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Abstract

Genetic variation across the HLA is known to influence renal-transplant outcome. However, the 

impact of genetic variation beyond the HLA is less clear. We tested the association of common 

genetic variation and clinical characteristics, from both the donor and recipient, with post-

transplant eGFR at different time-points, out to 5-years post-transplantation.

We conducted GWAS meta-analyses across 10,844 donors and recipients from five European 

ancestry cohorts. We also analysed the impact of polygenic risk scores (PRS), calculated using 

genetic variants associated with non-transplant eGFR, on post-transplant eGFR.

PRS calculated using the recipient genotype alone, as well as combined donor and recipient 

genotypes were significantly associated with eGFR at 1-year post-transplant. 32% of the 

variability in eGFR at 1-year post-transplant was explained by our model containing clinical 

covariates (including weights for death/graft-failure), principal components and combined donor-

recipient PRS, with 0.3% contributed by the PRS. No individual genetic variant was significantly 

associated with eGFR post-transplant in the GWAS.

This is the first study to examine PRS, composed of variants that impact kidney function in the 

general population, in a post-transplant context. Despite PRS being a significant predictor of eGFR 

post-transplant, the effect size of common genetic factors is limited compared to clinical variables.

1. Introduction

Since the discovery of the HLA in the 1950s, it has been clear that genetic factors are 

important in kidney transplant outcomes1. A number of studies have examined candidate 

genes or variants beyond the HLA and their impact on graft function2–4, however, few have 

been replicated5. To date, only a small number of genome-wide association studies (GWAS) 

have analysed medium/long-term allograft outcome6–8. A study from 2013 identified 

recipient genotype loci on chromosomes 14 and 18 which significantly associated with 5 

years serum creatinine and long-term graft survival6. However, this study was limited by its 

sample size (n=326) and an independent effort failed to replicate the findings9. This 

highlights the need for larger, robust GWAS of allograft outcome to determine the extent to 

which common variation affects the outcome of kidney transplantation.

Kidney transplants are a relatively rare phenotype and collaborative efforts such as the UK 

and Ireland Renal Transplant Consortium (UKIRTC7) and International Genetics & 

Translational Research in Transplantation Network (iGeneTRAiN10) facilitate well-powered 
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studies of transplant related phenotypes. Recently the UKIRTC published a GWAS of 

kidney transplant outcomes which examined graft survival and acute rejection in the first 

twelve months post-transplant, in a deceased donor cohort of 2,094 transplant pairs7. 

Although much better powered than earlier efforts, no significant associations were found 

beyond the previously known effect of the HLA. A GWAS involving pooled DNA from 

4,127 renal transplant recipients identified signals of association with T-cell mediated acute 

rejection at the PTPRO and CCDC67 loci. The finding was replicated, but not as part of an 

independent study8. Neither the PTPRO or CCDC67 signal replicated in the UKIRTC 

GWAS of acute rejection, however the definition of acute rejection in the UKIRTC study11 

was not specific to T-cell mediated rejection which may explain the discordance. Here, we 

hypothesise that a continuous variable of outcome (i.e. eGFR) would provide additional 

power to detect the impact of genetic variation on markers of graft outcome.

In non-transplant populations, there has been a number of large well-powered GWAS that 

have identified genetic variants that associate robustly with kidney function12–15, the largest 

of which (n= 133,814) was carried out by Pattaro et al 13. However, despite the identification 

of a number of risk loci, univariate effect sizes were small (OR of 0.93 to 1.06 for the 23 

novel loci identified).

Common genetic variants typically have small effects on complex human traits, and thus are 

usually not of clinical relevance. Polygenic risk scores (PRS) quantify the cumulative effects 

of a number of loci, which may individually have a small predictive ability. By doing so, 

PRS’s may be more clinically relevant than looking at common genetic variants 

independently. One study, by Gorski et al12, used summary statistics from their GWAS of 

estimated glomerular filtration rate (eGFR) to create a polygenic risk score (PRS) which was 

then tested against eGFR in an independent cohort of 1,017 individuals. They found the PRS 

to explain 2.2% of the trait variance compared to 1.3% when just considering genome-wide 

significant loci.

In this study, we set out to test the hypothesis that common variation from donor or recipient 

genotype is associated with short and medium term allograft kidney function, using 1-year, 

5-year and ∆ (change between 1 and 5 year) eGFR as measures of kidney function. 

Involving 10,844 transplant donors and recipients, and delivered through the iGeneTRAiN 

consortium, this study is the largest GWAS of allograft function to date. In addition to 

studying the association of individual SNPs with eGFR, we also set out to test the hypothesis 

that higher polygenic load for increased eGFR in the donor, recipient and combined (donor 

and recipient) genomes is associated with increased graft function. To do this, we tested if 

PRS estimated using alleles from a GWAS of kidney function (using eGFR as a proxy) in a 

non-transplant population13 is predictive of kidney function in a number of renal transplant 

cohorts.

2. Materials and Methods

2.1. Cohorts

We assembled five cohorts via the iGeneTRAiN consortium10. They are 1) ‘Transplant 

Lines’ (the Netherlands), 2) the Vienna/Prague cohort (Austria), 3) the Deterioration of 
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Kidney Allograft Function Genomics (DeKAF) cohort (United States, NCT00270712), 4) 

the Genomics of Kidney Transplantation (GEN03) cohort (United States, NCT01714440) 

and 5) the United Kingdom and Ireland Renal Transplant Consortium (UKIRTC) cohort. See 

Table 1 for cohort descriptions and supplementary methods for genotyping and imputation 

information. The appropriate ethics committees at each site approved the protocol for this 

study.

Notably, GEN03 and DeKAF Genomics cohorts were entirely living donor transplants 

whereas UKIRTC, TransplantLines and Vienna/Prague cohort was predominantly deceased 

donor transplants. In TransplantLines, the year of transplant ranged from 1993–2008. In the 

UKIRTC, the year of transplant ranged from 1981–2007. In DEKAF Genomics, transplants 

were performed between 2005–2011 and in the GEN03 study from 2012–2016. In the 

Vienna/Prague cohort, the year of transplant ranged from 2005 to 2015.

2.2. Phenotype

We set out to analyse three phenotypes in each of these cohorts: eGFR at one-year post-renal 

transplant, eGFR at five years post-transplant and the change in eGFR from one to five years 

(Δ) post-transplant (see supplementary methods for details on calculating eGFR).

The following inclusion/exclusion criteria were applied: Participants must 1) be of European 

ancestry, 2) have donated/received a renal transplant and 3) be unrelated to level of 3rd 

degree relative.

To identify individuals of European ancestry, all patient cohorts were merged with samples 

from the Human Genome Diversity project (representing seven different global populations) 

or the 1000 Genomes Project and analysed using principal components analysis (PCA). 

Principal component (PC) 1 was plotted against PC2 and individuals in the patient cohorts 

that did not overlap with the European individuals in the HGDP were removed. To identify 

individuals unrelated beyond 3rd degree, we used PLINK’s --genome function to calculate 

identity-by-descent (PIHAT) scores16. One individual from each pair of related individuals 

(i.e. 3rd degree, or closer relatives) was excluded from the analysis16.

2.3. Clinical analyses

We first assessed a number of available clinical predictors of allograft function (see 

supplementary table 1 for list and definitions of clinical variables tested). These clinical 

variables were tested on a dataset of over 1,400 renal transplant recipients from 

TransplantLines and Dublin (subset of UKIRTC cohort). Significant clinical variables 

identified in the univariate linear regression analysis (see Table 2) were then tested in a 

stepwise regression model (see Supplementary Tables 2–7). Collinear variables were 

removed and the remaining clinical variables were included as covariates in our genetic 

analyses. See supplementary methods for further details.

2.4. Genome-wide association study

Genome-wide association studies were carried out at each site independently for each 

available outcome variable (log10 1-year eGFR, log10 5-year eGFR and ∆ eGFR) with PCs 
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(to correct for population-specific allelic differences), and available clinical variables with 

weights for death and failure in the log10 1-year eGFR and log10 5-year eGFR GWAS 

included as covariates (see supplementary methods section). GWAS were conducted 

separately for donor and recipient genotypes. See supplementary methods section 4 for 

further details.

The results from each site were then combined using a meta-analysis approach (see 

supplementary methods for further details). The meta-analysis approach utilised in this study 

has previously been applied in a number of other genome-wide analyses of common genetic 

variation including analyses of kidney function13,17–19. Genome-wide level of significance 

was set at 5×10−8 for the GWAS meta-analysis.

Retrospective power calculations were carried out using a combination of R’s pchisq and 

qchisq functions. In the recipient full model (significant clinical covariates (including 

weights for death/failure for the log10 1-year eGFR and log10 5-year eGFR analyses – see 

supplementary methods), principal components and given genetic variant) we had 80% 

power to detect a variant which explains 0.75%, 1.87% and 2.20% of outcome variance in 

the one-year, five-year and Δ recipient analysis respectively. In the donor full model GWAS, 

we had 80% power to detect a variant which explains 1.12%, 2.13% and 2.49% of outcome 

variance in the one-year, five-year and Δ donor analysis respectively.

In the recipient baseline model (just PCs, failure and death as covariates), we had 80% 

power to detect a genetic variant which explains 0.67%, 1.39% and 1.78% of outcome 

variance in the one-year, five-year and Δ recipient analysis respectively. In the donor 

baseline GWAS, we had 80% power to detect a variant which explains 0.98%, 1.58% and 

2.01% of outcome variance in the one-year, five-year and Δ donor analysis respectively.

2.5. Polygenic risk analysis

For the PRS analysis, we employed the same clinical covariates and outcome measures as 

the GWAS analysis. We defined PRS as the sum of the alleles associated with a given trait 

weighted by the effect size of that allele as determined by a previous GWAS20. PRSs were 

calculated using results of a previous GWAS of eGFR in a non-transplant population13. We 

calculated the PRS at multiple p-value thresholds to enable us to examine at different sets of 

SNPs (for example, is the top 1,000 or top 10,000 most significant SNPs associated with 

eGFR in the general population a better predictor of eGFR post-transplant). See 

supplementary methods for further details on how we calculated these scores. PRSs were 

then tested as predictors of each outcome variable correcting for available significant clinical 

covariates (as discussed previously) and PCs using in a linear regression model (see 

supplementary methods for further details). Linear regressions were carried out separately at 

each site and then combined using a meta-analysis approach in line with previously 

published meta-analyses of PRS 21. See supplementary methods for further details.

3. Results

This study involved 10,844 transplant donors and recipients recruited from UKIRTC 

(n=4,108), TransplantLines (n=1,806), GEN03 (n=1,039), DeKAF (n=2,666) and Vienna/
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Prague (n=1,225). The mean age of recipients and other clinical variables are reported in 

Table 1. Subjects had a mean eGFR of 52.43ml/min at 1 year and 51.39ml/min at 5 years 

post-transplant. The mean Δ eGFR was −1.01ml/min. Distributions of eGFR in each of the 

five cohorts can be seen in Supplementary Figures 1 to 4.

3.1. Clinical analysis

Clinical covariates were tested in a combined cohort comprising over 1,400 renal transplant 

recipients from TransplantLines and the Dublin subset of the UKIRTC (see supplementary 

methods for further details). After correcting for multiple testing and collinearity (see 

Supplementary Table 2–7), we identified donor age, donor type, donor sex, recipient age, 

delayed graft function and acute rejection as significant predictors of log10eGFR at 1-year. 

These variables explained 22% of the outcome variance.

Donor age, mycophenolate mofetil exposure, delayed graft function, acute rejection and 

donor type were identified as significant predictors of log10eGFR at 5-years. These variables 

explained 21% of the variance in eGFR at 5 years post-transplant.

Recipient age at time of transplantation, mycophenolate mofetil exposure and acute rejection 

were identified as significant predictors of ∆ eGFR. These variables explained 4% of the 

variance in delta eGFR. These clinical predictors of eGFR were brought forward for the 

following GWAS and polygenic risk score analyses.

3.2. Genome-wide association study

To test the hypothesis that, in a univariate model, common donor or recipient genotype is 

associated with graft function, imputed genotype data was tested against log10 eGFR at 1-

year and 5-years post-transplant and ∆ eGFR between 1 and 5 years taking a GWAS 

approach.

No genome-wide significant signals were detected in the donor or recipient GWAS in either 

the baseline or full model for log10 eGFR at 1-year or 5-year post-transplant or ∆ eGFR (see 

Figure 1 and Supplementary Figures 5–16). The top ten most significant variants for each 

GWAS are described in Supplementary Tables 8–13. The genomic inflation for each of the 

GWASs was minimal and the GWASs appeared to behave normally when the expected 

versus observed p-values were plotted (see Supplementary Figures 5–16).

3.3. Polygenic risk analysis

Having assessed the donor and recipient genotype in a univariate model, we next examined 

common genetic variation in a multivariate polygenic risk model. Using linear regression 

models, we tested the hypothesis that a polygenic load for increased eGFR (calculated using 

alleles from non-transplant populations, see methods section 2.5) in the kidney donor, 

recipient or combined (donor and recipient) genotype, is associated with increased post-

transplant eGFR (see Table 3). The PRS at pT 0.0001 calculated using the recipient 

genotype and the combined donor-recipient genotype significantly predicted log10 eGFR at 

1-year post-transplant (see Figure 2 and 3). These figures illustrate that the effect size was 

consistent across sites with an increased PRS leading to a higher eGFR post-transplant - i.e. 
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increased number of alleles that predict higher eGFR in non-transplant populations 

correlates with higher eGFR post-transplant.

The amount of variance explained by the full model (significant clinical covariates including 

weights for death/failure, principal components and polygenic risk score at pT 0.0001) for 

the combined donor-recipient PRS was 32% with 0.3% contributed by the PRS. The amount 

of variance explained by the full model for the recipient PRS was 30% with 0.2% 

contributed by the PRS (see Supplementary Table 14). Notably, approximately 9% of the 

variance explained by clinical variables is attributed to the death/failure weights (see 

Supplementary Table 14).

None of the PRS (at any pT) significantly predicted log10 eGFR 5 years or ∆ eGFR when 

calculated using the donor, recipient, or combined (sum of the donor and recipient alleles) 

genotype. Also, none of the PRS calculated using solely the donor alleles were significant 

predictors of any of the outcomes tested. Low heterogeneity was found across sites (see 

Table 3).

4. Discussion

In this study, we set out to test the impact of clinical variables and common genetic variation 

from both the donor and recipient on eGFR post-transplant using both univariate and 

polygenic methods. Although both clinical variables and polygenic risk scores were found to 

be predictive of eGFR post-transplant, clinical variables explained several orders of 

magnitude more of trait variance.

We identified a number of significant clinical predictors of eGFR at 1 and 5 years including 

donor age, donor type (living/deceased), donor sex, recipient age, delayed graft function, 

acute rejection and mycophenolate mofetil exposure. Collectively, these variables explained 

over 20% of the variance in eGFR at 1 and 5 years post-transplant. We also found that 

recipient age at time of transplantation, mycophenolate mofetil exposure and acute rejection 

predicted change in renal function over the first 5 years post-transplant. These findings and 

the direction of effect of these variables are in line with the literature and have all been 

previously implicated in eGFR post-transplant22–24. Notably, mismatches at HLA A, B and 

DR and the total number of mismatches across these three loci (calculated using serological 

testing) were not found to be significant in our clinical analysis (see Table 2). This likely due 

to advancements in immunosuppression as well as most donors and recipients being 

matched based on preferential HLA typing, which in combination are masking the effects of 

the HLA.

We did not find any donor or recipient SNP that associated (post-correction for multiple 

testing) with eGFR at 1 year, 5 years or ∆ eGFR post-renal transplantation. However, in the 

top SNPs from a number of the GWAS there were some interesting and potentially 

biologically relevant signals – although we stress these were not significant and so their role 

in graft function remains uncertain. For example, in our donor log10 5-year eGFR full model 

GWAS, the most significant SNP was found in the fifth intron of the Cub and Sushi Multiple 

domains 1 gene (CSMD1). CSMD1 has been implicated in a variety of diseases including 

Stapleton et al. Page 7

Am J Transplant. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



schizophrenia and colorectal cancer25,26. CSMD1 has also been proposed as a regulator of 

the complement pathway – a pathway essential for inflammation and immune regulation27. 

Over the past decade, evidence has emerged which implicates the complement pathway in 

allograft ischemia-reperfusion as well as alloimmunity that results in graft injury thereby 

affecting the life-span of the graft 28. Further work is required to decipher if common 

variants in this gene play a role in allograft function.

For our donor GWAS of delta eGFR, in both the baseline and full models, the most 

significantly associated variant with delta eGFR was rs136237 (full model p= 7.89×10−7, 

baseline model p = 7.04×10−7), a SNP in the third intron of the oxysterol-binding protein 2 

gene (OSBP2). This gene encodes a protein that binds some oxygenated forms of cholesterol 

called oxysterols and inhibits their functions 29. Oxysterols are involved in a vast range of 

important biological processes including apoptosis and platelet aggregation 30. OSBP2 is 

expressed at low levels in the kidney31,32. Further work is required to validate this finding.

Despite some interesting signals towards the tail of the distribution, none reached statistical 

significance and so our findings indicate that no single common genetic variant, in either the 

donor or recipient genome, explains a clinically relevant proportion (>2%) of the variation in 

eGFR post-kidney transplantation. It is probable that there are SNPs explaining a smaller 

proportion of eGFR post-transplant, but we were underpowered to detect these under a 

univariate model. This study focused specifically on common genetic variation, it is possible 

that rare variation in the donor and/or recipient genotype is influencing allograft function, 

but further work is required to clarify this.

We demonstrated that both recipient PRS and our combined PRS model significantly 

associated with log10 eGFR at 1-year post-transplant. We found that the recipient and 

combined PRS at pT 0.0001 was significantly associated with log10 1-year eGFR, indicating 

that common sub-genome-wide significance threshold (5×10−8) genetic variants influence 

graft outcome. This PRS was not found to associate with ∆ eGFR or log10 5-year GFR. This 

may indicate that the genetic variation that influences graft outcome is different for short-

term outcome than that for medium-term or long-term graft function. This is consistent with 

our clinical findings, where concordance between the clinical variables that predict 1-year 

eGFR and 5-year eGFR is incomplete, indicating that different factors affect early stage vs 

medium stage graft function. However, we had more samples in our 1-year eGFR, than in 

our 5-year eGFR analysis and so potentially with larger numbers in the 5-year analysis this 

PRS may become significant as the same effect size and direction was seen.

Approximately 30% of the variance in log10 1-year eGFR was explained by our full model 

(clinical covariates including weights for death/graft-failure, PC and PRS) in both the 

recipient PRS and combined PRS analysis. The majority of this variation was explained by 

the clinical covariates and less than ~ 0.3% of the variance is explained by either PRS. 

Interestingly, Gorski et al12 found that a PRS based on eGFR associated variants calculated 

at the same p-value threshold (pT 0.0001) explained 1.7% of the outcome variance in non-

transplant populations indicating that although the genetic basis for GFR post-transplant 

overlaps with that in non-transplant individuals, there are differences. However, our PRS 

was based off a different set of GWAS results13 than that in Gorski et al and their paper used 
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a different method for calculating the PRS which may account for differences between the 

variance explained. The PRS, albeit not clinically relevant, does highlight that the recipient 

genotype, as well as the donor genotype, is associated with early-stage graft function. 

Notably, the donor genotype is only significant in the context of the recipient genotype (i.e. 

in our combined model).

Our study had a number of limitations. Firstly, although we had relatively comprehensive 

phenotypic data and corrected for clinical covariates, we likely did not have sufficient data to 

account for all clinical heterogeneity within and between our cohorts. In particular, our 

cohorts had different eras of transplantations and therefore different immunosuppression 

protocols which may have led to additional heterogeneity between cohorts. Potentially, 

through analysis of more similar cohorts we may have had more significant findings. 

However, in the PRS analyses, we did test for heterogeneity between our cohorts and found 

it to be minimal and any SNPs with high levels of heterogeneity in our GWAS were 

removed.

Secondly, these meta-analyses were carried out on European ancestry populations and 

therefore further work is needed to investigate single variant and polygenic effects in other 

non-European populations.

In conclusion, we found that polygenic effects of common genetics variants influence short-

term allograft function but did not find any significant associations in our univariate model. 

This study is the first of its kind to look at the impact of polygenic effects of variants that 

impact kidney function in the general population in a post-transplant context. Our finding 

suggests that although common genetic variation does impact graft outcome, the effect size 

is limited compared to clinical variables.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan plots of recipient and donor log10 1-year, log10 5-year and Δ eGFR – full 
model
The red line indicates the genome-wide significance threshold (5×10−8), the blue line 

indicates suggestive significance threshold (1×10−5). A = recipient log10 1-year eGFR – full 

model (λ (genomic inflation factor) = 1.01). The top SNP was an intergenic variant on 

chr17p13.3. N SNPs = 3,673,881. B= donor log10 1-year eGFR – full model (λ = 1.01). N 

SNPs = 3,641,041. The most significant SNP was found in an intergenic region on 

chr12p13.1. C= recipient log10 5-year eGFR – full model (λ = 0.99). The top SNP was an 

intergenic variant on chr17q22. N SNPs = 3,924,633. D= donor log10 5-year eGFR – full 

model (λ = 1.01). N SNPs = 3,938,549. The most significant SNP was found on 

chromosome 8 in an intron of CSMD1. E= recipient Δ eGFR – full model (λ = 1.01). The 

top SNP was found in the gene ZNF551 on chromosome 19. N SNPs = 3,915,961. F= donor 

delta eGFR – full model (λ = 1.01). N SNPs = 3,927,634. The most significant SNP was 

found on chromosome 22 in an intron of OSBP2.
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Figure 2. Recipient PRS at pT 0.0001 as a predictor of log10 eGFR at 1-year post-transplant
Site = study cohort. TxLines= TransplantLines. Vienna = Vienna/Prague cohort. Weight= 

proportion of data the given site contributed to overall model; coef [95% CI] = effect size 

with lower and upper 95% confidence intervals. PRS_pT_0.0001 = normalized recipient 

PRS of eGFR at p-value threshold 0.0001, RE model = Random-effects model. Model was 

adjusted for significant clinical covariates and the first eight principal components at each 

site (see section 3.1).
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Figure 3. Combined PRS at pT 0.0001 as a predictor of log10 eGFR at 1-year post-transplant
Site = study cohort. TxLines= TransplantLines. Vienna = Vienna/Prague cohort. Weight= 

proportion of data the given site contributed to overall model; coef [95% CI] = effect size 

with lower and upper 95% confidence intervals. Combo_PRS_pT_0.0001 = normalized 

combined PRS of eGFR at p-value threshold 0.0001. RE model = Random-effects model. 

The model was adjusted for significant clinical covariates and the first eight principal 

components at each site (see section 3.1).
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Table 1.

Descriptive statistics for each cohort of significant clinical predictors and eGFR measures

UKIRTC TxLines GEN03 DeKAF Vienna/ Prague

Recipients

N 2233 983 673 1864 616

Range of year of transplant 1981−2007 1993−2008 2012−2016 2005−2011 2005−2015

% male 64% 57% 62% 63% 63%

Average length of follow-up post-transplant 
- years 8.47 (4) 9.77 (5) 1.90 (0.8) 2.25 (1) 4.75(3)

Average age at transplant 46.32 (13) 48.26 (13) 50.25 (15) 50.46 (14) 52 (14)

% with failure by year 1 1% 4% 0% 0% 5%

% with death by year 1 0.3% 2% 0% 1% 3%

% with failure by year 5 8% 10% 1% 3% 10%

% with death by year 5 4% 8% 1% 3% 8%

% on mycophenolate mofetil 37%* 72% 100% 95% 99%

% with delayed graft function NA 30% 6% 7% 30%

% Acute rejection episode by year 1 20.57%* 30% 15% 14% 36%

% Acute rejection episode by year 5 NA 33% 16% 18% 40%

Donors

N 1875 823 366 802 609

% male 57% 52% 43% 41% 56%

Average age 43.1 (16) 43.02 (15) 45.50 (12) 44.31 (11) 50 (14)

% Living 0% 17% 100% 100% 15%

eGFR at 1 year

N observations 1905 937 673 1864 556

Mean 48.1 45.6 61.9 58.1 52.5

Median 47.1 44.6 59.2 55.9 50.8

Max 120.5 108.7 201.2 217.6 109.8

Min 4.5 2.5 15.0 4.0 2.0

Stdev 17.8 18.8 21.8 20.8 18.8

eGFR at 5 year

N observations 1700 906 NA NA 315

Mean 46.4 46.2 NA NA 51.5

Median 44.9 45.9 NA NA 50.8

Max 122 181 NA NA 105

Min 4.1 2.5 NA NA 9.4

Stdev 19.4 22.5 NA NA 19.9

∆ eGFR

N observations 1283 719 NA NA 296

Mean -1.8 2.0 NA NA -2.5

Median -1.8 2.7 NA NA -2.9

Max 65.6 73.3 NA NA 45.9

Min -57.3 -60.4 NA NA -45.4

Stdev 13.4 16.1 NA NA 12.3
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The above table provides descriptive statistics for the UK and Ireland Renal Transplant consortium cohort (UKIRTC), TransplantLines cohort 
(TxLines), GEN03, DeKAF and Vienna/Prague cohort. N = number of individuals, % = Percentage, % with failure by year 1/5 = Percentage with a 
failure event within 1/5 years post-transplant, % with death by year 1/5= Percentage who died within 1/5 years post-transplant, % on 
mycophenolate mofetil = percentage of patients who received mycophenolate mofetil at the start of their transplant (intention to treat), % living = 
percentage of living donors, stdev = standard deviation, min = minimum value observed, max = maximum value observed. Delayed graft function 
status was unavailable for the UKIRTC cohort. Acute rejection status for the UKIRTC cohort was only available for the first twelve months post-
transplant. ∆ eGFR and 5-year eGFR were unavailable for the GEN03 and DeKAF cohorts.

*
A large number of the UKIRTC patients had missing information for MMF and AR status and so these percentages were calculated from those 

who had yes/no status for MMF and individuals with missingness were excluded. MMF % was calculated as follows: 1045 N – not exposed to 
MMF, 604 – were exposed, 584 = missing. (604/ (1045 + 604))*100/1 = 36.62%. For acute rejection at 1 year, 1093 – did not experience an AR 
episode in the first twelve months, 283 did have an AR episode and 857 were missing. AR % was calculated as follows: (283 / (1093 + 283)) * 
100/1= 20.57%.
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Table 3.

Most significantly associated polygenic risk scores with eGFR post-transplant

D/R pT eGFR Estimate SE Pun Padj I2 N N SNPs

combined 0.0001 1year 0.011 0.003 4.35×10−5 0.001 0.0% 3234 6229

recipient 0.0001 1year 0.008 0.002 8.68×10−5 0.005 6.2% 5295 6229

donor 0.0001 1year 0.006 0.003 0.01 0.755 2.7% 3564 6229

donor 0.1 5year 0.011 0.005 0.05 1 35.0% 2152 287016

recipient 0.0001 5year 0.008 0.004 0.06 1 0.0% 2494 6229

combined 0.0001 5year 0.008 0.005 0.11 1 0.0% 1930 6229

recipient 0.0001 ∆ 0.668 0.367 0.07 1 0.0% 2191 6229

donor 0.001 ∆ -0.348 0.358 0.33 1 0.0% 1904 14097

combined 0.001 ∆ -0.513 0.413 0.21 1 0.0% 1722 14097

Meta-analysis results for linear regression of polygenic risk scores vs. eGFR measures. 1/5 year = log10 eGFR at 1/5 year post-transplant. ∆ = 

change in eGFR between 1 and 5 years post-transplant. Model was adjusted for all available significant clinical covariates and the first eight 
principal components at each site (see section 2.5 and 3.1). D/R = indicates whether the test was carried out on the recipient, donor or combined 
donor-recipient genotype. pT = p-value threshold of the calculated polygenic risk score. Estimate = estimated effect size. SE = standard error of the 
estimate. Pun = uncorrected p-value. Padj=approximate adjusted p-value. I² = the proportion of total variation in study estimates that is due to 
heterogeneity. N = number of individuals tested. N SNPs = number of SNPs at the given p-value threshold (prior to pruning for linkage 
disequilibrium).
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