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Abstract

This paper provides a tutorial companion for the methodological approach implemented in Huh et 

al. (2015) that overcame two major challenges for individual participant data (IPD) meta-analysis. 

Specifically, we show how to validly combine data from heterogeneous studies with varying 

numbers of treatment arms, and how to analyze highly-skewed count outcomes with many zeroes 

(e.g., alcohol and substance use outcomes) to estimate overall effect sizes. These issues have 

important implications for the feasibility, applicability, and interpretation of IPD meta-analysis but 

have received little attention thus far in the applied research literature. We present a Bayesian 

multilevel modeling approach for combining multi-arm trials (i.e., those with two or more 

treatment groups) in a distribution-appropriate IPD analysis. Illustrative data come from Project 

INTEGRATE, an IPD meta-analysis study of brief motivational interventions to reduce excessive 

alcohol use and related harm among college students. Our approach preserves the original random 

allocation within studies, combines within-study estimates across all studies, overcomes between-

study heterogeneity in trial design (i.e., number of treatment arms) and/or study-level missing data, 

and derives two related treatment outcomes in a multivariate IPD meta-analysis. This 

methodological approach is a favorable alternative to collapsing or excluding intervention groups 
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within multi-arm trials, making it possible to directly compare multiple treatment arms in a one-

step IPD meta-analysis. To facilitate application of the method, we provide annotated computer 

code in R along with the example data used in this tutorial.
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meta-analysis; individual participant data; Bayesian multilevel modeling; multivariate meta-
analysis; brief motivational intervention; college drinking

1. Introduction

Individual participant data (IPD) meta-analysis is a methodological approach for generating 

large-scale evidence in medical research (Riley, Lambert, & Abo-Zaid, 2010; Simmonds, 

Stewart, & Stewart, 2015; Stewart et al., 2015) and the social and behavioral sciences (Mun, 

Jiao, & Xie, 2016; Mun & Ray, 2018). With IPD meta-analysis, an overall effect size 

estimate can be obtained in a simultaneous one-step analysis and advanced statistical models 

can be utilized to better accommodate study designs and outcome distributions. This tutorial 

provides a guide to using Bayesian multilevel modeling to combine multi-arm trials (i.e., 

trials where subjects are randomly allocated to two or more groups) in a distribution-

appropriate IPD meta-analysis. A version of this modeling approach was implemented in 

Huh et al. (2015) to evaluate the efficacy of brief motivational interventions (BMIs) for 

college drinking and negative consequences. Here we provide an in-depth tutorial and 

rationale for the methods.

In this tutorial, we first introduce the motivating example data. Second, we review the 

challenges of combining multi-arm trials in an IPD meta-analysis and present the methods to 

estimate all within-study estimates of effect sizes when calculating an overall effect size 

(i.e., randomized group as opposed to study at the highest data level, comparing simulated 

posterior distributions estimated from Markov chain Monte Carlo [MCMC] methods). Third, 

we discuss how to address the methodological issues around zero-altered outcome measures, 

which are common in alcohol and substance use research. Finally, we show how to perform 

an IPD meta-analysis using Bayesian multilevel modeling and discuss the implications of 

our method for substantive research. Annotated R computer code with detailed explanations 

for fitting the models is available in an online repository along with example data (https://

doi.org/10.17632/4dw4kn97fz.2; Huh, Mun, Walters, Zhou, & Atkins, 2019).

2. Motivating Example: The Project INTEGRATE data

Our example data are drawn from Project INTEGRATE (Mun et al., 2015), a large IPD 

meta-analysis project evaluating BMIs for college drinking. From the Project INTEGRATE 

data set, we selected 15 randomized controlled trials. Participants in each of these studies 

were randomized to a control group or one of three BMIs: (1) individually-delivered 

motivational interviewing with personalized feedback (MI+PF), (2) stand-alone personalized 

feedback (PF), or (3) group-based motivational interviewing (GMI). Three of the 15 studies 

had more than two treatment groups. The outcome measure was the average number of 

drinks on a typical drinking day, which was assessed using a version of the Daily Drinking 
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Questionnaire (DDQ; Collins, Parks, & Marlatt, 1985). Non-integer numbers of drinks were 

rounded to the nearest whole number and if participants reported no drinking days, their 

alcohol consumption was coded as zero. The data set includes a total of 13,534 repeated 

measures from 5,952 individuals each with a baseline assessment and one to three follow-up 

assessments, up to 12 months post-baseline.

An IPD meta-analysis can be straightforward if studies share the same design features (i.e., 

participants, interventions, comparison groups, outcome measures, and settings). In practice, 

however, study designs typically vary between intervention trials. A key advantage of IPD 

meta-analysis over typical meta-analysis of aggregate data is that study-level differences can 

be explicitly addressed. In this tutorial, we focus on how to validly combine IPD from two-

arm (e.g., intervention and control) and multi-arm trials (i.e., multiple intervention groups 

and a control group). A common challenge in meta-analysis is how to combine studies with 

imbalanced and/or varying numbers of treatments (Gleser & Olkin, 2009), a problem that 

also applies to IPD meta-analysis. Table 1 presents the study by treatment group 

combinations from our motivating example data. As illustrated in Table 1, only one study 

(study 9) has data from all four groups (i.e., MI+PF, PF, GMI, and control). The other 

studies have at least one group “missing” by study design.

An initial, logical strategy for estimating treatment effects across multiple trials in a one-step 

IPD meta-analysis is to use a multilevel model (MLM) where study is defined at the highest 

level of the model (level 3), participants (level 2) are nested within study, and observations 

(level 1) are nested within participant. Assuming a normally distributed outcome, the 3-level 

MLM can be shown at each level:

Level 1 (observation): OUTCOMEtis = π0is + etis,
Level 2 (participant): π0is = β0s + β1sMI_PFis + β2sPFis + β3sGMIis + r0is, and

Level 3 (study):

β0s = b00 + u0s

β1s = b10 + u1s

β2s = b20 + u2s

β3s = b30 + u3s

(1a)

Equation 1a can also be expressed as a single equation, mixed model:

OUTCOMEtis = b00 + b10MI_PFis + b20PFis + b30GMIis +
u0s + u1sMI_PFis + u2sPFis + u3sGMIis +

r0is + etis,
(1b)

where t indexes the assessment, i indexes individuals, and s indexes the study. At level 1, 

π0is represents the average outcome level across assessments for participant i in study s, and 

etis is a within-participant residual error term. We assume that the observation-level (level 1) 

residual error term and participant-level (level 2) varying intercept coefficients (i.e., random 

effects) are each normally distributed with mean zero and a variance that is estimated from 

the data, while the four study-level (level 3) varying intercept (u0s) and slope coefficients 
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(u1s, u2s, and u3s) are multivariate normally distributed with mean zero for each, and a 

covariance matrix that is estimated from the data, as seen in Equation 1c:

Level 1 (observation): etis ∼ N 0, σe
2 ,

Level 2 (participant): r0is ∼ N 0, σβ0
2 , and

Level 3 (study):

u0s

u1s

u2s

u3s

∼ N

0
0
0
0

,

σ0
2 σ10 σ20 σ30

σ10 σ1
2 σ21 σ31

σ20 σ21 σ2
2 σ32

σ30 σ31 σ32 σ3
2

(1c)

MI_PFis, PFis, and GMIis are dummy-coded variables (each coded 1) that indicate random 

allocation to MI+PF, PF, or GMI, respectively, compared to controls (all coded 0). The non-

varying (i.e., “fixed”) intercept coefficient b00 reflects the average outcome level for controls 

across all studies. The varying (i.e., “random”) intercept coefficient u0s quantifies between-

study variability surrounding b00. The non-varying slope coefficients for the three 

interventions (b10, b20, and b30) describe the average intervention effect sizes of MI+PF, PF, 

and GMI compared to controls, respectively, across studies. In contrast, the varying slope 

coefficients (u1s, u2s, and u3s) quantify the study-specific deviations from their respective 

average intervention effects. Therefore, the study-specific intervention effect size of MI+PF 

can be decomposed to the average intervention effect for MI+PF across all available studies 

(i.e., b10 = an average treatment effect for MI+PF) and the corresponding study-specific 

varying intercept coefficient (i.e., u1s). This model formulation is ideal in the sense that it 

conceptually corresponds to a traditional random-effects meta-analysis model.

However, the MLM described above for an IPD meta-analysis would be rank deficient in the 

motivating example because of insufficient data to estimate the covariance matrix of the 

study-specific varying coefficients for each (i.e., the level 3 components in Equation 1c). 

Our motivating data has 15 studies at level 3 (see Table 1). The variances of the varying 

coefficients for treatment arm σ0
2, σ1

2, σ2
2, and σ3

2  in Equation 1c can be estimated using 

available data from 15, 7, 9, and 3 studies, respectively, while there is sparse data coverage 

for ascertaining covariances (i.e., the off diagonals). The covariance σ21 between MI+PF and 

PF can be estimated from three studies (studies 9, 13/14, and 21). However, it is impossible 

to estimate the covariance between GMI and MI+PF (σ31) and GMI and PF (σ32) since 

those treatments were evaluated together in just one study (study 9) and a minimum of two 

data points are needed to calculate a covariance. Consequently, the level 3 varying slope 

coefficients (i.e., the variance-covariance matrix in Equation 1c) cannot be estimated, nor the 

model as a whole. Without an alternative methodological approach, undesirable options for 

handling rank deficiency may include collapsing active intervention groups into a single, 

omnibus treatment category, removing one or more treatment groups, or constraining 

covariance parameters. None of these approaches are ideal.
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To accommodate “missing” study by treatment combinations without compromising the 

original randomization, an alternative formulation of an MLM can be used in which the 

unique randomized groups (i.e., study by treatment arm combinations) are used as the 

highest level of the MLM instead of study under the assumptions that groups from the same 

study are orthogonal due to random allocation (i.e., there are no study by randomized group 

interaction effects) and that nonexistent study by treatment combinations are missing at 

random (see the Application section). This formulation of an MLM is conceptually 

equivalent to converting a 15 (study) by 4 (treatment arm) factorial design into an equivalent 

one-way design to allow for missing study by treatment combinations, where all the unique 

study by treatment combinations are defined as separate groups. This model set up can be 

extended further to accommodate informative covariates as fixed effects.

Through a Bayesian approach to MLM estimation, we can produce all the distributions for 

all estimates, including the varying coefficients. The resulting distributions can then be 

utilized to calculate means and confidence intervals for each intervention effect contrast. 

This is a key advantage of the Bayesian MLM compared with an MLM estimated with 

restricted maximum likelihood (REML), where the analyst has access to the point estimates 

and confidence intervals for estimated parameters, but not their complete distributions. We 

discuss the estimation of a Bayesian MLM and the calculation of intervention effect 

contrasts in greater detail later in the Application section. Before doing so, we discuss some 

of the unique features of alcohol consumption data that require consideration in an IPD 

meta-analysis.

3. Modeling Zero-altered Count Outcomes

In alcohol intervention research, outcome measures are often count or frequency variables, 

such as the number of drinks consumed per week or the number of days per week alcohol 

was consumed. Such outcome measures are typically highly skewed due to high frequencies 

of zeroes and are more appropriately modeled using count regression methods such as zero-

inflated or hurdle regressions (Atkins, Baldwin, Zheng, Gallop, & Neighbors, 2013). With 

normally distributed outcomes, mean and variance are separate parameters. With count-

distributed outcomes, there is a relationship between the mean and variance which can be 

complicated by additional heterogeneity (called over-dispersion) or an over-abundance of 

zeroes. In the Poisson generalized linear model, the most basic type of count regression, the 

mean is assumed to equal the variance. The negative binomial generalized linear model 

extends the Poisson by allowing the mean and the variance to differ from each other. In the 

Application section of this tutorial, we utilize the negative binomial model, which is 

functionally similar to the over-dispersed Poisson implemented in Huh et al. (2015), except 

that it handles over-dispersion implicitly.

As shown in Figure 1, the outcome variable distribution in our example data – average 

number of drinks on a typical drinking day – is positively skewed with a high percentage of 

zeroes. Across studies, respondents reported drinking an average of 3.0 drinks per drinking 

day, with 25% reporting no drinking at all. In ten studies, the modal number of drinks per 

day was zero. Figure 1 also illustrates substantial between-study variability. The average 

number of drinks per drinking day varied from 1.2 to 5.6 across studies, and the percentage 
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of no drinking varied from 0 to 68%. In study 13/14, the frequency of no drinking was zero 

since all participants had at least one drinking day with one or more drinks, during a typical 

week.

Count outcomes in which the number of zeroes is disjoint from the non-zero portion of the 

outcome are considered “zero-altered” relative to an ordinary count distribution. On a 

substantive level, however, the zeroes may represent a key feature of drinking behavior. For 

instance, the decision to have the first drink may be quite different than the decision to 

continue to drink after drinking has started. Consequently, a model that underrepresents the 

actual frequency of zeroes may not only violate statistical assumptions but also fail to 

capture an important aspect of drinking behavior. A hurdle model, a type of two-part model, 

assumes that a threshold must be crossed from zero into positive counts.

Figures 2a and 2b illustrate the zero-altered drinking outcome and how it can be divided into 

two respective outcomes, which are analyzed together in a multivariate model in this tutorial. 

One outcome is a dichotomous variable representing zero drinks vs. any drinking and 

includes the entire sample. The second outcome, highlighted in grey, represents the number 

of drinks if drinking is non-zero. Thus, the hurdle model contains two sub-models: 1) a 

logistic regression model for examining no drinking vs. any drinking (zero vs. non-zero; 

assessed as an odds ratio) and 2) a zero-truncated negative binomial model for positive 

counts (number of drinks when drinking; assessed as a rate ratio).

An alternative to the hurdle model is a zero-inflated model, a type of mixture model that 

assumes two types of zeroes: zero counts and “excess zeroes” above and beyond what would 

be predicted by an ordinary count distribution. Hence, the logistic regression in a zero-

inflated model predicts these excess zeroes, and consequently, the count model includes zero 

counts and is not zero-truncated. In contrast, an advantage of hurdle models over zero-

inflated models is that they are more straightforward to interpret because all zeroes and non-

zero counts are handled in separate models, resulting in a clean distinction between zeroes 

and positive counts.

4. Application of a Bayesian Hurdle Model to the Project INTEGRATE Data

To retain all the original intervention groups, we used a Bayesian approach to MLM using 

MCMC sampling (for an accessible tutorial on MCMC estimation, see Hamra, MacLehose, 

& Richardson, 2013). MCMC is a simulation-based technique for estimating the parameters 

of a statistical model, including non-varying (i.e., fixed effect) coefficients, varying (i.e., 

random effect) coefficients, and variance parameters, by sampling from the probability 

distribution of the parameters, known as the “posterior distribution.” During MCMC 

estimation, each of the parameters in a Bayesian model is treated as part of a 

multidimensional space of distributions, and the goal of the MCMC algorithm is to 

“explore” that space by taking random samples from the distribution of each of the 

parameters.

The multilevel hurdle negative binomial model that incorporates a varying intercept 

coefficient for unique randomized groups can be seen in Equations 2a and 2b. The logistic 
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portion of the hurdle model (Equation 2a) models whether an individual participant 

belonging to a specific randomized group drank at a particular assessment point. Let 

Pr[DRINKSt>0,ig > 0] be the probability of individual i in randomized group g drinking one 

or more drinks at assessment t, and Pr[DRINKSt>0,ig = 0] be the probability of individual i 
in randomized group g not drinking at assessment t. To constrain predictions to range from 0 

to 1, the outcome is modeled as the natural logarithm of the odds (i.e., logit link function) of 

the probability of any drinking vs. no drinking, as follows:

log
Pr DRINKSt > 0, ig > 0
Pr DRINKSt > 0, ig = 0

= b0 B + b1 B DRINKSt = 0, ig > 0

+ b2 B DRINKSt = 0, ig + b3 B MALEig

+ b4 B MANDATEDig + b5 B NONWHITEig

+ b6 B FIRSTYRig +

u0g B + r0i B ,

(2a)

where (B) identifies regression coefficients from the logistic model. The zero-truncated 

negative binomial portion of the hurdle model (Equation 2b) models occasions where 

drinking did occur. Let (E[DRINKSt>0,ig]|DRINKSt>0,ig > 0) be the expected number of 

drinks when drinking was greater than zero for individual i in randomized group g at 

assessment t. To constrain predictions to positive counts greater than or equal to one, the 

outcome is modeled as the natural logarithm of the expected number of drinks (i.e., log link 

function), as follows:

log E DRINKSt > 0, ig DRINKSt > 0, ig > 0 = b0 C
+ b1 C DRINKSt = 0, ig > 0 + b2 C DRINKSt = 0, ig + b3 C MALEig +

b4 C MANDATEDig
+ b5 C NONWHITEig + b6 C FIRSTYRig +

u0g C
+ r0i C ,

(2b)

where (C) identifies regression coefficients from the zero-truncated negative binomial 

model. The group-level varying intercept coefficients u0g(B) and u0g(C) in the logistic and 

zero-truncated negative binomial models, respectively, quantify the extent to which each 

randomized group differs from the covariate-adjusted average drinking outcome across 

groups. Similarly, the individual-level varying intercept coefficient r0i(B) and r0i(C) account 

for the variability surrounding the covariate-adjusted average drinking outcome across 

individuals in the drinking outcome for the two models, respectively. We assume that all 

varying coefficients in the logistic model (u0(B) and r0i(B)) and zero-truncated negative 
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binomial model (u0g(C) and r0i(C)) are independently and normally distributed each with 

mean zero and corresponding variance that is estimated. In generalized linear models that 

utilize a link function, such as the logistic and zero-truncated negative binomial models, the 

outcome is a function of the mean of the linear predictor only, thus Equations 2a and 2b do 

not include a residual error term.

To accommodate varying numbers of follow-up assessments across studies, the outcome 

variable (DRINKSt>0,ig) on the left-hand side of Equations 2a and 2b is limited to post-

baseline assessments. Under this model specification, covariates are incorporated into both 

the logistic and zero-truncated negative binomial models to control for baseline drinking and 

demographic covariates related to alcohol consumption. The demographic covariates were 

gender (1 = men vs. 0 = women), race (1 = non-White vs. 0 = White), first-year student 

status (1 = first-year vs. 0 = non first-year), and mandated status (1 = mandated to 
intervention vs. 0 = volunteer). Baseline drinking (DRINKSt=0,ig) was divided into two 

related covariates to account for: (1) no vs. any drinking and (2) the number of drinks for 

those who drank at baseline (second and third terms on the right-hand side of Equations 2a 

and 2b).

A key feature of Bayesian models is that a “prior” distribution must be specified for all 

estimated parameters. With respect to the multilevel hurdle model, the logistic and zero-

truncated count portions of the model each require their own set of priors to be specified. 

The multilevel hurdle negative binomial model shown in Equations 2a and 2b requires prior 

distributions for (1) the non-varying intercept and slope coefficients for the covariates in 

each model, (2) the varying intercept coefficients (i.e., participants and randomized groups) 

in each model, and (3) an over-dispersion parameter in the zero-truncated negative binomial 

model. The varying intercept coefficients u0g(B) and u0g(C) are comprised of 34 pairs of 

group-specific intercepts (i.e., u0,g=1(B), u0,g=2(B), … , u0,g=34(B) and u0,g=1(C), u0,g=2(C) … , 

u0,g=34(C)), whose posterior distributions will be used to calculate intervention effect 

contrasts within studies. The 34 pairs of group-specific intercepts represent each of the 34 

randomized groups, including active treatment (19) and control (15) groups. The 34 group-

specific intercepts in each model share the same prior distribution, which is specified on the 

standard deviation (SD) of the varying intercept coefficient (u0g(B) and u0g(C)) as a whole.

In the present analyses, we use minimally-informative priors, which typically yield results 

comparable to those obtained from an MLM estimated with REML where the estimates are 

completely driven by the data. For the covariate effects on the outcomes, we used normal 

distributions with a mean of 0 and an SD of 1, which Gelman, Lee, and Guo (2015) suggest 

as a default prior for non-varying coefficients in regression models. For the SD of the 

varying intercepts, we used a half-Cauchy distribution with a mode of 0 and a shape 

parameter of 25, as suggested by Gelman (2006) for variance terms in multilevel models. 

For the over-dispersion parameter of the count portion of the hurdle model, we used a 

minimally-informative gamma distribution with shape and rate parameters of 0.01. These 

prior distributions are appropriate when all covariates in the model have been scaled (e.g., 

continuous variables that have been divided by their SD), standardized, or are on a unit 

scale, such as dichotomous indicator variables (i.e., 0 vs. 1). An important step in Bayesian 

analysis is to assess the consistency of the results under alternate prior selections. Thus, we 
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conducted a sensitivity analysis under an alternative prior specification with larger variances 

using a normal distribution with a mean of 0 and an SD of 10 for the covariate effects and a 

half-Cauchy distribution with a mode of 0 and shape parameter of 50 for the SD of the 

varying intercept coefficients.

The output of a Bayesian analysis using MCMC sampling is a vector of simulated estimates 

for each parameter in the model, which can be plotted in a histogram to visualize the 

posterior distribution. To calculate the intervention effect summaries under the current MLM 

model specification, we use the vectors corresponding to the posterior distributions of the 

varying intercept coefficients for each randomized group (u0(B), u0g(C)) for the two 

outcomes, respectively.

The first step is to extract the posterior distributions of the varying intercept coefficients for 

all the 34 randomized groups (19 active treatment and 15 control groups) in both the logistic 

and zero-truncated count models. Table 2 shows how to use the posterior distributions to 

estimate a treatment effect size. There are a total of 2000 samples of each randomized group 

effect, each corresponding to a single simulated value from the posterior distribution. In the 

case of PF in Study 2, the intervention effect for the logistic model is calculated by taking 

the difference u0,g=2(B) − u0,g=1(B) for each row, as depicted in the third column of Table 2. 

This produces a vector of 2000 effect size estimates at the randomized group level (level 3), 

which can then be used to derive the study-specific intervention effect of PF in Study 2 and 

its corresponding 95% confidence interval (CI).

The intervention effects for all other active treatment groups are calculated in the same way 

by matching each active intervention group with its corresponding control group and 

calculating the difference within studies for study-specific intervention effects. This yields a 

total of 19 vectors of length 2000 for each portion of the hurdle model, representing the 19 

treatment vs. control comparisons. Finally, an overall intervention effect (any intervention 

vs. control) can be derived by first averaging across all 19 vectors of treatment vs. control 

comparisons for each of the 2000 samples. This yields a vector of the same length (i.e., 

2000) reflecting the posterior distribution of the overall intervention effect, which we 

subsequently summarize as a mean and its 95% CI. The mean of those 2000 simulated 

values would correspond to the point estimate for each model parameter (e.g., a varying 

intercept coefficient). The SD of those 2000 simulated values would correspond to the 

standard error of the parameter estimated using an REML approach.

5. Analysis of the Motivating Data and the Summary of Findings

Annotated computer code in R for fitting the model (for a general introduction to R, see 

Dalgaard, 2008), along with example data, can be accessed in the online repository (Huh et 

al., 2019). The analyses were performed in R version 3.4.4 (R Core Team, 2018) with 

version 2.50 of the brms (Bayesian Regression Models using ‘Stan’) package (Bürkner, 

2017). The final model took 1.9 hours to estimate on a 3.4 Ghz Intel Core i7–3770-based 

system running Ubuntu Linux with 16 gigabytes of RAM. The Annotated Code contains 

technical information about the MCMC estimation and how MCMC convergence was 

assessed.
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Figure 3 shows a forest plot of study-specific intervention effects on the probability of 

drinking (i.e., 1 = any drinking vs. 0 = no drinking) and number of drinks (i.e., mean drinks 

given any drinking) per drinking day. In logistic and zero-truncated negative binomial 

models, the non-varying (i.e., fixed effect) and varying (i.e., random effect) coefficients are 

on a natural log scale because of the log link function that relates the linear predictors (i.e., 

the right-hand side of Equations 2a and 2b) with the outcome variables. For interpretation, 

treatment effect estimates calculated from the logistic and zero-truncated negative binomial 

models are raised to the base e, to yield an odds ratio ORs and a rate ratio RRs, respectively. 

The distance above or below 1.0 can be interpreted as the percentage difference with respect 

to any drinking vs. no drinking ORs or the quantity of drinking when drinking is non-zero 

RRs for participants who received an intervention. ORs and RRs below 1.0 reflect lower 

likelihood of any drinking and lower levels of drinking (given any drinking), respectively, 

favoring the intervention group.

The overall OR of 0.86 for any drinking indicates that BMIs (MI+PF, PF, and GMI) were 

associated with a 14% difference in the odds of any drinking (OR = 0.86, 95% CI = [0.65, 

1.13]), although the effect was not statistically significant as the 95% CI included an OR of 

1.0. The overall RR of 0.99 for drinking quantity indicates that BMIs were associated with a 

1% difference in the quantity of drinking when drinking (RR = 0.99, 95% CI = [0.96, 1.03]), 

an effect that was also not statistically significant. Intervention effects on the probability of 

any drinking varied by study from an OR of 0.38 to 1.29, with 13 of 19 intervention groups 

having point estimates indicating lower likelihood of any drinking relative to control. 

Intervention effects on the number of drinks when drinking also varied by study from an RR 
of 0.86 to 1.10, with 9 of 19 intervention groups with point estimates indicating lower 

quantity of drinking (when drinking) relative to control. However, none of these intervention 

effects was statistically significant, with one exception (study 9, MI+PF) in the quantity of 

drinking. Figure 4 shows that a sensitivity analysis using an alternative prior specification 

with much larger variances produced similar estimates, indicating that the results were 

robust to the choice of prior.

6. Discussion

This tutorial describes how Bayesian MLM with MCMC estimation can be used to combine 

IPD from heterogeneous studies that are imbalanced and have varying numbers of treatment 

arms without loss of information while accounting for other important characteristics of the 

data, such as nested design and zero-altered count outcomes. The approach detailed can also 

be used without modification when studies have the same number of treatment arms. We 

show how to calculate effect size summaries for intervention types (e.g., MI+PF, PF, and 

GMI) and specific studies, as well as overall effect sizes within a single analytic model. The 

basic model we detail can be easily applied to zero-altered count outcomes in other 

applications.

A minor drawback to our approach is that it is more computationally intensive than models 

estimated using REML. However, advances in computing power will continually reduce the 

processing burden of Bayesian estimation approaches to IPD analysis. Of note, McNeish and 

Stapleton (2016) found that Bayesian MLMs performed well with as few as four clusters; in 
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contrast, confidence intervals in REML-estimated MLMs were biased with as few as ten 

clusters, suggesting the utility of Bayesian estimation approaches for small-scale meta-

analyses. Meta-analyses of five or fewer studies (clusters) are relatively common, making up 

nearly three-quarters of meta-analyses in the Cochrane Database of Systematic Reviews 

(Davey, Turner, Clarke, & Higgins, 2011).

It is important to note that our approach relies on several important assumptions. One 

assumption is that we conceptualized a full design that potentially includes a total of 60 

treatment by study combinations (up to 15 studies, each with up to four intervention groups), 

of which we had observed data only from 34 groups (19 active interventions, 15 control 

groups). We assumed that the remaining 26 study by treatment combinations were missing 

by design and missing at random, and therefore did not bias estimates of the intervention 

effects that were observed.

Second, using randomized groups as the highest data level assumes that the groups are 

independent within study due to random allocation. We believe this is a reasonable 

assumption for this analysis since it is conceptually equivalent to converting the 15 (study) 

by 4 (treatment arm) factorial design to an equivalent one-way design to allow for missing 

study by treatment combinations. This parallels the conversion of a factorial ANOVA into an 

equivalent one-way ANOVA.

A final assumption, which applies to IPD meta-analysis generally, is that the outcome 

variable, interventions, and comparison groups should be equivalent across studies, so that 

the differences in the estimates across studies are not due to measurement differences or that 

estimates are not confounded by other study-level differences. Since the alcohol use quantity 

measure was similar across studies, and interventions and comparison groups were carefully 

selected for their equivalency across studies and subsequently coded and analyzed in Project 

INTEGRATE (Mun & Ray, 2018; Ray et al., 2014), we believe that this was a reasonable 

assumption.

The present tutorial provided an in-depth walkthrough of the challenges in an IPD meta-

analysis and illustrates a feasible and flexible approach for combining IPD from 

heterogeneous studies that leverages all available information while accommodating 

common differences in study design and count outcomes with many zeroes, which are 

common in addictions research. The annotated R code and data further provide additional 

guidance, which we hope will motivate further development in IPD meta-analysis 

methodology and applications.
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Figure 1. 
Frequency distributions of post-baseline average number of drinks on a typical drinking day 

by study.
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Figure 2. 
Histogram of number of drinks in the motivating example data, drawn from Project 

INTEGRATE. The left column panel (a) illustrates the zero-altered count outcome and the 

right column panel (b) illustrates the division into corresponding dichotomous (examined as 

an odds ratio; top) and zero-truncated count (examined as a rate ratio; bottom) outcomes.
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Figure 3. 
Forest plot of intervention effects estimated from Equations 2a and 2b. OR = Odds ratio; RR 

= Rate ratio; MI+PF = Individually-delivered Motivational Interviewing with Personalized 

Feedback; PF = Stand-alone Personalized Feedback; GMI = Group Motivational 

Interviewing; No. of drinks = Number of drinks on a typical drinking day.
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Figure 4. 
Forest plot of sensitivity analysis with two different prior specifications. OR = Odds ratio; 

RR = Rate ratio; MI+PF = Individually-delivered Motivational Interviewing with 

Personalized Feedback; PF = Stand-alone Personalized Feedback; GMI = Group 

Motivational Interviewing; No. of drinks = Number of drinks on a typical drinking day. The 

“Original prior” estimates correspond with the minimally-informative priors used in the 

estimates reported in Figure 3; the “Alternate prior” estimates correspond with an alternative 

prior specification with larger variances on the covariate effects [Normal(0, 10)] and the 

standard deviations of all varying intercept terms [half-Cauchy(0, 50)].
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Table 1.

Study by Treatment Combinations in Project INTEGRATE Subsample

Treatment Group (n) Follow-up schedule (in months) Reference(s)

Study Control MI+PF PF GMI

2 102 – 92 – 2 White and colleagues (2008)

7.1 22 – – 75 1 Fromme and Corbin (2004)

7.2 110 – – 217 1, 6 Fromme and Corbin (2004)

8a 519 – 512 – 12 Larimer and colleagues (2007)

8b 754 – 719 – 12 Larimer and colleagues (2007)

8c 147 – 127 – 12 Larimer and colleagues (2007)

9 91 87 92 86 3, 6 Lee and colleagues (2009)

10.1 157 150 – – 12 Baer and colleagues (2001)

11 160 – 150 – 2, 3 Walters and colleagues (2007)

12 80 75 – – 1, 3, 6 Wood and colleagues (2007)

13/14 24 54 27 – 3, 6, 12 Murphy and colleagues (2004)

Murphy and colleagues (2001)

18 99 – 93 – 1, 6 Martens and colleagues (2010)

20 242 214 – – 12 Larimer and colleagues (2001)

21 70 74 63 – 3, 6, 12 Walters and colleagues (2009)

22 240 228 – – 12 Wood and colleagues (2010)

Note. MI+PF = Individually-delivered motivational interviewing with personalized feedback; PF = Stand-alone personalized feedback; GMI = 
Group motivational interviewing.
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Table 2.

An Example Calculation of the Intervention Effect of Personalized Feedback in Study 2 based on the Posterior 

Distribution of the Varying Intercept Coefficient for Randomized Group

Study 2

Control PF Effect Size

Sample No. u0,g=1(B) u0,g=2(B) u0,g=2(B) − u0,g=1(B)

1 0.923 0.388 −0.535

2 0.296 −0.218 −0.514

3 0.277 0.247 −0.030

⋮ ⋮ ⋮ ⋮

2000 0.012 0.324 0.312

Note. Sample No. = Sample Number; PF = Personalized Feedback. The parameters u0,g=1(B) and u0,g=2(B) are the estimated varying intercept 

coefficients for randomized groups 1 (Study 2, Control) and 2 (Study 2, PF), respectively. There are 2000 simulated estimates for each of the 
varying intercept coefficients.
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