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Summary:

Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability 

and translation contribute to the rapid and flexible control of gene expression in immune effector 

cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes 

(e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3′-

untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-

transcriptional control mechanisms that contribute to gene expression in the immune system and 

discuss how defects in these pathways can contribute to autoimmune disease.
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Introduction

Transcription of mRNA is the first step in a complex process that leads to the production of 

protein. When activated, individual transcription factors induce the expression of a distinct 

set of genes (transcriptional regulons) that often encode components of a common functional 

program. This is accomplished by the recognition and activation of promoter elements to 

initiate target gene transcription. The directed production of distinct mRNA species leads to 

the synthesis of the proteins responsible for cellular growth, maturation, and effector 

function. In the immune system, this allows the production of specialized immune effector 

cells.

Although transcription is an essential step in the regulation of gene expression, post-

transcriptional control mechanisms play an especially important role in regulating the 

expression of immune effector proteins. These mechanisms can re-program gene expression 

at a global level or modulate the stability and translation of specific immune transcripts. 

Although mechanisms of global control depend on the activity/availability of general factors 

involved in mRNA maturation or translation, transcript-specific regulation depends on action 
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of individual trans-factors that can bind either individual mRNAs or subsets of related 

mRNAs. Because mRNAs that encode proteins involved in a common functional program 

(post-transcriptional regulons) often possess common regulatory elements, coordinate 

protein expression drives specific functional programs in the cell. This allows specific 

functional programs to be rapidly turned on or off in response to exogenous stimuli.

Eukaryotic mRNAs are born in the nucleus as capped, polyadenylated, and spliced 

transcripts that acquire distinctive protein ‘coats’. Every step of transcript processing is 

regulated by nuclear quality control mechanisms (reviewed in 1). Following these processing 

steps, mature mRNAs are transported from the nucleus into the cytoplasm as mRNPs 

(messenger ribonucleoprotein particles). The composition of the mRNP determines the 

functional fate of individual transcripts. Cytoplasmic mRNPs can be engaged by the 

translational machinery to initiate a ‘pioneer’ round of translation that ensures the presence 

of start and stop codons required for protein synthesis. Some mRNPs are rendered 

translationally silent for transport to sites where protein synthesis is required. Other 

transcripts are rapidly degraded before protein synthesis can occur. Each of these functional 

fates is determined by RNA-binding proteins (RBPs) or antisense RNAs (such as 

microRNAs [miRNAs]) that target specific mRNAs. These interactions typically occur 

within 5′- and 3′-untranslated regions (UTRs) of mRNAs. RNA-binding proteins can 

stabilize/destabilize their target transcripts and/or inhibit/stimulate their translation. In 

contrast, miRNAs typically repress translation and stimulate degradation of their target 

mRNAs. Molecular details of these processes, consequences of cross-talk between miRNAs 

and RBPs, and implications for immunity are discussed below.

Here, we review the post-transcriptional mechanisms known to modulate immune function. 

We focus on recent findings implicating general and transcript-specific aspects of mRNA 

metabolism in the regulation of the immune response, and discuss how mRNA quality 

control, subcellular localization, decay, and translation of cytokine transcripts contribute to 

immune function in health and disease.

mRNA turnover regulation in immunity

Cytoplasmic mRNA turnover plays a central role in the determination of mRNA fate. The 

mRNA decay machinery is the major effector of mRNA quality control and also determines 

the half-lives of individual transcripts. This machinery relies on protein constituents 

possessing distinct ribonucleolytic activities that mediate mRNA deadenylation [shortening 

or removal of the poly(A) tail at the mRNA’s 3′-end], decapping [hydrolysis of the 5′-cap 

structure (m7G)], 5′-3′ or 3′-5′ exoribonucleolytic decay, and in some cases 

endoribonucleolytic cleavage. Since the 5′-cap and poly(A)-tail play important roles in 

mRNA translation, these unique cis-elements are regulated both by translation and mRNA 

decay machineries.

Deadenylation is the first step in the canonical mRNA decay process. Deadenylases are often 

associated with regulatory proteins that reside in multi-subunit complexes (reviewed in 2, 3). 

These multi-subunit complexes can homodimerize and heterodimerize to assemble unique 

higher order complexes with diverse enzymatic and regulatory functions (2). Three different 
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deadenylases are capable of shortening poly(A) tails: (i) a homodimer of poly(A) 

ribonuclease (PARN), (ii) a multi-subunit complex CCR4-POP2-NOT1 containing CCR4a 

(CNOT6), CCR4B (CNOT6L), CAF1A (CNOT7), and POP2 (CNOT8, CAF1B) 

deadenylases associated with regulatory NOT factors, and (iii) a complex of PAB-specific 

ribonuclease 2 and 3 (PAN2/3). Proteins associated with specific mRNAs determine which 

deadenylase complex is recruited to which transcript. By removing the poly(A) tail from 

targeted transcripts, these deadenylase complexes displace polyadenylate-binding protein 

(PABP) to eliminate communication between poly(A) tail and the cap structure that is 

pivotal for efficient translation.

Removal of PABP allows the activation of the decapping enzymes that remove m7G from 

the 5′-ends of mRNAs (4). A decapping complex consisting of DCP1A and DCP2 

decapping enzymes in association with the regulatory factors EDC3 and Hedls (also referred 

to as Ge-1 and Edc4) are responsible for hydrolysis of the cap structure (5). Under steady-

state conditions, the cap is protected from these decapping enzymes by bound cap-binding 

eIF4F complex (consisting of translation initiation factors eIF4E, eIF4A, and eIF4G), which 

communicates with the poly(A) tail through direct binding to PABP molecules. As a 

consequence of deadenylation, the PABP-eIF4F connection is disrupted, allowing the 

decapping complex to bind to and hydrolyze the cap structure.

Following deadenylation/decapping, the mRNA body is degraded by exonucleases that act in 

5′-3′ (XRN1 exonuclease) or 3′-5′ (exosome-associated exonucleases RRP44 [hDIS3] or 

PM-SCL75 [RRP45, EXOSC10]) directions. In some cases, decay of specific mRNAs is 

initiated by endoribonucleolytic cleavage within its body followed by degradation in both 

5′-3′ and 3′-5′ directions. This alternative decay mechanism plays important roles in the 

elimination of transcripts bearing premature stop codons (nonsense-mediated mRNA decay 

[NMD]) and in the regulation of specific mRNA transcripts by endoribonuclease ZC3H12A 

(see below).

ARE-mediated mRNA decay

Twenty-five years ago, clusters of adenine and uridine-rich elements (AREs), were found in 

3′-UTRs of short-lived cytokines and were proposed to regulate some aspects of their 

metabolism (6, 7). Multiple subsequent studies confirmed the significance of these motifs in 

the regulation of cytokine mRNA stability and translation. ARE-mediated mRNA decay 

(AMD) was first demonstrated by inserting an ARE derived from granulocyte-macrophage 

colony-stimulating factor (GM-CSF) transcripts into a stable heterologous reporter 

transcript, a modification that strongly destabilizes the reporter mRNA (7). At the same 

time, deletion of AREs from the 3′ UTRs of tumor necrosis factor-α (TNF-α) or 

interleukin-3 (IL-3) transcripts was shown to inhibit AMD and enhance mRNA and protein 

expression (8, 9).

Although AUUUA pentamers and UUAUUUAUU nonamers are considered to be canonical 

AREs, large clusters of overlapping and scattered AU-rich motifs are typical for many 

cytokines. AREs have been classified into different classes according to their sequence 

composition and deadenylation (poly-A tail shortening) kinetics (10, 11). Class II AREs 
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(e.g. TNF-α, GM-CSF, and IL-3) contain several partially overlapping AUUUA pentamers 

within 50–150 nucleotides with U-rich context (10), while class I AREs (e.g. c-fos, c-myc) 

have fewer non-overlapping AUUUA pentamers (11). Interestingly, class III AREs (e.g. c-

Jun) completely lack the AUUUA pentamer (11). Typical AREs are 50–150 nucleotides 

long, with the UUAUUUAUU nonamer acting as the minimal sequence element that can 

induce modest mRNA degradation (12, 13). Mutations within AUUUA pentamers inhibit 

AMD. As for the difference in the deadenylation kinetics, class II AREs trigger efficient and 

rapid shortening of the poly-A tail, while class I and III AREs trigger less rapid decay (10, 

11). As a unifying feature, a general high content of uridylate residues within the ARE is 

absolutely required for its destabilizing activity.

AMD is an evolutionarily conserved regulatory mechanism that functions in a variety of 

mammalian cell types and different species. First discovered in cytokine transcripts, AREs 

are also found in mRNAs encoding growth factors, nuclear transcription factors, and proto-

oncogenes. Although the presence or absence of an ARE is not an absolute reflection of 

mRNA stability, it has been estimated that 5–10% of all human mRNAs contain functional 

AREs (14), making this element the most common determinant of RNA stability in 

mammalian cells.

AREs recruit numerous ARE-binding proteins (ARE-BPs) that determine the stability of 

target transcripts. To date, more than 20 different ARE-BPs have been identified; well-

known members include the tristetraprolin (TTP or Zfp36) family members TTP (15), 

BRF1, and BRF2 (butyrate response factors 1 and 2) (16), the ELAV family members (HuR, 

HuB, HuC, HuD) (17), AUF1 (hnRNP D), and its isoforms (18), TIA-1 (19), TIAR (19), 

KSRP (the KH splicing regulatory protein) (20), FXR1P (21), YB1 (22), and CUGBP2 (23). 

Depending on the ARE-containing 3′-UTR sequence and ARE-containing mRNA (ARE-

mRNA) localization in the cell, the composition of individual ARE-containing mRNPs can 

vary significantly. Each ARE-BP has distinct regulatory function(s): TIA-1, TIAR, 

CUGBP2, and FXR1P inhibit the translation of ARE- mRNAs (19, 21, 24); KSRP, TTP, 

BRF1, and BRF2 destabilize ARE-mRNAs (15, 16, 25); AUF1 isoforms either promote or 

inhibit mRNA decay (26-28); YB1 and HuR stabilize ARE-mRNAs (22, 29, 30); and HuR 

can both promote (31) and inhibit translation (32). Although sequence specificities of many 

ARE-BPs have been identified, distinct ARE-BPs physically interact with each other and 

can have redundant, additive, or competitive functions on the same target transcript (33-37). 

As ARE-mRNPs can be composed of several ARE-BPs, the functional outcome is 

determined by the combined effect of these ARE-BPs on target ARE-mRNA stability and 

translation. Table 1 gives an overview of immunity-related genes whose expression is 

regulated by RBPs including ARE-BPs.

TTP is one of the best-characterized ARE-BPs. It is an endotoxin-inducible zinc finger 

protein and early response factor that destabilizes several pro-inflammatory cytokine 

mRNAs such as TNF-α, GM-CSF, IL-1β, and IL-2 (15, 64, 75, 80, 115). TTP is part of a 

negative feedback loop that controls excessive pro-inflammatory cytokine production in 

response to endotoxin action and prevents the development of septic shock (116). Mice 

lacking TTP develop a severe autoimmune syndrome characterized by arthritis, cachexia, 

dermatitis, myeloid hyperplasia, and formation of autoantibodies due to the excessive release 
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of TNF-α and GM-CSF by macrophages and neutrophils (116). The administration of TNF 

antibodies significantly alleviates this systemic inflammatory syndrome (116, 117). This 

phenotype is similar to that of genetic knockin mice that lack the ARE region of TNF-α (8), 

suggesting that control of TNF-α mRNA stability plays a critical role in modulating the 

inflammatory response in general and synovial inflammation in particular. In human T cells, 

TTP also regulates production of IL-17, a cytokine involved in the innate immune response 

and pathogenesis of inflammatory diseases. TTP binds to the 3′-UTR of IL-17 transcripts in 

a region that contains eight ARE/ARE-like motifs. TTP overexpression enhances and TTP 

depletion inhibits IL-17 mRNA decay (97), suggesting that IL-17 is a physiological TTP 

target.

Other members of the TTP family, BRF1 and BRF2, are close homologues of TTP that share 

a high degree of sequence identity in their tandem C3H zinc finger domains, but differ in 

their C- and N-terminal domains (118). Genetic studies in mutant cell lines lacking 

expression of BRF1 or overexpressing BRF1/BRF2 suggest, similarly to TTP, that these 

proteins induce AMD of various cytokine mRNAs including TNF-α and GM-CSF (16, 84, 

119, 120). In contrast to TTP knockout mice, BRF1-deficient mice are embryonically lethal 

(121) and BRF2 knockout mice die within 2 weeks of birth (122). Interestingly, mice 

expressing N-terminally truncated BRF2 are viable but exhibit complete female infertility 

(123). All these data suggest that although TTP/BRF1/BRF2 share common functions in 

AMD and immunity, these proteins also have non-redundant roles in embryonic 

development, fertility, and haematopoiesis.

Similarly to TTP, AUF1 is part of the negative feedback loop of the innate response to 

endotoxin (27). This protein binds with high affinity to AREs of many short-lived mRNAs 

including cytokines (18, 124). Several splice isoforms of AUF1 (p37, p40, p42 and p45) 

have been described (125), and individual AUF1 isoforms differ biochemically in their 

affinity toward AU-rich elements, target specificity, and effect on target mRNA stability 

(18). AUF1-knockout mice display symptoms of severe endotoxic shock as a result of 

excessive production of TNF-α and IL-1β (27). This is due both to the absence of AUF1 

isoforms (p37, p42, and p45) that degrade selected ARE-mRNAs (27) and to the absence of 

the p40 isoform that selectively stabilizes IL-10 transcripts (126) that play a critical role in 

the suppression of inflammatory responses. Moreover, mice lacking AUF1 exhibit an altered 

size and proportion of splenic B-cell subsets due to the increased apoptosis in splenic B-cell 

follicles. AUF1 knockout mice develop spleens of reduced size that contain approximately 

half as many lymphocytes as wildtype spleens. This observation suggests that AUF1 plays 

an important role in regulating splenic lymphocyte cellularity and splenic follicular B-cell 

maintenance (127). Moreover, AUF1-deficient mice develop chronic pruritic inflammatory 

skin disease that has clinical and histological features of human atopic dermatitis. 

Histological analysis of chronic skin lesions demonstrates marked epidermal acanthosis with 

spongiosis and prominent dermal and epidermal leukocyte infiltration. AUF1 knockout mice 

display elevated serum IgE levels and increased contact sensitivity. Macrophages and T cells 

from AUF1-deficient mice demonstrate a number of abnormalities associated with dermatitis 

including T-cell hyperproliferation, increased ability of macrophages to be recruited to sites 

of inflammation, and increased production of TNF-α, IL-2, and IL-1β (128). AUF1 does not 

directly target degradation of mRNAs (129). Rather, it modulates decay by complexing with 
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different co-factors such as heat shock proteins HSC70 and HSP70, translation initiation 

factor eIF4G, and poly(A)-binding protein (130-132). Interestingly, AUF1-mediated mRNA 

decay is associated with physical displacement of eIF4G from AUF1 followed by 

ubiquitination of AUF1, and degradation of ubiquitinated AUF1 by the proteosome (26). 

These results imply a functional coupling of AUF1 mRNA decay with the translation 

initiation machinery, stress response (heat shock pathway), and the ubiquitin-proteosomal 

degradative network. The peptidyl-prolyl isomerase PIN1 is another binding partner of 

AUF1 in eosinophils and T lymphocytes. In these cells, PIN1 associates with AUF1 to 

destabilize GM-CSF mRNA (65, 133).

KSRP is another protein that binds to selected AREs through its KH domains and 

destabilizes selected ARE-mRNAs (25). Overexpression of KSRP markedly downregulates 

while siRNA-mediated knockdown upregulates expression levels of more than 100 related 

mRNAs encoding inflammatory proteins such as IL-8, TNF-α, and inducible nitric oxide 

synthase (iNOS) (93). Interestingly, KSRP knockout mice are viable and do not exhibit 

obvious abnormalities (68). Mouse embryonic fibroblasts (MEFs) derived from KSRP−/− 

mice exhibit higher levels of ARE-containing type I interferon (IFN) transcripts, and the 

increased levels of type I IFN provides resistance against vesicular stomatitis virus (VSV) 

and herpes simplex virus 1 (HSV-1) infection (68). These findings highlight the function of 

KSRP in innate immunity as a negative regulator of IFN production.

In contrast to TTP/BRF1/BRF2, AUF1, and KSRP that promote ARE-mRNA 

destabilization, HuR stabilizes target ARE-mRNAs (reviewed in 134). Recent studies have 

identified HuR-binding sites in more than 7,000 transcripts, and many of these binding sites 

are found in U-rich regions within the 3′-UTR (135). In macrophages and T cells, HuR 

associates with several mRNAs encoding pro-inflammatory proteins such TNF-α, GM-CSF, 

IL-6, IL-8, cyclooxygenase-2 (COX-2), and iNOS (35, 53, 73, 136-138). Peritoneal 

macrophages isolated from mouse strains expressing TNF-α mRNA containing a 

trinucleotide mutation/insertion in an HuR-binding site produce lower amounts of TNF-α 
protein upon stimulation with lipopolysaccharide (LPS) or IFNγ (139). These mice also 

develop an autoimmune syndrome that resembles systemic lupus erythematosus in humans 

(140, 141); the onset of this syndrome can be delayed by injecting recombinant TNF-α 
(142), suggesting a positive role for HuR in TNF-α expression. Although the genetic 

deletion of HuR in mice leads to embryonic lethality (143), genetic studies using approaches 

of conditional manipulation of HuR expression further illuminate the importance of this 

protein in immunity. Mice with a conditional knockout of HuR in thymocytes have defects 

in T-cell development, proliferation, and migration (144), demonstrating the importance of 

HuR for adaptive immunity. Surprising results came from studies in transgenic mice 

conditionally overexpressing HuR in myeloid cells, where HuR appeared to function as a 

negative modulator of inflammation in vivo (32). Contrary to expectations, LPS-induced 

macrophages derived from these mice express lower levels of key inflammatory mediators 

such as TNF-α and COX-2. Moreover, HuR overexpressing mice clearly reduce 

concanavalin A-induced hepatic inflammation and damage. Further analysis suggested that 

although HuR stabilizes TNF-α and COX-2 mRNAs, it suppresses their translation by 

cooperation with TIA-1, a known translational silencer (32). The complexity of HuR 

functions was further demonstrated in studies using mice lacking HuR in myeloid lineage 
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cells. Myeloid loss of HuR sensitizes mice to systemic pathologic inflammation, manifest by 

a polarized proinflammatory response that enhances progression and maintenance of 

inflammatory colitis and colitis-associated cancer. Bone marrow-derived macrophages from 

these mice demonstrate normal macrophage activation and function in terms of Toll-like 

receptor (TLR) signaling engagement, pinocytosis, and phagocytosis, expression of markers 

and pattern recognition receptors. At the same time, macrophages exhibit exacerbations in 

the balance of proinflammatory and homeostatic states governing the extent of the 

inflammatory response including increased accumulation of IL-6 mRNA and IL-6 protein 

secretion, a key acute-phase protein and mediator of colitis-associated cancer. HuR-deficient 

macrophages exhibit enhanced chemotaxis to CCR2 signals. Surprisingly, and in contrast to 

the role of HuR as general mRNA stabilizer, this is due to mRNA stabilization of the 

chemokines CCL2 and CCL7 and their receptors (CCR2 and CCR3), which mediate 

macrophage chemotaxis in acute inflammation and cancer (145). Moreover, the classical 

ARE-containing transcripts TNF-α and COX-2 appear unaffected by the loss of HuR (145), 

despite their increased stability when HuR is overexpressed (32). As HuR is known to 

interact with other ARE-BPs such as CUGBP2, KSRP, and AUF1 (reviewed in 146, 147), it 

is suggested that HuR acts in a pleiotropic fashion through multiple physical and functional 

interactions with different ARE-BPs and ARE-mRNAs.

How do ARE-BPs modulate mRNA stability? Experiments in which ARE-BPs (such as 

TTP) are directly tethered to non-ARE-containing mRNA reporters show that physical 

interaction of an ARE-BP to mRNA is sufficient to induce rapid reporter decay. Although 

purified recombinant ARE-BPs do not possess exoribonuclease activities, they function by 

recruiting components of the mRNA decay machinery, including the exosome complex, the 

deadenylases PARN, PAN2/PAN3, and/or CCR1-POP2-NOT1 complexes, the decapping 

enzymes DCP1A and DCP2, and the 5′-3′ exoribonuclease XRN1. For example, TTP 

family members bind the exosome, XRN1, and decapping enzymes (148-150), and KSRP 

binds to the exosome, PARN, DCP2, and XRN1 (25, 151). Similarly, HuR competes with 

mRNA destabilizing ARE-BPs for binding to selected AREs, thus displacing them from 

mRNA and blocking the action of deadenylases.

Non-ARE-mediated mRNA turnover

Although the ARE is the most common sequence (besides microRNA-binding sites) that 

regulates mRNA stability, other regulatory elements have been described in transcripts 

encoding proteins implicated in immunity. A single mRNA often contains several different 

regulatory elements that coordinately determine rates of mRNA stability and translation. For 

example, the 3′-UTR of TNF-α mRNA encodes both an ARE and a downstream 

constitutive decay element (CDE) (107). In macrophages, CDE-mediated decay is refractory 

to stimulation with LPS and serves as a fail-safe mechanism that prevents the pathological 

overexpression of TNF-α under conditions when the ARE is inactive. Similarly, in addition 

to its ARE, G-CSF (granulocyte colony-stimulating factor) mRNA contains a stem-loop 

destabilizing element (SLDE) in its 3′-UTR. The SLDE prevents stabilization of G-CSF 

mRNA under conditions in which AMD is inhibited to maintain stringent control over G-

CSF production (62).
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Regulation of IL-2 mRNA decay is a complex process. In unstimulated T cells, an ARE in 

the 3′-UTR of IL-2 transcript mediates rapid degradation via AMD. In stimulated cells, IL-2 

mRNA is stabilized by simultaneous inhibition of AMD and the c-Jun N-terminal kinase 

(JNK)-dependent recruitment of nucleolin and YB-1 proteins to a specific cis-element in 5′-

UTR called the JNK-responsive element (JRE) (22, 152). Besides binding of these proteins 

to JRE, binding of nuclear factor 90 (NF90) to the ARE-containing subregion of the 3′-UTR 

further slows down the degradation of IL-2 mRNA (82).

Vascular endothelial growth factor (VEGF) functions to link angiogenesis and inflammation 

in an oxygen-dependent manner. Under normoxic conditions, VEGF mRNA is intrinsically 

labile but in response to hypoxia the mRNA is stabilized. Three distinct and independent 

destabilizing elements contribute to the rapid decay of VEGF mRNA: an element in 5′-

UTR, an ARE in the 3′-UTR and a coding region determinant of instability (110-112). 

Although each of these elements can cause rapid decay of mRNA reporters, their 

cooperative action is required for mRNA stabilization in response to hypoxia. As in the case 

of IL-2 mRNA, cooperative binding of distinct factors is required for VEGF mRNA 

stabilization: HuR binding to the 3′-UTR (112), and binding of a complex containing 

polypyrimidine tract-binding protein (PTB) and YB-1 to two sites in the 5′- and one site at 

the 3′-UTR (110). Interestingly, YB-1 and PTB are also implicated in mRNA turnover of 

other short-lived transcripts, suggesting a general role for these factors in mRNA turnover. 

YB-1 directly binds to the ARE of GM-CSF mRNA to enhance its stability (153), while a 

complex containing PTB and nucleolin binds to a CU-rich region in the 3′-UTR of CD154 

(CD40L) mRNA to stabilize this transcript during T-cell activation (44, 48, 50). In B cells, a 

PTB-containing complex also stabilizes Rab8A mRNA upon TLR9 activation by 

unmethylated CpG DNA (105).

The GU-rich (GRE) consensus sequence, UGUUUGUUUGU, was identified as a sequence 

that is highly overrepresented in the 3′-UTR of short-lived transcripts expressed in human T 

cells (such as TNF receptor 2, c-jun, and CD9) (43). Insertion of a GRE into the 3′-UTR of 

a heterologous mRNA reporter promotes mRNA decay (154). In human cells, the GRE is a 

target of CUG-binding protein 1 (CUGBP1, CELF1), an RNA-binding protein that mediates 

mRNA decay by recruiting PARN to stimulate poly(A) tail shortening (155).

Mast cells play a number of different functions in immune responses (156). Although all 

mast cells are derived from a common progenitor, they exhibit differential expression of the 

chymase family of serine proteases in a tissue-specific manner. While mouse mast cells 

residing in the intestinal mucosa abundantly express mouse mast cell protease-1 (mMCP-1) 

and mMCP-2, those in the peritoneal cavity and skin preferentially express mMCP-4 and 

mMCP-5. Interestingly, immature bone marrow-derived mast cells efficiently transcribe all 

four of these mMCP genes, but exhibit high steady-state mRNA levels of mMCP-5 and not 

of mMCP-1, mMCP-2, and mMCP-4. In response to IL-10, mMCP-2 mRNA levels are 

increased due to a prolongation of their half-life, suggesting that mMCP-2 mRNA is 

regulated primarily post-transcriptionally. Analysis of the 3′-UTRs of mMCPs does not 

reveal the presence of AREs or other known destabilizing cis-elements. A repetitive C-rich 

sequence (CRS: UGXCCCC where X is any nucleotide) was identified in the 3′-UTRs of 

mMCP-1, mMCP-2, and mMCP-4 but not in the mMCP-5 transcripts (102). Although the 
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functional importance of CRS motifs remains to be determined, it is likely that this element 

is responsible for the constitutive decay of CRS-containing transcripts through the action of 

unknown trans-factors.

ZCCHC11-mediated stabilization of IL-6 mRNA

The zinc finger protein ZCCHC11 (terminal uridyltransferase 4) has uridyltransferase 

activity allowing addition of nongenome-encoded uridine to the 3′-ends of target RNAs 

(88). Analogous uridylation of histone transcripts is used to promote their degradation (157). 

Knockdown of ZCCHC11 in A549 human alveolar epithelial cells inhibits TNF-induced 

secretion of inflammatory cytokines (such as IL-6, CCL5, VEGF, and TGFβ). Depletion of 

ZCCHC11 reduces IL-6 mRNA levels, a consequence of increased IL-6 transcript decay 

(88). Remarkably, ZCCHC11 uridylates members of the miRNA-26 family, which represses 

the expression of IL-6 mRNAs by promoting their decay, and targets them for degradation 

(88). By eliminating miRNA-26 species, ZCCHC11 stabilizes IL-6 transcripts.

ZC3H12A-mediated cleavage of cytokine mRNAs

ZC3H12A (MCPIP1, CCL2-induced ribonuclease) is a protein containing a single C3H zinc 

finger and a characteristic PIN (PilT N-terminus) endoribonuclease domain (89, 158). Mice 

lacking the Zc3h12a gene die within 12 weeks due to severe anemia and the development of 

a systemic autoimmune syndrome characterized by severe splenomegaly, augmented serum 

immunoglobulin levels, autoantibody production, expansion of plasma cells, and infiltration 

of plasma cells in the lung. In response to TLR ligands, macrophages from ZC3H12A 

knockout mice show highly increased levels of IL-6 and IL12b (IL-12p40) but not TNF-α 
(89). While the activation of TLR signaling pathways is normal, IL-6 mRNA decay is 

severely impaired (89). Overexpression of ZC3H12A promotes IL-6 mRNA degradation by 

direct cleavage of putative destabilizing elements within the 3′-UTR of IL-6 transcripts (89, 

91). Recently, IL-1β transcripts were identified as another target of the MCPIP1 

endoribonuclease (77). Altogether, these data demonstrate that ZC3H12A is an important 

negative regulator of the inflammatory response.

Nonsense-mediated mRNA decay

Newly synthesized mRNAs are delivered to the cytoplasm in the form of mRNPs whose 

composition reflects their ‘nuclear history’ of mRNA processing (e.g. splicing, capping, and 

polyadenylation). These proteins provide information that is decoded by mRNA quality 

control mechanisms used to determine cytoplasmic fate. NMD is an mRNA surveillance 

mechanism that detects and eliminates mRNAs with premature termination codons (PTCs) 

(reviewed in 159, 160). Such transcripts encode C-terminally truncated proteins that may be 

non-functional or toxic or could act as dominant-negative inhibitors of normal cell function. 

The sources of PTC-containing transcripts are genomic DNA mutations, errors of DNA 

replication and DNA repair, DNA recombination events, and errors of RNA transcription/

processing. Moreover, genome-wide studies showed that NMD also regulates the abundance 

of up to 5% of properly processed mRNAs (non-PTC mRNAs) (161), suggesting a role for 

NMD in cellular processes in addition to mRNA quality controls.
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NMD is a splicing- and translation-dependent mechanism. UPF proteins (UPF1-3) play 

important roles in this process in all organisms. During splicing, protein complexes [so-

called exon junction complexes (EJCs)] are deposited 20–24 nucleotides upstream of every 

exon-exon junction (162). During the first (or pioneer) round of translation, EJCs located 

upstream of the stop codon are ‘stripped off’ by translating ribosomes (163). If the 

translating ribosome is terminated at a PTC, the ribosome may not remove all of the EJCs 

from the mRNA. In this case, the transcript is targeted for degradation. Although the 

molecular mechanisms of this process are not fully understood, physical interactions 

between the terminating ribosome, UPF proteins, the EJC, and PABP determine whether the 

stop codon is physiological or premature (164-166). PTC-containing transcripts are marked 

for degradation by interactions between UPF1 protein and the SMG5-SMG6-SMG7 

complex that directs mRNAs for decay through two pathways: (i) SMG6-mediated 

endonucleolytic cleavage followed by exonucleolytic degradation of fragments by 5′-3′- 

and 3′-5′ exonucleases; (ii) decapping/deadenylation followed by exonucleolytic decay 

(167, 168).

The immunoglobulin (Ig) and T-cell receptor (TCR) genes require programmed 

rearrangements and other ‘nontemplate’ mechanisms to generate a diverse set of functional 

receptors that recognize different antigens. An important consequence of such manipulations 

is the increased receptor repertoire. However, such rearrangements often change the reading 

frame to generate PTCs. The resulting truncated non-functional TCRs and Igs may cause 

defects in the development and function of T and B lymphocytes (169). The mRNA levels of 

PTC-containing mRNAs encoding these non-functional receptors are much lower than 

mRNAs encoding functional TCRs and Igs (170-176). The observed difference is not due to 

different rates of transcription but rather to the preferential degradation of PTC-bearing 

transcripts. Although detailed molecular mechanisms of this downregulation are not clear, 

this RNA surveillance is translation-dependent and at least partially relies on the action of 

the classical NMD machinery (177-179).

Presentation of endogenous peptides on major histocompatibility complex (MHC) class I 

molecules allows the immune system to distinguish between self and nonself. These 

peptides are mainly derived from proteosome-mediated protein turnover. Recently, 

translation of PTC-containing transcripts has been proposed to be an alternative source of 

peptides that are loaded into MHC class I for antigen presentation (180). While newly 

synthesized mRNA is undergoing the pioneer round of translation, PTC-containing 

transcripts synthesize C-terminally truncated proteins. These truncated proteins are then 

processed into peptides by the proteosome to eliminate potentially deleterious effects on cell 

physiology. The same peptides are also selected for antigen presentation by the MHC class I 

pathway (180).

Cross-talk between RNA-binding proteins and microRNAs

Mature miRNAs are produced by sequential processing of pre- and pri-miRNAs by the 

ribonucleases Drosha and Dicer. The resulting short double-stranded RNA binds to 

argonaute proteins (AGOs) and is incorporated into the RNA-induced silencing complex 

(RISC) that uses the AGO-associated guide RNA strand as a template for recognizing 
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complementary mRNA targets. Upon binding its target transcript, miRNA/RISC then causes 

inhibition of mRNA translation and/or degradation. miRNAs are known to contribute 

significantly to the post-transcriptional regulation of genes involved in immune functions 

(reviewed in 147, 181, 182). For example, conditional knockout of DICER in B-cell 

progenitors causes a developmental block at the pro- to pre-B-cell transition, and Dicer 

deletion in cortical thymocytes affects iNKT cell differentiation (183, 184).

Even more abundant than AREs, miRNA-binding sites are estimated to be present in 30% of 

the human protein-coding genome (185). Interestingly, compared to the rest of the genome, 

predicted miRNA-binding sites are more frequent in immune genes. Within immune genes, 

transcription factors, co-factors, and chromatin modifiers are major targets, while upstream 

signaling factors such as ligands and receptors are in general non-targets of ‘immuno-

miRNAs’. About 10% of the predicted miRNA-regulated immune genes are targeted by 

eight or more different miRNAs and they include key immune regulatory genes such as 

SMAD7, BCL6, and NFAT5 (186). Factors involved in the regulation of ARE-containing 

transcripts such as HuR, TTP, AUF1, and KSRP are also heavily regulated by one or more 

miRNAs (186, 187). Taking into consideration that single ARE-BPs simultaneously regulate 

expression of many mRNAs, a single miRNA controlling ARE-BP expression may 

indirectly regulate multiple immunomodulatory genes.

While certain miRNAs regulate expression of ARE-BPs, ARE-BPs can also regulate 

expression of miRNAs. For example, KSRP participates in the processing of multiple 

miRNAs including let-7 and miR-155 that control TLR signaling (188, 189) and HuR 

downregulates processing of miR-7 (190). AUF1 directly binds to the coding region and 3′-

UTR of DICER mRNA causing its destabilization. AUF1 overexpression downregulates 

while AUF1 depletion upregulates DICER protein levels. Since DICER is indispensable for 

miRNA maturation, AUF1 indirectly suppresses the miRNAome by reducing Dicer 

production (191).

miRNAs and ARE-BPs can interact with each other to regulate the expression of selected 

transcripts. The first report linking AMD and miRNA-mediated decay came from studies of 

reporter genes bearing the TNF-α ARE: knockdown of DICER, AGO1, or AGO2 also 

inhibited AMD of reporter transcripts in Drosophila melanogaster S2 cells and human HeLa 

cells (192). In addition, TTP associates with AGO proteins providing a mechanistic link 

between miRNA- and ARE-mediated machineries. Moreover, miR-16, a human miRNA 

containing an UAAAUAUU sequence that is partially complementary to the ARE sequence, 

is required for turnover of a TNF-α ARE-reporter transcript. These data suggest that 

miRNAs with appropriate sequence complementarity can recruit RISC to the ARE and thus 

mediate part of the repressive effect (192), although a recent report strongly argues that 

AREs can function independently of miRNAs (193). Another study shows that HuR, which 

typically promotes translation of its target transcripts, cooperates with let-7 miRNAs to 

repress the expression of MYC transcripts. HuR-mediated inhibition requires both HuR and 

AGO2-let-7 complexes to bind adjacent sites in the 3′-UTR of MYC mRNAs (194). In 

response to environmental stress, HuR translocates from the nucleus to the cytoplasm to 

regulate the expression of specific transcripts. One of them, cationic amino acid transporter 1 

(CAT-1), is repressed by miR-122 under normal conditions. In response to amino acid 
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starvation, miR-122-mediated repression is relieved by the binding of HuR to CAT-1 

transcripts or mRNA reporters possessing the CAT-1 3′-UTR (195). Similarly, the 

translational silencer FXR1 paradoxically converts the TNF-α ARE from a repressor of 

translation to an activator of translation. Stress recruits FXR1 and AGO2 to a TNF-α ARE-

containing mRNA reporter and increases translation of the reporter protein. This stress-

induced translational activation requires miR-369-3, a miRNA with a 5′-seed region 

complementary to the TNF-α ARE. Mutations in the ARE of TNF-α that disrupt 

complementarity to miR-369-3 or knockdown of miR369-3 precursor RNA abolish stress-

induced translational activation of this TNF-α ARE reporter (196, 197), suggesting that 

under some conditions, miRNAs can specifically enhance protein translation.

Translational control of immunity

Post-transcriptional control mechanisms often target the initiation step of translation, a 

complex multistep process requiring the action of more than a dozen initiation factors (eIFs) 

(198, 199). Two steps of the translation initiation process are under particularly stringent 

control: (i) the initiation factor eIF2 (eIF2α/β/γ) -dependent recruitment of the initiator 

tRNA (tRNAi
Met) to the ribosome, and (ii) binding of the major cap-binding protein eIF4E 

(which combines with eIF4G and eIF4A to assemble the eIF4F complex) to the 5′ cap 

structure of mRNA. In the first step, ternary complex consisting of eIF2α/β/γ/

tRNAi
Met/GTP joins with other early initiation factors and the 40S ribosomal subunit to 

assemble the 43S pre-initiation complex. This complex allows tRNAt
Met to recognize the 

AUG start codon to initiate protein synthesis. Start codon recognition results in hydrolysis of 

GTP to GDP and release of eIF2-GDP from the translating ribosome. The initiation factor 

eIF2B then exchanges GTP for GDP to re-charge the ternary complex, allowing another 

round of initiation. The activity of eIF2B is regulated by the phosphorylation state of eIF2α: 

when eIF2α is phosphorylated, it converts eIF2 from a substrate to a competitive inhibitor of 

eIF2B. Consequently, inhibition in eIF2B activity results in a decrease in eIF2α/β/γ/

tRNAi
Met/GTP levels to decrease translation initiation. The second step is the recruitment of 

the eIF4F complex to mRNA through interactions with the cap structure. The mRNA-bound 

eIF4F complex recruits the 43S pre-initiation complex which scans the 5′-UTR until 

initiator tRNA recognizes the AUG start codon. Upon recognition of the start codon, the 60S 

large ribosomal subunit joins the 40S ribosomal subunit, and the complete ribosome (80S) 

then commences translation elongation. Interference with eIF4F function inhibits the 

initiation of capped mRNAs. This occurs when eIF4E-binding proteins (4E-BPs) interact 

with eIF4E and prevent assembly of the translation-competent eIF4F complex on capped 

transcripts. The eIF4E/4E-BPs binding is regulated by mammalian target of rapamycin 

(mTOR), a central integrator of signals playing critical roles in the metabolism, 

differentiation, activation, and function of a diverse set of immune cells (200). Examples of 

translational control mechanisms governing immune system functions are discussed below.

Translational silencing of ARE-containing transcripts

Besides contributing to AMD, some ARE-BPs also control translation of ARE-containing 

transcripts. Quantitative analysis of inflammatory mediator production showed that the 
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actual levels of protein often reflect the integration of combined effects of ARE-BP(s) on 

mRNA decay and translation.

TIA-1 and TIAR proteins are closely related members of the RNA-recognition motif (RRM) 

family of RBPs. They share a very similar domain architecture comprised of three RRMs 

and a C-terminal glutamine/asparagine-rich prion-related domain. Macrophages obtained 

from mice lacking TIA-1 or TIAR overexpress pro-inflammatory proteins such as TNF-α, 

IL-1β, IL-6, matrix metalloproteinase, and COX-2. Initial studies revealed that these 

proteins do not affect the stability of their target transcripts but rather inhibit their translation 

(19, 201-203). Specifically, upon LPS stimulation, macrophages derived from TIA knockout 

mice showed significantly increased association of TNF-α transcripts with polysomes, 

which represent the most actively translating fraction of ribosomes, in comparison to 

wildtype macrophages. Consequently, macrophages lacking TIA-1 produce significantly 

more TNF-α protein than wildtype controls, despite having comparable TNF-α mRNA 

steady-state levels and half-lives. As a consequence of the overexpression of selected 

cytokines, mutant mice lacking TIA-1 or TIAR have a hyperinflammatory phenotype and 

develop mild arthritis in a strain-dependent manner (reviewed in 146, 204). Mice lacking 

both proteins die before embryonic day 7, suggesting that at least one of these proteins must 

be present for normal embryonic development (19).

Gene array studies revealed a subset of mRNAs that are regulated by both TIA-1 and TTP 

(205), and mice lacking both TTP and TIA-1 develop severe spontaneous inflammatory 

arthritis that is more prominent than that observed in mice with ablation of TTP or TIA-1 

alone (206) suggesting an overlapping regulatory network for these proteins. 

Mechanistically, tethering of TIA-1 to mRNA reporters not only promotes translation 

inhibition, but also stimulates transcript decay. This TIA-1-mediated decay relies on the 

action of both 5′-3′ and 3′-5′ degradation pathways (DCP2 decapping enzyme and the 

exosome complex) and requires polysome disassembly (drugs stabilizing polysomes inhibit 

this decay) (205). Whether or not TIA-1 cooperates with TTP (for example to recruit 

degradation enzymes) to promote TIA-1-mediated decay of transcripts simultaneously 

regulated by these proteins remains to be determined.

How do TIA-1 and TIAR inhibit translation? A hint of the mechanism of TIA-1/TIAR-

mediated translational silencing comes from studies of the global translational arrest 

triggered by environmental stress. In stressed cells (e.g. upon nutrient and energy 

deprivation, heat shock, or oxidative conditions), eIF2α becomes phosphorylated by one or 

more members of a family of serine/threonine kinases. These kinases are activated by viral 

infection, endoplasmic reticulum stress, amino acid deprivation (GCN2), and hemin 

deficiency. In some cases, their dimerization and autophosphorylation greatly increases their 

ability to phosphorylate eIF2α. As a consequence of eIF2α phosphorylation, the availability 

of the ternary complex is reduced and translation initiation is inhibited. Under these 

conditions, TIA-1/TIAR promote the assembly of non-canonical, translationally stalled 48S* 

pre-initiation complexes that lack selected initiation factors (eIF2 and eIF5). The 48S* 

complexes are then assembled into stress granules (SGs), discrete cytoplasmic foci where 

untranslated mRNAs are stored. Transiently overexpressed TIA-1/TIAR proteins inhibit 

translation initiation, disassemble polysomes, and promote SG assembly, but these effects 
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are blocked in mutant cells expressing only nonphosphorylatable eIF2α. TIA-1 and TIAR as 

well as other RBPs (FXR1, FMRP, YB-1, HuR, etc.) are concentrated in SGs, suggesting 

that these proteins may work together to promote stress-induced translational silencing. 

Moreover, recruitment of mRNA transcripts into SGs is a selective process that depends on 

mRNA structure, cytoplasmic levels of specific SG-associated mRNA-binding proteins, and 

the nature/severity of the stress. It is possible that the reduced translation of selected ARE-

mRNAs mediated by TIA-1/TIAR also requires assembly of 48S* complexes as observed 

during stress-induced global translation inhibition.

Stress granules have also been linked to post-transcription control pathways that regulate the 

immune response. T lymphocytes mediate adaptive immunity through differentiation of 

naive precursors into cytokine-secreting effector cells. After initial priming of naive T cells, 

the transcription of effector cytokines (such as IFN-γ and IL-4) is turned on, but the 

production of IFN and IL-4 proteins is not detected until these cells undergo antigen-specific 

re-stimulation (207). These results suggest that transcription and translation are uncoupled in 

naive T cells. Mechanistically, primed T cells readily demonstrate increased levels of eIF2α 
phosphorylation that positively correlates with polysome disassembly/assembly of TIA-1-

positive SGs and translation attenuation (207). However, after antigen-specific restimulation, 

these effector cytokines are abundantly secreted as a consequence of rapid eIF2α 
dephosphorylation, disassembly of SGs, and translation of their mRNAs. Significantly, 

introduction of dominant-negative TIA-1 or interference with eIF2α phosphorylation 

reversed this phenomenon, allowing IL-4 protein secretion in response to the initial priming 

of T-helper 2 cells (207).

SGs have also been linked to the etiology of an autoimmune syndrome similar to systemic 

lupus erythematosus and caused by a point mutation in Rc3h1, the gene that encodes the 

zinc finger protein roquin (67). In CD4+ T cells, roquin promotes the decay of mRNA 

encoding inducible T-cell costimulator (ICOS), and in cells expressing mutant roquin, ICOS 

mRNA is stabilized leading to enhanced T-cell activation, a common trigger of 

autoimmunity. Roquin directly binds to a region within the 3′-UTR of ICOS mRNA, and 

both roquin and ICOS mRNA colocalize in SGs and P-bodies (another RNA granule 

putatively involved in mRNA storage/decay) (67, 208, 209). Although roquin associates with 

the decapping machinery to degrade ICOS transcripts (208), it remains to be determined 

whether or not roquin also influences ICOS mRNA translation.

The IFN-γ-activated inhibitor of translation

The IFN-γ-activated inhibitor of translation (GAIT) element (210) is a 29-nucleotide hairpin 

structure found in the 3′-UTRs of a distinct group of inflammation-related transcripts [both 

pro- and anti-inflammatory (211)] such as ceruloplasmin, VEGF, diverse chemokines, and 

chemokine receptors (210, 212, 213). In human myeloid cells, IFN-γ triggers formation of a 

heterotetrameric GAIT complex consisting of glutamyl-prolyl tRNA synthetase (EPRS), 

NS1-associated protein 1, ribosomal protein L13a (RPL13a), and glyceraldehyde-3-

phosphate dehydrogenase (213). The GAIT complex binds GAIT-containing transcripts, 

targets components of the translation initiation machinery, and inhibits mRNA translation. 

Specifically, IFNγ triggers phosphorylation of EPRS and RPL13a and their subsequent 
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release from the tRNA multisynthetase complex and 60S subunit, respectively (214, 215). 

Upon GAIT complex assembly and its binding to mRNA, RPL13a binds to the eIF3-binding 

site of eIF4G to remodel the cap-binding eIF4F complex and to inhibit 43S pre-initiation 

complex recruitment (216). Interestingly, although binding of the GAIT complex to target 

transcripts is mediated by EPRS, the ability of EPRS to bind GAIT elements is repressed 

until the holocomplex is assembled (213, 216, 217). An interesting aspect of GAIT complex 

regulation is the dynamics of its assembly: after IFNγ stimulation, it takes 14–16 h to 

terminate the production of inflammatory mediators. This ‘delay’ between IFNγ activation 

and actual translational silencing of GAIT-transcripts is thought to balance other IFNγ-

mediated effects on expression of inflammatory mediators (mostly at the transcriptional 

level) by suppressing mRNAs that avoid early IFNγ-induced transcriptional blocks (213).

HNRNPL-mediated translation modulation

The activity of the GAIT complex can be regulated by changes in environmental conditions. 

VEGF (VEGF-A) mRNA contains a GAIT element in its 3′-UTR that is regulated by cross-

talk between heterogeneous nuclear ribonucleoprotein L (hnRNP L) and the GAIT complex 

(114). In macrophages, IFNγ simultaneously activates the transcription of VEGF transcripts 

and activates the GAIT complex to allow a tightly regulated production of VEGF protein. 

Under hypoxia, while transcription of VEGF is stimulated, the GAIT-mediated translational 

repression is inhibited to greatly stimulate VEGF protein production (113). The hypoxia-

induced override of the GAIT system is mediated by HNRNPL binding to a cytosine- and 

adenine-rich instability element (CARE) that lies adjacent to the GAIT element in the 3′-

UTR of VEGF transcripts (113, 114). While under normoxia, IFNγ promotes the 

proteosomal degradation of HNRNPL, hypoxia prevents this degradation. HNRNPL binding 

to the CARE alters the secondary structure of the 3′-UTR to eliminate the GAIT element 

hairpin preventing GAIT complex binding and translational repression.

HNRNPL also regulates translation of CD154 (CD40L) transcripts encoding a 

transmembrane glycoprotein expressed on the surface of activated T cells that regulates B-

cell functions. CD154 protein is overexpressed in some autoimmune diseases like systemic 

lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. In addition to the 

nucleolin/PTB-mediated mechanisms regulating stability of CD154 mRNA (44, 48, 50), 

HNRNPL regulates its translation. A 100-nucleotide cytosine- and uridine-rich instability 

element (CURE) found in the 3′-UTR of CD154 mRNA (47) recruits alternative splice 

variants of PTB that differentially modulate CD154 mRNA stability: whereas full length 

PTB stabilizes this transcript, a splice variant lacking exons 3–10 (PTB-T) destabilizes 

CD154 mRNA (46). A CARE element (similar to the one found in VEGF transcripts) 

located downstream of the CURE recruits HNRNPL to inhibit CD154 translation (47). 

Although the molecular details of CARE-mediated HNRNPL recruitment and translation 

inhibition are not known, CARE-bound HNRNPL might unwind local secondary structure to 

remodel an element that recruits a translational enhancer. In humans, the CARE in CD154 is 

polymorphic with the number of cytosine-adenine (CA) repeats ranging from 20 to 30 (218). 

Case-association studies demonstrate that larger numbers of CA repeats (>24 repeats) are 

found in systemic lupus erythematosus patients than in healthy controls (24 repeats), and a 

group of patients with shorter numbers of CA repeats (<24 CA) present with more livedo 
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reticularis, anti-Sm, and anti-RNP autoantibodies, suggesting that CA repeat polymorphism 

contributes to the development of systemic lupus erythematosus (218). While molecular 

details explaining how the number of CA repeats regulates CD154 expression remains to be 

deciphered, we speculate that changes in CA repeat number influence the relative 

contribution of CARE and CURE elements to modulate CD154 mRNA stability and 

translation.

Steroid receptor co-activator 3-mediated inhibition of cytokine translation

Steroid receptor co-activator 3 (SRC3) (NCOA3) is a transcriptional co-activator that can 

either promote or inhibit inflammation by regulating rates of transcription (219). Src3−/− 

mice are hypersensitive to LPS challenge and overexpress pro-inflammatory TNF-α, IL-6, 

and IL-1β cytokines (108). Polysome profiling experiments on LPS-activated peritoneal 

macrophages from wildtype and SRC3 knockout mice demonstrated that translation of TNF-

α and IL-1β transcripts is higher in Src3−/− macrophages. Mechanistically, SRC3 was shown 

to associate with TIA-1 and to increase affinity of TIA-1 for the ARE of TNF-α, thus 

cooperatively repressing translation of TNF-α mRNA (108). These studies show that SRC3 

functions as both a transcriptional co-activator and a translational co-repressor.

Translational control of production of lipid mediators

Lipid mediators play essential roles in both the initiation (prostaglandins and leukotrienes) 

and resolution (lipoxins and resolvins) of inflammation. Their production is indirectly 

controlled by post-transcriptional mechanisms that regulate expression of cyclooxygenases 

and lipoxygenases, principal enzymes that produce lipid mediators from arachidonic acid. 

The 3′-UTRs of mRNAs encoding these enzymes contain regulatory elements that modulate 

their translation and stability. For example, expression of COX-2, an enzyme that 

metabolizes arachidonic acid to produce pro- and anti-inflammatory prostaglandins, is 

regulated on the level of translation by TIA-1 (54) in a manner similar to the TIA-1-

mediated TNF-α mRNA translation regulation (19). TIA-1 binds to the ARE in the 3′-UTR 

of COX-2 mRNA to inhibit its translation, and TIA-1 null fibroblasts produce significantly 

more COX-2 protein than wildtype fibroblasts, but have no differences in the COX-2 mRNA 

turnover and levels (54).

The 12, 15-lipoxygenases participate in the conversion of arachidonic acid into a number of 

important lipid mediators. The mRNAs encoding these enzymes contain cytosine- and 

uridine-rich repeats similar to the differentiation control element (DICE) found in the 3′-

UTR of 15-LO (15-lipoxygenase) mRNA (100, 101). Although 15-LO mRNAs are detected 

at early stages of erythropoiesis, 15-LO proteins are only expressed in erythroid cells just 

before they become mature erythrocytes (220). This developmental stage-restricted 

expression of 15-LO is achieved by translational inhibition through HNRNPE1 and 

HNRNPK binding to the DICE. DICE-bound HNRNPE1/HNRNPK complex inhibits 

translation initiation by preventing 60S ribosomal subunit joining to the 48S pre-initiation 

complex (100).
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Some lipid mediators can directly function as inhibitors of protein translation. 

Cyclopentenone 15d-PGJ2 is an anti-inflammatory prostaglandin produced by mast cells, T 

cells, platelets, and macrophages (221). 15d-PGJ2 works as a PPARγ agonist and inhibitor 

of NF-κB to repress transcription of mRNAs encoding pro-inflammatory mediators (222, 

223). In addition to targeting the transcriptional machinery, 15d-PGJ2 directly binds to the 

eIF4A helicase, inhibits its activity, and interferes with the ability of the 48S pre-initiation 

complex to scan the 5′-UTR of mRNAs in search of the AUG start codon (224). As a 

consequence of 15d-PGJ2-mediated translation inhibition, untranslated mRNAs accumulate 

in SGs allowing dynamic reprogramming of gene expression in response to external insults 

such as inflammation (224). Although the inhibition of eIF4A is expected to cause global 

repression of translation, selected mRNAs with structured guanine- and cytosine-rich (GC-

rich) 5′-UTRs might be preferentially targeted by 15d-PGJ2, since 48S scanning through 

these structured regions is particularly dependent on the unwinding activity of the eIF4A 

helicase. For example, the mRNAs encoding inflammatory cytokines IL-4, IL-10, and IFNγ 
have structured GU-rich 5′-UTRs. In CD3/CD28-activated lymphocytes lacking PDCD4 

(programmed cell death protein 4, which inhibits eIF4A functions), expression of these 

cytokines is selectively higher than that in wildtype cells (225). Proteomic approaches will 

be required to determine whether or not 15d-PGJ2, similarly to PDCD4, targets mRNAs 

with structured GU-rich 5′-UTRs encoding inflammatory mediators.

Indoleamine 2,3-dioxygease/GCN2-mediated metabolic control of immune 

responses

Indoleamine 2,3-dioxygease (IDO) is a potent immunoregulatory enzyme that catabolizes 

the essential amino acid tryptophan (TRP) into kynurenine (KYN) (reviewed in 226, 227). 

IDO is expressed in professional antigen-presenting cells (APCs) such as macrophages and 

dendritic cells (DCs), and its expression is tightly regulated by exogenous signals. Although 

IDO enzymes are intracellular and not secreted, neighboring cells can respond to metabolic 

effects of IDO by sensing secreted KYN as well as reduced access to TRP. Thus, ‘IDO-

competent’ APCs can affect both the APC itself and the neighboring T cell in a paracrine 

fashion (226, 227).

KYN and its metabolites (KYN-pathway metabolites) are natural ligands for the aryl 

hydrocarbon receptor (AhR), a ligand-activated transcription factor. In T cells, binding of 

KYN-pathway metabolites to AhR has immunosuppressive effects mediated by promoting 

the differentiation of forkhead box protein 3 (Foxp3)+ T-regulatory cells (Tregs) and in 

decreasing the immunogenicity of DCs (228-230).

By depleting TRP, IDO activates the GCN2 kinase to trigger an evolutionarily conserved 

stress-response program, the integrated stress response (ISR) (231). GCN2 contains a 

regulatory domain that binds the uncharged form of transfer RNA (tRNA) and a kinase 

domain that phosphorylates eIF2α (232). As a reflection of TRP depletion by IDO, levels of 

uncharged tRNAs are elevated leading to GCN2 activation and eIF2α phosphorylation. 

Phosphorylation of eIF2α, a central checkpoint in the ISR, causes profound changes in the 

level of global translation leading to rapid re-programming of gene expression. For example, 
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expression of IDO by professional APCs causes trans-effects in neighboring T cells by 

modulation of their gene expression. Functionally, IDO-induced GCN2 activation leads to 

functional anergy and cell cycle arrest in CD8+ T cells (233). In CD4+ T cells, GCN2 

activation blocks T-helper 17 (Th17) differentiation (234, 235) and promotes activation of 

functional suppressor activity in mature Tregs and de novo Treg differentiation (236, 237). 

In summary, IDO-induced GCN2 activation seems to inhibit T-effector cells and enhance 

Treg activity. The precise molecular events governed by this GCN2/eIF2α pathway remain 

to be determined.

Translational control of type I IFNs

Type I IFN, which includes IFN-α and IFN-β, is the first line of innate immunity defense 

against viruses. Type I IFNs are transcriptionally and translationally regulated and are 

induced following recognition of pathogen components during infection by various host 

pattern recognition receptors. Rapid synthesis and secretion of these cytokines is critical for 

a potent antiviral response; IFN-α/β-induced transcription of a large group of genes plays an 

important role in host resistance to viral infections and in activation of key components of 

the innate and adaptive immune systems.

Plasmacytoid DCs (pDCs) are the most potent producers of type I IFN. These cells sense 

virus infection using endosomal TLR family members TLR7 and TLR9. Activated TLR7/

TLR9 interacts with the adapter protein myeloid differentiation factor 88 (MyD88) to 

activate the transcription factor IFN-response factor 7 (IRF7), which in turn transcribes type 

I IFN genes. Interestingly, mTOR signaling has recently emerged as key regulator of type I 

IFN production. Treatment of pDCs with rapamycin, an inhibitor of mTOR, as well as 

siRNA-mediated knockdown of mTOR selectively blocks production of type I IFN (238). 

Mechanistically, inhibition of mTOR activity leads to dephosphorylation of downstream 

targets 4E-BP1 and 4E-BP2. In pDCs, hypophosphorylated 4E-BPs bind to the cap-binding 

eIF4E protein with high affinity to decrease translation of a subset of mRNAs including 

transcripts encoding IRF7 (238, 239). Decreased IRF7 mRNA translation leads to decreased 

type I IFN production and, in pDCs from mice lacking 4E-BP1/2, translation of IRF7 

transcripts is upregulated. Furthermore, 4E-BP1/2 knockout mice are resistant to vesicular 

stomatitis virus infection in agreement with an enhanced type-I IFN production in pDCs 

(239).

Production of type I IFN appears to be regulated by another translation-dependent 

mechanism that relies on the phosphorylation of the cap-binding factor eIF4E (240). 

Mitogen-activated protein kinase-interacting kinases Mnk1 and Mnk2 phosphorylate eIF4E 

at Ser209 to modulate translation of certain mRNAs that encode inflammation-and cancer-

associated proteins (241, 242). One of these mRNAs (Nfkbia mRNA) encodes IκBα protein, 

the short-lived inhibitor of NF-κB, which is a key transcriptional activator of type I IFN 

production (243, 244). Mice and MEFs in which eIF4E cannot be phosphorylated (S209A) 

produce less IκBα due to decreased translation of Nfkbia mRNA. Reduced IκBα protein 

levels result in enhanced activity of NF-κB and, consequently, elevated production of NF-

κB-regulated genes such as IFNβ. Finally, S209A knockin mice were less susceptible to 
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virus infection suggesting that eIF4E phosphorylation contributes to the host defense against 

viral infections (240).

These findings together suggest that modulations of eIF4E function (through its interaction 

with 4E-BPs and/or its dephosphorylation) regulate the production of type I IFN, a 

fundamental aspect of innate immunity. Further dissection of translation-control 

mechanisms involved in the regulation of type I interferon production may provide 

important insights into the development of novel antiviral and immunomodulatory therapies.

Conclusions and perspectives

In this review, we highlight the role that post-transcriptional regulatory mechanisms play in 

the immune system. The multitude of post-transcriptional mechanisms that contribute to the 

regulation of immune function is remarkable. RBPs and miRNAs are trans-factors that bind 

mRNAs, regulate their stability and translation in immune cells, and thus influence 

immunity. In this regard, further potential intersections between different regulatory 

mechanisms and regulatory factors have yet to be defined.

Several aspects of the post-transcriptional regulation of immune system functions warrant 

future investigation in both pre-clinical and clinical arenas. First, RBPs, like miRNAs, can 

regulate a large number of mRNA targets, thus affecting several aspects of immune function 

simultaneously. Identification of mRNA target networks requires the development of high-

throughput systems able to identify target transcripts whose stability and translation is 

modulated by individual RBPs and miRNAs. Second, key mRNA transcripts can be 

combinatorially regulated by different RBPs and miRNAs, which can lead to greater 

complexity and have unexpected physiological and disease implications. Third, current 

information about post-transcriptional regulatory networks has come from in vitro studies. 

Relevant in vivo models will need to be developed. Fourth, the diversity and differentiation 

of immune cell types complicates the analysis of post-transcriptional modulation of immune 

function. Finally, future challenges in this emerging field will require the identification of 

novel RBPs regulating mRNA stability and translation, characterization of new interactions 

between RBPs and miRNAs, and deciphering how these interconnected networks modulate 

immune function. A more detailed understanding of the post-transcriptional pathways that 

turn on and turn off immune functions is important for the development of new therapies for 

infectious, inflammatory, autoimmune diseases, and cancer.
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