was positioned ~0.5 cm
from the inner edge of the chamber during these 6 h sessions. The force
criterion necessary to trigger a 4 ul peanut oil droplet was set just above
electrical noise so that any slight touch could trigger peanut oil disper-
sion. For the next 3 weeks, mice were trained individually for 2 h sessions.
The handle was positioned further back at 1 cm from the inner edge of the
chamber. The criterion for success during training sessions was changed
based on a customized, adaptive MATLAB program. The adaptive pro-
gram initially set the criterion for success at a specified value of atleast 1 g.
After the first 15 pulls, the criterion was adjusted to the median force
value. The adjustments continued for the duration of the session unless
the median reached the maximum force requirement of 20 g. Finally, we
fixed the criterion at 20 g to measure baseline motor function for three
consecutive sessions. After stroke, assessments of reaching behaviors
were measured weekly for 6 weeks.

SCFA quantification. Mice were saline perfused, and organs extracted.
For feces, colon content was collected; and for plasma, cardiac puncture
blood was centrifuged at 4°C at 3000 rpm and the plasma removed. All
samples were frozen immediately on dry ice. SCFAs (acetic, propionic,
and butyric acid) were determined according to published protocols,
using gas chromatography-mass spectrometry (Hoving et al., 2018).
Briefly, for plasma, 10 ul was used and feces were homogenized with
LC-MS grade water in a bead beater. Samples were spiked with deu-
terated internal standards for each SCFA. Subsequently, SCFAs were
derivatized using pentafluorobenzyl bromide and analyzed using gas
chromatography-electron capture negative ionization in single ion mon-
itoring mode. Quantification was performed against external calibration
lines.

Infarct volumetry. After saline perfusion, the brain was removed from
the skull and placed immediately on dry ice. Microscopy slides were
mounted with 20-um-thick coronal cryosections cut at 400 wm intervals
for dMCAo and fMCAo lesions, and at 120 wm intervals for PT lesions.
Sections were then stained with cresyl violet solution. For the infarct
volume, all slides were scanned using 600 dpi. The area of infarct tissue
was measured using the Image]J software (National Institutes of Health)
and integrated for calculation of infarct volume.

Spine density analysis. Following saline perfusion, mice were perfused
with aldehyde fixative solution (Bioenno, #003780). Brains were then
carefully removed and placed in fixative solution at 4°C overnight. Brains
were then sliced at 100-um-thick vibratome sections and immersed in
impregnation solution (Bioenno, sliceGolgi Kit, #003760) for 5 d. Fur-
ther staining was performed as described by the manufacturer (Bio-
enno). Images of dendrites were obtained at the same anatomical level for
all brains, 400 wm from the lesion perimeter in cortical layer 2/3. In total,
5 dendrites from 5 neurons each in both hemispheres were imaged
(100X brightfield). Dendrites from the images were then reconstructed
using Imaris X64 (version 8.4.0, Bitplane).

Immunohistochemistry. Mice were perfused with saline and then 4%
PFA. Brains were removed and postfixed in 4% PFA at 4°C overnight.
Brains were then dehydrated in 30% sucrose in 1X PBS. Microglia stain-
ing was performed on 100-um-thick sections using rabbit anti-ibal (1:
200, Wako, #019-19741), and then goat anti-rabbit 594 (1:200, Thermo
Fisher Scientific, #A-11012). Automated analysis of microglial cell
counts and morphology was performed using a MATLAB-automated
morphology protocol as previously described (Heindl et al., 2018). For
microglial costaining, we used anti-CD68 (1:300, Bio-Rad, #MCA1957GA),
anti-inducible nitric oxide synthases (iNOS) (1:300, Thermo Fisher Sci-
entific, #MA5-17139), and anti-Arginasel (1:300, Novus Biologicals,
#NB100-59740SS), and the corresponding secondary antibodies. Cover-
age analysis was performed using Image] software. Quantification was
done for overlapping activation markers with Iba-1 from the maximum
intensity projections generated from z stacks of the ipsilateral cortex. For
synaptic staining, sections were incubated with guinea pig anti-VGlutl
(1:1000, Millipore, #AB5905) and chicken anti-Homer1 (1:2000, Synap-
tic Systems, #160006) for 3 d at 4°C, and then counterstained with goat
anti-guinea pig 488 (1:500, Invitrogen, #A11073) and goat anti-chicken
647 (1:500, Invitrogen, #A21449) for 18 h at room temperature. For
synaptic puncta analysis, a z stack of 3 slices at 0.33 wm was used as
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previously described (Ippolito and Eroglu, 2010) using FIJI with the
SynapseCounter plugin (Schindelin et al., 2012).

Flow cytometric analysis. Following saline perfusion in deep anesthesia,
the entire spleen and both brain hemispheres were dissected. Spleens
were immediately placed on ice-cold 1X PBS, passed through a 40 um
cell strainer, and treated with red blood cell lysis buffer. Cell surface
markers were stained using the following antibodies: anti-CD3 FITC
(clone 17A2) and anti-CD45 eFluor450 (clone 30-F11). Stained cells
were analyzed on a BD FACSVerse flow cytometer (BD Biosciences) and
analysis performed by FlowJo software (version 10.0). For brain, hemi-
spheres were isolated and cells isolated by mechanical dissociation.
Mononuclear cells were enriched using discontinuous Percoll gradient
centrifugation by standard protocols and then with 30 wm cell strainer,
as described previously (Benakis et al., 2016). Cell staining for flow cy-
tometry was performed by first preincubation of cells with Fc receptor
blocker (1:100, Invitrogen, 14-91-61-73) for 10 min and then staining
with the following monoclonal antibodies: anti-CD3 FITC (clone 17A2),
anti-CD45 eFluor450 (clone 30-F11), and anti-CD11b Pe-Cy7 (clone
M1/70). Stained cells were analyzed on a BD FACSVerse flow cytometer
(BD Biosciences) and analysis performed by FlowJo software (version
10.0).

RNA sequencing and data analysis. Fourteen days after stroke, brains
were extracted from the skulls and placed into a stainless-steel brain
matrix. Brains were sliced coronally at 2 mm distance caudally and ros-
trally away from the lesion. The cortex was removed, frozen on dry ice,
and the mRNA isolated using the RNeasy Mini Kit (QIAGEN, #74109).
For library preparation, 100 ng of total RNA was fragmented and
processed using the Ovation Human FFPE RNA-Seq Library Systems
(Nugen) according to the instructions of the manufacturer.

Barcoded libraries were quantified using the Library Quantification
Kit-Illumina/Universal (KAPA Biosystems). Cluster generation was per-
formed with a concentration of 10 nM using a cBot (Illumina). Sequenc-
ing of 2X 100 bp paired-end reads was performed with a HiScanSQ
sequencing platform (Illumina) using version 3 chemistry at the se-
quencing core facility of the IZKF Leipzig (Faculty of Medicine, Univer-
sity Leipzig, Leipzig, Germany). Raw reads were mapped to the reference
genome mml0 using split-read mapping algorithm implemented in
segemehl (Hoffmann et al., 2009). Mapped reads were counted using
feature Counts (Liao et al., 2014) according to RefSeq annotation. Dif-
ferential expression was computed using DESeq2 algorithm (Love et al.,
2014). Raw data have been deposited at Gene Expression Omnibus da-
tabase (Accession number GSE131788).

RT-PCR. mRNA from brain tissue around the lesion was isolated as
described above and transcribed using the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, #4368814) with Rnasin Plus
RNase Inhibitor (Promega, #N2611). The following primers were used:
BDNF (forward: CGGCGCCCATGAAAGAAGTA; reverse: AGACCT
CTCGAACCTGCCCT), TrkB (forward: ACTTCGCCAGCAGTAG-
CAG; reverse: ACCTCAGGGCTGGGGAG), synaptophysin (forward:
AGTACCCATTCAGGCTGCAG; reverse: CCGAGGAGGAGTAGTCA
CCA), EphrinA5 (forward: CTGGTGCTCTGGATGTGTGT; reverse:
CCCTCTGGAATCTGGGGTTG), PPIA (forward: ACACGCCATAATG
GCACTGG; reverse: ATTTGCCATGGACAAGATGCC), Claudin-5
(forward: GTTAAGGCACGGGTAGCACT; reverse: TACTTCTGTG
ACACCGGCAC), ICAM-1 (forward: CAATTTCTCATGCCGCACAG;
reverse: AGCTGGAAGATCGAAAGTCCG), and VCAM-1 (forward:
TGAACCCAAACAGAGGCAGAG; reverse: GGTATCCCATCACTTG
AGCAGG). The QuantiNova SYBR Green PCR Kit (QIAGEN, #208052)
was used with a LightCycler 480 IT (Roche Diagnostics). All gene expres-
sion was expressed relative to the PPIA housekeeping gene and calculated
using the relative standard curve method.

Experimental design and statistical analysis. All statistical analyses were
performed using Prism software (GraphPad, version 6.0). Sample size
was chosen based on comparable experiments from previous experi-
ments (Singh etal., 2016). For experimental design details on sample size,
see Results and figure legends. A p value of <0.05 was regarded as statis-
tically significant.
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Figure 1. SCFA supplementation improves recovery after stroke. A, Schematic diagram illustrating the timeline of SCFA supplementation and analysis time points. BL, Baseline; D, day (after
stroke). See Figure 1-1 (available at https://doi.org/10.1523/JNEUR0SCI.1359-19.2019.f1-1). B, Representative images obtained during the lever pull test of trained mouse successfully reaching for
the lever (left, above) and obtaining the peanut oil reward (left, below). Right, Normalized success rate for lever pulls by the affected (contralesional) forelimb. Relative values are shown per time

point normalized to the mean of the control group. N = 8 per group. Horizontal line indicates mean.

Two-way repeated measure ANOVA with Holm—Sidak’s post hoc test. €, Topographic depiction

of seed-based functional connectivity of both hemispheres at indicated time points of SCFAs and control-treated mice. Seed is placed in the homotypic contralesional region to the ipsilesional lesion

area (i.e., the contralesional motor cortex). Color code represents Fisher’s z correlation between the

seed and every other pixel in the cortex. D, Enlarged images of the contralesional motor cortex

(region homotypic to the infarct lesion). Area highlighted with dotted line represents the highly connected functional motor cortex area (pixels with Fisher's z values > 2.25). E, Quantification of
highly correlated (Fisher's z > 2.25) area of the contralesional motor cortex in control (open bars) and SCFA-treated mice (gray bars). N = 15 per group. Multiple ¢ tests per time point with

Holm—Sidak’s correction for multiple testing.

Results

SCFA supplementation improves recovery and cortical
reorganization after stroke

We previously showed that stroke induces dysbiosis of the gut
microbiome with the hallmark of reduced bacterial diversity
(Singh et al., 2016). To test the impact of poststroke gut dysbiosis
on the metabolic function of the microbiome, we performed tar-
geted analysis of plasma samples for SCFA concentrations after
fMCAo stroke and sham surgery in mice by mass spectrometry.
This analysis revealed significantly reduced plasma SCFA con-
centrations 3 d after IMCAo stroke surgery compared with sham-
operated mice (Fig. 1-1A, available at https://doi.org/10.1523/
JNEUROSCI.1359-19.2019.f1-1). Therefore, we hypothesized
that supplementation of SCFA would increase circulating SCFA
concentrations and potentially induce therapeutic effects within
the chronic poststroke recovery period. To test this hypothesis,
we supplemented mice for 4 weeks with drinking water contain-
ing either a mix of acetate, butyrate, and propionate (for details,
see Materials and Methods) or control drinking water with matched
sodium chloride concentration. SCFA supplementation did not
affect body weight (Fig. 1-1B, available at https://doi.org/
10.1523/JNEUROSCI.1359-19.2019.f1-1) or overt behavior of
the animals. We performed PT stroke surgery after 4 weeks of
SCFA supplementation and assessed poststroke motor deficits
of the affected forelimb with an automated lever pull test while
animals received further SCFA supplementation during the
complete survival period (Fig. 1 A, B). Mice receiving SCFA sup-
plementation performed significantly better compared with
control-treated animals (Fig. 1B). A two-way ANOVA for re-

peated measurements revealed an overall p value of 0.01 for the
treatment effect, and a significant difference (after correction for
multiple comparisons) between treatment groups at 56 d after
stroke (Fig. 1B). To analyze cortical network plasticity as the
morphological surrogate of behavioral recovery, we used Thyl-
GCaMP6s mice and performed resting-state in vivo calcium to
record cortical wide-field fluorescence from a neuronal based
calcium reporter. Using the homotypical contralesional region of
the cortex, we performed seed-based correlation analysis, indi-
cating the connectivity strength (z score) of this area to every
other pixel in the cortex (Fig. 1C). Previous research using fMRI
in stroke patients has indicated that the homotypical contral-
esional region receives less neuronal inhibition from the stroked
hemisphere, leading to disinhibition of the contralesional hemi-
sphere (Rehme and Grefkes, 2013). To analyze the size of highly
connected homotypical contralesional regions (i.e., the contral-
esional motor cortex), we measured the area of pixels with a z
score > 2.25 (Fig. 1D). We observed a significantly reduced area
of the contralesional motor cortex in SCFA- compared with
control-treated mice at D21 and D42 (Fig. 1E). In contrast, SCFA
treatment did not significantly affect the primary infarct area by
in vivo imaging (Fig. 1-1C, available at https://doi.org/10.1523/
JNEUROSCI.1359-19.2019.f1-1) and histological analyses with in-
farct volumetry in three different focal stroke models after stroke
(Fig. 2-1A-E, available at https://doi.org/10.1523/JNEUROSCL
1359-19.2019.f2-1). These results indicated that, while SCFA
supplementation did not affect the initial lesion development,
SCFAs improved behavioral stroke outcome and modulated cor-
tical network plasticity at later stages after stroke.
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Figure 2.  Poststroke neuronal plasticity is altered by SCFA treatment. A, Representative images of Golgi-Cox stained brain sections 14 d after PT stroke (Figure 2-1A-, available at https://
doi.org/10.1523/INEUR0SCI.1359-19.2019.f2-1). Dotted area in overview image represents perilesional cortical area used for spine analysis. Magnifications show representative pyramidal neuron
and high-magnification image as used for spine analysis. Top right, Cortical pyramidal neuron. Bottom right, Example of spines identified on dendrite. Scale bar, 10 rm. B, 3D reconstruction for a
dendrite section with spines as used for further quantification of spine densities and lengths. Scale bar, 2 um. €, Quantification of pyramidal spine density per 10 wm of dendrite in the cortex of
control and SCFA-treated naive mice (no stroke induction). Each color represents a different mouse, and each dot indicates a different dendrite. Five neurons per hemisphere analyzed in total for 4
or 5 mice per group (Mann—Whitney Utest). D, Quantification of spine density per 10 sum of dendrite in the perilesional and contralesional cortex at 14 d after stroke (Kruskal—-Wallis test with Dunn’s
correction for multiple comparisons). E, Histogram of the relative frequency (fraction) of spines found at different lengths 14 d after PT lesion in the perilesional cortex. Bin width is 0.2 pum (Figure
2-1F, G, available at https://doi.org/10.1523/JNEUR0SCI.1359-19.2019.f2-1). F, Quantification of short (0.2 rem) and long (1.4 pem) spines in control (open bars) and SCFA (gray bars) treated mice.
N'= 4 or5 per group. Mann—Whitney U test. G, Representative particle images of presynaptic terminals by VGlut1 (green), postsynaptic densities by Homer1 (red), and nuclei with DAPI (blue) of
the cortex from control and SCFA-treated mice, as used for quantification of colocalized presynaptic and postsynaptic particles (puncta). Scale bar, 20 wm. Arrowheads indicate colocalized (yellow)
puncta. H, Synapse counts were quantified as colocalized VGlut1 and Homer1 puncta (Figure 2-1H, available at https://doi.org/10.1523/JNEUR0SCI.1359-19.2019.f2-1). Quantification for colocal-
ization (left) and for single markers (middle and right) revealed significantly changed synapse counts as a result of the reduced number of VGlut1 * terminals in the perilesional cortex. contra,
Contralesional hemisphere; ipsi, ipsilesional hemisphere. N = 3 or 4 mice (3 sections per mouse). Statistical analysis was performed with Kruskal-Wallis test with Dunn’s multiple comparison
correction. /, Relative expression (RE) of mRNA for key molecules involved in synaptic plasticity (left), synaptophysin (left middle), TrkB (right middle), and EphA5 (right) BDNF from the perilesional
cortex in control (open bars) and SCFA (gray bars) treated mice. N = 7 per group. Mann—Whitney U test.

SCFA supplementation modulates poststroke

synaptic plasticity

After an ischemic brain injury, the entire cortex undergoes rapid
functional and morphological reorganization, including neuro-
nal dendritic plasticity, which allows adult neurons to form new
connections. This process is correlated with improved functional
connectivity after a cortical lesion (Jones and Schallert, 1994;
Biernaskie et al., 2004). To analyze underlying morphological
plasticity of the observed functional recovery in behavior and

cortical connectivity, we performed Golgi-Cox staining of brain
sections to investigate the effects of SCFA supplementation on
dendritic spine density of pyramidal cells (Fig. 2A, B). We ini-
tially performed this analysis in the brains of naive animals that
received either SCFA or control treatment, which revealed a
higher pyramidal cortical spine density in the SCFA-treated mice
(Fig. 2C). Next, we quantified brains at 14 d after PT stroke to
capture a time period before the behavioral and cortical connec-
tivity improvements were evident. Correspondingly, we observed
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SCFA supplementation affects microglial gene signature after stroke. 4, Schematic diagram illustrating antibiotic (ABX) treatment regimen and followed by supplementation with

SCFAs or control saline in drinking water (Figure 3-1, available at https://doi.org/10.1523/JNEUR0SCI.1359-19.2019.f3-1). Delineated area on histological image represents perilesional cortex
isolated for mRNA sequencing. B, Volcano plot of requlated transcripts (SCFAs/control) in the perilesional cortex 14 d after PT stroke; n = 3 per group. Black represents gene transcripts. Orange
represents gene transcripts with fold change (log2) > 1and —log10-adjusted p < 0.1. C, Heatmap of fold change (log2) for significantly requlated genes with an adjusted p << 0.1. Each column
represents 1individual mouse. D, FPKN abundance and association per cerebral cell type of all significantly requlated genes (C) were performed as detailed in Materials and Methods, revealing the
strongest association of the significantly requlated genes with microglial cells. £, Ingenuity pathway analysis showing the top networks regulated by SCFA supplementation compared with control

treatment.

that, after stroke, SCFA supplementation was associated with a
significantly higher spine density in the homotypic contralesional
region; however, these differences were not observed in the ip-
silesional hemisphere (Fig. 2D) and were independent of infarct
volume (Fig. 2-1, available at https://doi.org/10.1523/J]NEUROSCL
1359-19.2019.£2-1). Moreover, the analysis of spine length distri-
bution revealed that SCFA treatment induced a shift toward
shorter spine lengths, specifically in the ipsilateral, but not
contralesional, hemisphere (Fig. 2 E, F; Fig. 2-1F, G, available
at https://doi.org/10.1523/JNEUROSCI.1359-19.2019.f2-1). To
further investigate synaptic plasticity under control of SCFA sup-
plementation, we assessed synaptic density using costaining for
VGlutl (presynaptic) and Homerl (postsynaptic) (Fig. 2G). We
detected a significant reduction of the number of synapses (i.e.,
colocalized VGlutl and Homer1 puncta) in the perilesional cor-
tex of SCFA-supplemented mice (Fig. 2H ). Interestingly, the dif-
ference in synapse counts was exclusively driven by the number of
presynaptic VGlutl puncta while Homerl-positive puncta re-
mained unaffected.

Additionally, this pattern was also mirrored in the mean size
of VGlutl and Homer1 puncta (Fig. 2-1 H, available at https://

doi.org/10.1523/JNEUROSCI.1359-19.2019.£2-1). Finally, we
analyzed the transcriptional regulation of key factors involved in
synaptic plasticity (Fig. 2I'). We observed that SCFAs significantly
increased the expression of the presynaptic vesicle molecule syn-
aptophysin and the BDNF receptor TrkB. BDNF itself, or the
receptor tyrosine kinase EphA2, was not affected by SCFA sup-
plementation. These results indicate effects of SCFA on morpho-
logical, synaptic plasticity, which could potentially precede the
effects observed on functional recovery at later time points after
stroke.

Brain transcriptomic analysis indicates microglia as the main
cellular target of SCFA

To determine whether the observed effects of SCFA were either
directly mediated on neuronal function or affecting other cere-
bral cell populations, we took an unbiased approach to investi-
gate the effects of SCFA on gene expression in the peri-infarct
cortex. For this, we first depleted the gut microbiome of mice as
the main SCFA source by administration of antibiotics, followed by
supplementation of SCFA (Fig. 3A). Plasma gas chromatography-
mass spectrometry quantification confirmed an increase of SCFA
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after supplementation in drinking water (Fig. 3-1, available at
https://doi.org/10.1523/JNEUROSCI.1359-19.2019.f3-1). Four-
teen days after surgery, the infarct and peri-infarct regions were
isolated for RNA sequencing, identifying 18 upregulated and 20
downregulated genes in SCFA supplemented mice (Fig. 3B,C).

The list of the top upregulated genes (Fig. 3C) hinted at a role
for microglia as we found numerous genes that have previously
been reported to be involved in microglial function and/or acti-
vation, such as Ctsd, various complement molecules, Tyrobp and
Laptm5 (Zhonget al., 2018; Q. Lietal., 2019). To ascertain which
cell type SCFA supplementation was mainly regulating in the
brain, we took the 38 differentially regulated genes and compared
them with an existing RNA-Seq database, which lists the frag-
ments per kilobase of exon model per million reads found in astro-
cytes, neurons, oligodendrocytes, microglia, and endothelial cells
(www.brainrnaseq.org) (Zhang et al., 2014). From the total number
of fragments per kilobase of exon model per million read values of
the 38 differentially regulated genes (Table 1-1, available at https://
doi.org/10.1523/JNEUROSCI.1359-19.2019.t1-1), we discovered
that the vast majority of gene reads from the significantly regu-
lated genes were associated with microglial cells (Fig. 3D). Addi-
tionally, we performed an ingenuity pathway analysis on the 38
differentially regulated genes and found that the complement
system was the top pathway and highly upregulated in mice sup-
plemented with SCFA (Fig. 3E). Within the brain, the comple-
ment pathway is critical for microglia activation and has been
associated with synaptic pruning by microglia (Schafer et al.,
2012; Stephan et al., 2012; Wu et al., 2015).

SCFAs modulate microglial activation and immune
cell composition
Based on the transcriptomic data’s indication that microglia are
the effector of SCFA-mediated poststroke recovery, we performed
more in-depth analyses of microglial activation and the inflamma-
tory response to stroke. As a surrogate of microglia activation, we
performed Iba-1 immunohistochemistry of the cortex (Fig. 4A)
and assessed microglia morphology using automated analysis
(Heindl et al., 2018). Fourteen days after stroke, cortical micro-
glia from SCFA-supplemented mice displayed a significantly
more ramified and less spherical (i.e., less activated) morphology
compared with controls (Fig. 4B). Additionally, the total number
of microglia were significantly reduced in SCFA- compared with
control-treated mice (Fig. 4C). These results indicate a modula-
tion of the microglial response to stroke by SCFAs. Therefore, we
further explored microglial function by assessing classical histo-
logical markers for microglial activation and polarization. We
observed a significant reduction of CD68 expression in Iba-1~"
microglia (Fig. 4D), whereas Arginase-1 and iNOS were not sig-
nificantly regulated by SCFA supplementation (Fig. 4E). Aside
from evoking a microglial response, stroke induces invasion of
peripheral immune cells into the brain parenchyma, which can
deteriorate stroke outcome (Iadecola and Anrather, 2011; Liesz et
al., 2015; Neumann et al., 2015; Selvaraj and Stowe, 2017). In
particular, lymphocyte counts in brains after photothrombosis
are still elevated 14 d after surgery (Feng et al., 2017). Addition-
ally, cytokines secreted by brain-invading lymphocytes can mod-
ulate microglial activation (Liesz et al., 2009; Meng et al., 2019).
Therefore, we performed flow cytometry of brain homogenates
(Fig. 4F) and observed a significant reduction in cerebral lym-
phocyte invasion in SCFA-treated animals compared with con-
trols (Fig. 4G).

The invasion of peripheral lymphocytes to the ischemic brain
depends on the number of circulating lymphocytes, the expres-
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sion of cerebral endothelial adhesion molecules, and the chemo-
kine gradient derived from the injured brain tissue (Ransohoff
and Engelhardt, 2012). In accordance with our nontargeted tran-
scriptomic analysis (for results, see Fig. 3), which did not reveal
significant regulation of chemokines or adhesion molecules by
SCFAs, also a targeted PCR analysis of key adhesion molecules
and tight junction proteins involved in poststroke lymphocyte
recruitment at the blood—brain barrier did not show a significant
regulation by SCFA (Fig. 4-1, available at https://doi.org/10.1523/
JNEUROSCI.1359-19.2019.f4-1). In contrast, we detected a signif-
icant reduction of systemic T-cell counts by SCFA supplementation
in the spleen (Fig. 4H), a secondary lymphatic organ that well
characterizes the systemic immune response after stroke (Offner
et al., 2006; Liesz et al., 2013; Roth et al., 2018).

These findings suggest that SCFAs may primarily affect lympho-
cytes already in the peripheral immune compartments, which then
might secondarily mediate changes in the cerebral immune milieu
after brain invasion. Therefore, we next aimed to test this hypoth-
esis by investigating the effects of SCFA on microglia in the ab-
sence of lymphocytes. For this, we used lymphocyte-deficient
Ragl ~'~ mice, which were given SCFA supplementation or con-
trol drinking water. In contrast to lymphocyte-competent WT
mice, SCFA supplementation in Ragl ~/~ did neither affect mi-
croglia morphology, nor did it reduce microglial cell counts (Fig.
41,]), indicating a key role of lymphocytes for mediating the
SCFA effects on microglia.

Discussion

This study demonstrates that SCFAs, critical metabolites derived
from the gut microbiome, are capable of improving poststroke
recovery via the modulating effects of brain-invading lympho-
cytes on microglial function. Results from our study support this
conclusion through several key findings. First, stroke lowers blood
SCFA concentrations. Second, SCFA supplementation combats the
deleterious effects of this poststroke response, which we demon-
strated by associated SCFA supplementation with improved
behavioral recovery, changes in cortical network connectivity,
which are generally associated with improved stroke outcomes,
and changes in histological markers of synaptic plasticity. Third,
we indicated a potential mechanism for the observed improve-
ments in the recovery of SCFA-treated animals by finding changes in
microglial function, which were dependent on circulating lym-
phocytes. Consequently, these findings indicate that SCFAs affect
peripheral lymphocytes, maturation, or egress from primary
lymphatic tissue, and lymphocytes then indirectly mediate the
SCFA effects on the brain micromilieu either by their overall
reduction in cerebral invasion or polarization of the secreted cy-
tokine profile.

These novel findings introduce SCFA as the most likely miss-
ing link in the pathophysiological function of the gut—brain axis
in stroke and poststroke recovery, for which the microbiota-
derived effector molecules were so far unknown (Benakis et al.,
2016; Houlden et al., 2016; Singh et al., 2016). Our use of a novel
imaging modality, in vivo wide-field calcium imaging, provided a
highly sensitive tool for assessing cortical network plasticity after
stroke (Cramer et al., 2019). This tool allowed us to perform
analyses of network plasticity by comparable analytical ap-
proaches to fMRI in patients, with the exception of using a genet-
ically encoded reporter for direct neuronal activation instead of
the blood flow surrogate marker (BOLD) used in MRI (Cramer et
al., 2019). The analysis of connectivity within the cortical net-
work provides information about the dynamic changes in de-
fined cortical areas under resting-state conditions, which gave us
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Figure4. Modulation of poststroke neuroinflammation by SCFA depends on peripheral lymphocytes. 4, Representative maximum intensity projections of microglial staining using Iba-1 (red) and
DAPI (blue) in the ipsilesional hemisphere 14 d after PT stroke with either control (left) or SCFA (right) supplementation. B, Microglial morphology was analyzed in 3D using an automated analysis
algorithm in the ipsilesional cortex of mice 14 d after stroke, which revealed significantly reduced sphericity (left) and increased number of branch nodes (right) as markers of reduced microglial
activation by SCFA compared with control treatment. Each symbol represents one microglia. Different colors group together microglia from the same mouse. ¢, Number of microglia found per 1
high-power (40<) FOV in the perilesional cortex. D, Coexpression coverage analysis in the ipsilateral hemispheric cortex for (D68 and Iba-1 expressed as percentage of Iba-1 from a maximum
intensity projection. Representative immunofluorescence image (red represents microglia; green represents (D68) (left) and quantification (right). E, Coexpression coverage analysis in the
ipsilateral hemispheric cortex for iNOS and Arginase1 (Arg1) with Iba-1 expressed as percentage of Iba-1 coverage area from a maximum intensity projection. Representative immunofluorescence
image (red represents microglia; green represents Arg1; cyan represents iNOS) (left) and quantification (right). N = 3 mice per group and 3 images per hemisphere. In contrast to the effects of SCFA
on microglia function, endothelial cells were unaffected by the SCFA treatment (Figure 4-1, available at https://doi.org/10.1523/JNEUR0SCI.1359-19.2019.f4-1). F, Representative gating strategy

for flow cytometric analysis of T cells (CD45 *(D3 *). SCFA supplementation significantly decreased the frequency of T cells in (G) brains and (H) spleens 14 d after stroke. N = 9 per group.

Quantification of (/) sphericity (left) and ramification index (right) and (J) absolute cell counts of microglia 14 d after stroke in the perilesional cortex of Rag7
mice (compare with B,(), SCFA treatment did not affect microglia activation in lymphocyte-deficient Rag7

Mann-Whitney U test.

a unique ability to measure even the more subtle effects of SCFA
supplementation on poststroke plasticity.

In human stroke patients, interhemispheric resting-state con-
nectivity is significantly weakened following stroke. Specifically,
it is thought that inhibitory projections from the lesioned hemi-
sphere to the homotypic contralesional hemisphere are attenu-
ated, leading to a disinhibition of the homotypic area in the
contralesional hemisphere (Rehme and Grefkes, 2013). We con-
firmed this effect with our optogenetic imaging approach, by
observing an increase in the contralesional motor cortex area
as an indicator of reduced transhemispheric inhibition. This
“blooming” effect of the contralesional motor cortex was signif-
icantly ameliorated by the SCFA treatment at chronic time points
after stroke, which could indicate an improvement of interhemi-

~/~ mice. In contrast to WT

~/~ mice. All statistical analyses in this figure were performed using the

spheric connectivity and thereby reestablish inhibition of the
contralesional hemisphere. However, the further in-depth explo-
ration of such interhemispheric inhibition is impeded by several
technical limitations of our imaging tool, such as autofluorescent
artifacts in the perilesional territory and the lack of directional
information of the interhemispheric connections. This would re-
quire in vivo electrophysiological studies on connectivity between
the recovering perilesional tissue and the homotypic contral-
esional brain area, which are currently not yet established in
stroke research. The functional relevance for the changes within
connectivity was ultimately confirmed by the corresponding ben-
eficial effects of SCFAs on recovery of motor functions. Behav-
ioral recovery was assessed in a highly sensitive, rater-blinded,
and high-throughput automated test, specifically analyzing mo-
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tor deficits of the affected forelimb, hence providing a reliable
readout for poststroke recovery, even in the chronic phase, some-
thing that most conventional behavior tests lose their test sensi-
tivity toward (Zausinger et al., 2000; X. Li et al., 2004; Manwani et
al., 2011; Rosell et al., 2013).

As an independent line of evidence for the effects of SCFA on
poststroke recovery, we detected significant changes in dendritic
spine densities and synaptic counts based on histological analysis.
Previous studies have demonstrated changes in dendritic spine
density of the perilesional cortex as well as contralateral hemi-
sphere and have been identified as a hallmark of poststroke tissue
remodeling and marker of synaptic plasticity (Brown et al., 2008;
Huang et al,, 2018). After stroke, it has been shown that there is a
gradual increase of spine density in the contralateral cortex (Huang
et al., 2018), whereas spine density in the peri-infarct region is re-
duced by ~389% within the acute phase (Brown etal., 2008). Accord-
ingly, we observed significantly increased spine densities in the
contralateral motor cortex of SCFA-supplemented mice, suggesting
that these microbial metabolites could aid recovery by promoting
dendritic spine plasticity.

A key limitation of the various analysis readouts used in this
study (calcium imaging, spine density, synapse count) is their
exclusive reflection of processes in excitatory neurons. The ex-
pression of GCamp in Thyl-positive neurons, analysis of den-
dritic spines on pyramidal neurons, and the synapse count of
VGlutl-positive (glutamatergic) synapses all limit the analysis to
the excitatory system of the forebrain cortex and do not account
for potential alterations in subcortical structures or the complex
integration of information by (inhibitory) interneurons within
the cortex (Markram et al., 2004). However, the focus on the
excitatory cortical system across the different methodological ap-
proaches allowed us to thoroughly investigate the impact of
SCFAs from a global network perspective (wide-field imaging) to
synaptic (sub)structures within the same system. This approach
revealed a striking alignment of results across different functional
levels from synapse to network plasticity and behavior that strongly
support the impact of SCFAs on poststroke recovery. Despite this,
future studies need to address the intricate regulation of cortical
microcircuits underlying this effect and particularly the role of
the various interneuron types. Another relevant limitation is the
use only of male mice for most of the experiments (except den-
dritic spine analysis). Considering recent evidence for sex-
specific effects along the gut—brain axis and particularly on
microglial activation (Thion et al., 2018; Villa et al., 2018), we
cannot exclude a differential effect of the observed pathway in the
female sex.

The transcriptomic analysis performed in this study indicated
several genes which have previously been associated with micro-
glial activity and phagocytic function to be regulated by SCFAs in
the poststroke recovery phase. In contrast, only a very low amount of
significantly regulated genes by the SCFA supplementation were
enriched for other cell population marker genes, such as neurons
or endothelial cells. Therefore, we hypothesized that the SCFA
effect on poststroke recovery and neuronal plasticity might be
indirectly mediated via microglial activity. Indeed, microglia are
key players involved in synaptic pruning and dendritic remodel-
ing (Salter and Stevens, 2017). Upon proinflammatory stimuli,
microglial activation is associated with a change in cell morphol-
ogy. While homeostatic microglia are highly ramified, activated
cells acquire a more ameboid shape. We observed after stroke an
increase in cell ramification by the SCFA supplementation, indi-
cating a reduced microglial activation state. Interestingly, micro-
glial activation after stroke has previously been associated with
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reduced phagocytic capacities (Faustino et al.,, 2011). Hence,
modification of microglial activation by SCFA could have an im-
pact on synapse elimination and thereby microglia-dependent
synaptic plasticity (Salter and Stevens, 2017). However, micro-
glial elimination (“pruning”) of dendritic synapses is vice versa
associated with synaptic activity (i.e., less active presynaptic in-
puts are more likely to be phagocytosed). Reduced synaptic ac-
tivity in the perilesional cortex due to the tissue injury or in the
contralesional cortex due to loss of transcallosal innervation from
the injured cortex could both induce excessive (pathological)
dendrite pruning (Brown et al., 2008; Riccomagno and Kolodkin,
2015; Salter and Stevens, 2017). This would suggest that dendritic
spine remodeling and microglial activation are a reciprocal, bidi-
rectional interaction of neurons and microglia in the recovering
cortex after stroke. While the results of RNASeq analysis indicate
that SCFAs modulate primarily microglial activation in this pro-
cess, the detailed interaction of neurons and microglia as well as
the directionality of their association will require further experi-
mental studies. Finally, microglia activation has been associated
with neuronal plasticity and function beyond morphological re-
organization and spine remodeling. We have recently demon-
strated that microglia monitor neuronal function at the cell soma
and this somatic interaction are altered during pathology after
stroke (Cserép etal., 2019), a process that could likely contribute
to the functional changes observed in cortical calcium imaging
and behavioral outcomes. However, the contribution of SCFAs
to this somatic cell-cell interaction is so far unknown.

A large part of previous experimental studies with SCFA have
focused on their effect on circulating immune cells. SCFAs mod-
ulate the polarization of lymphocyte subsets, such as the ratio of
anti-inflammatory regulatory T cells (Treg) to proinflammatory
Ty17 cells (Arpaia et al., 2013; Haghikia et al., 2015; Park et al.,
2015; Asarat et al., 2016), as well as their migratory behavior
between organs (Nakamura et al., 2017). Importantly, lympho-
cyte invasion to the ischemic brain is a hallmark of poststroke
neuroinflammation (Iadecola and Anrather, 2011). It is therefore
likely that SCFAs may not exclusively act directly on resident
microglia per se, but also via the peripheral effects of SCFAs,
which change lymphocyte function. The altered peripheral lym-
phocytes later invade the injured brain and indirectly influence
the cerebral inflammatory milieu. Indeed, T cells have been con-
sistently identified in several reports as the invading leukocyte
subpopulation with the largest impact on stroke outcome with
partially divergent functions of T-cell subsets (Kleinschnitz et al.,
2010). On one hand, immunosuppressive Treg cells provide a
neuroprotective function by suppressing an overshooting in-
flammatory reaction to the brain infarct (Liesz et al., 2015); on
the other hand, the proinflammatory T};1 and T;17 cells induce
secondary neurotoxicity and lead to infarct expansion with wors-
ened functional outcome (Shichita et al., 2009; Gelderblom et al.,
2012). In addition to the impact of SCFAs on T-cell polarization,
alternative mechanisms of immunoactive SCFA effects might be
mediated via regulation of micro-RNA expression (so far mainly
studied in cancer) or by modulating the production of reactive
oxygen species; however, these pathways are still under investi-
gation and require further exploration in stroke.

Several experimental stroke models have been established for
modeling focal ischemic brain injury in rodents. While some
stroke models use occlusion of a large cerebral artery, such as
intraluminal occlusion of the MCA by a suture or the direct, distal
MCA occlusion model, other stroke models induce artery occlu-
sion using other strategies, such as end arterial occlusion by pho-
tosensitive dyes or vasoconstriction using endothelin-1 (Fluri et
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al., 2015; Kumar et al., 2016). All of these experimental stroke
methods only model certain elements of the highly complex
pathophysiological events of stroke in human patients. Yet, each
model provides the advantage to be particularly useful in analyz-
ing specific targets of stroke interventions, acute neuroprotec-
tion, reperfusion, delayed apoptosis, inflammation, or chronic
repair mechanisms (Carmichael, 2005). The PT stroke model,
which was the main animal model used for most experiments in
this study, was previously suggested as particularly suitable for
analyzing recovery mechanisms after stroke, and is still widely
used in this research domain (Carmichael, 2005; Murphy and
Corbett, 2009). Disadvantages of this model are that it does not
allow local collateral reflow and shows a profound local edema
during the acute phase. Therefore, this model is not useful for
studies to investigate acute neuroprotective agents or reperfusion
therapies. On the other hand, PT stroke allows precise position-
ing of the lesion in functionally defined brain areas (i.e., the mo-
tor cortex in our study). Moreover, the highly reproducible and
confined cortical lesion allows for a more detailed analysis of
pathophysiological processes in the perilesional cortex compared
with other stroke models; which are less consistent in the lesion
localization.

Surprisingly, despite this obviously pronounced effect of lym-
phocytes in poststroke pathology, their role in activating or in-
hibiting microglial activation has so far barely been investigated.
We have observed indirect evidence for T-cell effects on micro-
glial activity in previous experiments, in which depletion of cir-
culating Treg cells affected microglial activation and cytokine
release (Liesz et al., 2009). Additional indirect evidence comes
from studies demonstrating T-cell interaction and particularly
the influence of T cell-secreted cytokines on multiple other cell
types in the healthy and injured brain, such as T cell-derived
interferon-gamma on animal behavior (Walsh et al., 2015;
Filiano et al., 2016). Yet, to our knowledge, the role of T cells as
indirect cellular mediators of microbiota-derived SCFAs on the
brain has so far not been studied. In this study, we unequivocally
demonstrate, for the first time, that T cells are crucial to mediate
the immunomodulatory effects of SCFA on brain resident micro-
glia because, in lymphocyte-deficient mice, this effect became
abolished. This finding is also in accordance with our previous
proof-of-concept experiments showing that circulating T cells
were key in facilitating the impact of the gut microbiome on
stroke outcome in germ-free versus recolonized animals as well as
in mice with a healthy versus a dysbiotic microbiome (Singh et al.,
2016, 2018). These previous reports by us and independent re-
ports by others have also consistently identified a translocation of
lymphocytes from the intestinal immune compartment to the
poststroke brain, providing a cellular link by these circulating and
highly motile cells across the gut—brain axis (Benakis et al., 2016;
Singh et al., 2016).

Together, this study identified SCFAs as critical metabolites
derived from the gut microbiome affecting T-cell function and
thereby indirectly modulating the neuro-regenerative milieu.
This expands our current understanding of the mechanisms
along the gut—brain axis in acute brain injury and recovery where
poststroke dysbiosis affects the production of key microbiota-
derived metabolites, their impact on immunological homeosta-
sis, and finally the capability for efficient functional recovery. The
efficacy of SCFAs for promoting recovery in an experimental
stroke model on a functional as well as morphological level opens
up novel therapeutic possibilities for improving recovery of hu-
man stroke patients. Future studies should validate the proregen-
erative effect of SCFAs on poststroke recovery before further
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translational development. Based on the findings from this study
and indications for efficacy and similar modes of actions in pri-
mary autoimmune brain disorders (Melbye et al., 2019), it is well
conceivable that SCFA supplementation could be used as a safe
and practical add-on therapy to stroke rehabilitation. However,
further studies will be required to test the efficacy of this approach
in a post-treatment paradigm, in combination with common co-
morbidities and comedications, and finally validate in a confir-
matory, multicenter preclinical study design before further
translation to human stroke patients can be considered (Llovera
et al., 2015; Llovera and Liesz, 2016).
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