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Abstract Bridging brain-scale circuit dynamics and organism-scale behavior is a central challenge

in neuroscience. It requires the concurrent development of minimal behavioral and neural circuit

models that can quantitatively capture basic sensorimotor operations. Here, we focus on light-

seeking navigation in zebrafish larvae. Using a virtual reality assay, we first characterize how motor

and visual stimulation sequences govern the selection of discrete swim-bout events that subserve

the fish navigation in the presence of a distant light source. These mechanisms are combined into a

comprehensive Markov-chain model of navigation that quantitatively predicts the stationary

distribution of the fish’s body orientation under any given illumination profile. We then map this

behavioral description onto a neuronal model of the ARTR, a small neural circuit involved in the

orientation-selection of swim bouts. We demonstrate that this visually-biased decision-making

circuit can capture the statistics of both spontaneous and contrast-driven navigation.

Introduction
Animal behaviors are both stereotyped and variable: they are constrained at short time scale to a

finite motor repertoire while the long-term sequence of successive motor actions displays apparent

stochasticity. This dual characteristic is immediately visible in the locomotion of small animals such as

Nematodes (Stephens et al., 2008), Zebrafish (Girdhar et al., 2015) or Drosophila larvae (Gomez-

Marin and Louis, 2012), which consists of just a few stereotyped maneuvers executed in a sequen-

tial way. In this case, behavior is best described as a set of statistical rules that defines how these ele-

mental motor actions are chained. In the presence of sensory cues, two types of behavioral

responses can be distinguished. If they signal an immediate threat or reward (e.g. the presence of a

predator or a prey), they may elicit a discrete behavioral switch as the animal engages in a special-

ized motor program (e.g. escape or hunt, Budick and O’Malley, 2000; Fiser et al., 2004;

Bianco et al., 2011; McClenahan et al., 2012; Bianco and Engert, 2015). However, most of the

time, sensory cues merely reflect changes in external factors as the animal navigates through a com-

plex environment. These weak motor-related cues interfere with the innate motor program to cumu-

latively promote the exploration of regions that are more favorable for the animal (Tsodyks et al.,

1999; Fiser et al., 2004).

A quantification of sensory-biased locomotion thus requires to first categorize the possible move-

ments, and then to evaluate the statistical rules that relate the selection of these different actions to

the sensory and motor history. Although the probabilistic nature of these rules generally precludes a
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deterministic prediction of the animal’s trajectory, they may still provide a quantification of the prob-

ability distribution of presence within a given environment after a given exploration time.

In physics terms, the animal can thus be described as a random walker, whose transition probabil-

ities are a function of the sensory inputs. This statistical approach was originally introduced to ana-

lyze bacteria chemotaxis (Lovely and Dahlquist, 1975). Motile bacteria navigate by alternating

straight swimming and turning phases, so-called runs and tumbles, resulting in trajectories akin to

random walks (Berg and Brown, 1972). Chemotaxis originates from a chemical-driven modulation

of the transition probability from run to tumble: the transition rate is governed by the time-history of

chemical sensing. How this dependency is optimized to enhance gradient-climbing has been the

subject of extensive literature (Macnab and Koshland, 1972; Adler and Tso, 1974; Mello and Tu,

2007; Yuan et al., 2010; Celani and Vergassola, 2010). More recently, similar descriptions have

been successfully used to quantify chemotaxis and phototaxis in multicellular organisms such as Cae-

norhabditis elegans (Ward, 1973; Miller et al., 2005; Ward et al., 2008), Drosophila larva

(Sawin et al., 1994; Kane et al., 2013; Gomez-Marin et al., 2011; Tastekin et al., 2018) or differ-

ent types of slugs (Matsuo et al., 2014; Marée et al., 1999). Although the sensorimotor apparatus

of these animals are very different, the taxis strategies at play appear to be convergent and can be

classified based on the gradient-sensing methods (Fraenkel and Gunn, 1961; Gomez-Marin and

Louis, 2012). Tropotaxis refers to strategies in which the organism directly and instantaneously infers

the stimulus direction by comparison between two spatially distinct sensory receptors. In contrast,

during klinotaxis, the sensory gradient is inferred from successive samplings at different spatial posi-

tions. This second strategy is particularly adapted when the organism has only one receptor, or if the

sensory gradient across the animal’s body is too small to be detected (Humberg et al., 2018). It

requires at least a basic form of memory, since the sensory information needs to be retained for

some finite period of time.

In the present work, we implement such a framework to produce a comprehensive statistical

model of phototaxis in zebrafish larvae. Zebrafish larva is currently the only vertebrate system that

allows in vivo whole-brain functional imaging at cellular resolution (Panier et al., 2013;

Ahrens et al., 2013). It thus provides a unique opportunity to study how sensorimotor tasks, such as

sensory-driven locomotion, are implemented at the brain-scale level.

eLife digest All animals with the ability to move use sensory signals to help them navigate

towards areas that seem better than their current location. Such areas might contain desirable

things like food and mates, or they might allow an animal to escape from threats such as predators.

But how the brain gives rise to this navigation behavior is unclear.

Karpenko et al. have now obtained insights into the underlying mechanism by studying a

behavior in zebrafish larvae called phototaxis. Phototaxis is the tendency to move in response to

light. The advantage of using zebrafish larvae to study this behavior is that their brains are small and

semi-transparent. This makes it possible to record the activity of almost every neuron. As a result, an

individual’s brain activity can be mapped on to their behavior more precisely than in most other

species.

To probe how visual cues influence fish behavior, Karpenko et al. exposed individual fish to a

carefully controlled virtual light source and then tracked their movements with a camera. The fish

used two strategies to move towards the light. They selected their next movement based partly on

the difference in the amount of light reaching each of their eyes, and partly on the change in overall

brightness with each swim movement. Karpenko et al. used this information to build a numerical

model of fish phototaxis, and to show how a simple brain circuit could generate this behavior.

Species whose brains differ in size and structure may nevertheless develop similar strategies to

perform similar tasks. By quantifying a generic behavior in a simple animal model, this study could

provide insights into comparable behaviors in other species. In addition, the study suggests a simple

mechanism for how animals select actions on the basis of sensory signals, which may also be relevant

to other species and other tasks.
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Although adult zebrafish are generally photophobic (or scototactic, Serra et al., 1999;

Maximino et al., 2007), they display positive phototaxis at the larval stage, from 5 days post-fertili-

zation (dpf) on (Orger and Baier, 2005). At this early stage, their locomotion consists of a series of

discrete swimming events interspersed by ~1 s long periods of inactivity (Girdhar et al., 2015). Pre-

vious studies have shown that, when exposed to a distant light source, the first bouts executed by

the fish tend to be orientated in the direction of the source (tropotaxis) (Burgess et al., 2010). Fur-

thermore, Chen and Engert (2014) have shown, using a virtual reality assay, that zebrafish are able

to confine their navigation within a bright region in an otherwise dark environment even when

deprived from stereovisual contrast information. This latter study thus established that their photo-

tactic behavior also involves a spatio-temporal integration mechanism (klinotaxis).

From a neuronal viewpoint, recent calcium imaging experiments identified a small circuit in the

rostral hindbrain that plays a key role in phototaxis (Ahrens et al., 2013; Dunn et al., 2016;

Wolf et al., 2017). This region, called ARTR (anterior rhombencephalic turning region) or HBO (hind-

brain oscillator), displays pseudo-periodic antiphasic oscillations, such that the activity of the left and

right subpopulations alternate with a ~20 s period. This alternation was shown to set the coordinated

direction of the gaze and tail bout orientation, thus effectively organizing the temporal sequence of

the successive reorientations. It was further shown that this circuit oscillation could be driven by

whole-field illumination of the ipsilateral eye, such as to favor the animal’s orientation towards a light

source (Wolf et al., 2017).

In the present study, we aim at quantifying the statistical rules that control the larva’s reorienta-

tion dynamics in the presence of a continuous angular gradient of illumination (orientational photo-

taxis). Using a virtual-reality closed-loop assay, we quantify how swim bouts selection is statistically

controlled by the light intensity received on both eyes prior to the bout initiation, or the change in

illumination elicited by the previous swim bout. Our experimental configuration allows us to disen-

tangle the contribution of the two aforementioned strategies: tropotaxis and klinotaxis. From the

analysis of this short-term behavior, we built a minimal Markov model of phototaxis, from which we

compute the long-term distribution of orientations for any angular profile of illumination. This model

offers explicit predictions of the statistics of the fish orientation that quantitatively compare with the

experimental observations. We further expand on a recent rate model of the ARTR circuit to pro-

pose a functional neuronal model of spontaneous navigation and contrast-biased orientation selec-

tion. We demonstrate that the statistics of turn orientation can be fully understood by assuming that

this self-oscillating circuitry, that selects the orientation of turning bouts, integrates stereovisual con-

trast in the form of incoming currents proportional to the visual stimulus.

Results

Kinematics of spontaneous navigation as a first-order autoregressive
process
Zebrafish larvae aged 5–7 dpf were placed one at a time in a Petri dish (14 cm in diameter). Their

center-mass position and body axis orientation were tracked in real time at 35 frames/s (Figure 1A–

B). This information was used to deliver a body-centered visual stimulus using a video-projector

directed onto a screen supporting the Petri dish.

Prior to each phototactic assay, the larva was allowed an » 8 min-long period of spontaneous

exploration under uniform and constant illumination at maximum intensity Imax ¼ 450�W :cm�2. Such

pre-conditioning phases were used to promote light-seeking behavior (Burgess and Granato,

2007), while enabling the quantification of the basal exploratory kinematics for each fish.

Larval zebrafish navigation is comprised of discrete swim bouts lasting » 100ms and interspersed

with 1 to 2s-long inter-bout intervals (tn) during which the fish remains still (Dunn et al., 2016). Each

bout results in a translational motion of the animal and/or a change in its body axis orientation, and

can thus be automatically detected from kinematic parameters. As we are mostly interested in the

orientational dynamics, we extracted a discrete sequence of orientations an measured just before

each swimming event n (Figure 1B–C) from which we computed the bout-induced reorientation

angles dan ¼ anþ1 � an.

Although the complete swim bouts repertoire of zebrafish larvae is rich and complex

(Johnson et al., 2019), the statistical distribution of the reorientation angles PðdanÞ in such unbiased
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conditions can be correctly captured by the weighted sum of two zero-mean normal distributions,

PðdanÞ ¼ pturnNð0;s2

turnÞ þ pfwdNð0;s2

fwdÞ, reflecting the predominance of only two distinct bouts

types: turning bouts (standard deviation sturn ¼ 0:6) and forward scoots (sfwd ¼ 0:1) (Figure 1D). This

bimodal distribution is consistent with the locomotor repertoire of larvae described by

Marques et al. (2018) during spontaneous swimming and phototactic tasks. In the absence of a

visual bias, the turning bouts and forward scoots were found to be nearly equiprobable,

pturn ¼ 1� pfwd ¼ 0:41.

Successive bouts were found to exhibit a slightly positive correlation in amplitude (Figure 1F).

This process can be captured by a two-state Markov-chain model that controls the alternation

between forward and turning bouts, while the amplitude within each population is randomly sam-

pled from the corresponding distribution (Figure 1E). Within this scheme, we analytically derived the

dependence in the amplitude of successive bouts and thus estimated the forward-to-turn and turn-

to-forward transition rates, noted kf!t and kt!f (all analytical derivations are detailed in Appendix
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Figure 1. Kinematics of spontaneous navigation. N ¼ 75 fish, n ¼ 16; 147 bouts, mean of 7 trajectories per fish. (A) Experimental setup: real-time

monitoring of the larva’s position and orientation using IR illumination, enables closed-loop visual stimulation using a video projector. (B) Typical

trajectory of a 6 days old larva in the region of interest (ROI) of the arena under constant, uniform illumination. Each point indicates the fish position at

the onset of a swim bout. Dots’ size and color encode the bout distance and bout reorientation angle, respectively. Insets: blow-up of an example

frame (left) and definition of the reorientation angle dan at bout index n (right). b.len: body length. (C) Time-sequence of the fish body orientation a

(top). Swim bouts elicit rapid re-orientations. The angular dynamics can thus be represented as a series of discrete reorientation events of various

amplitudes dan (color code as in (B)). (D) Experimental (dark) and analytical (blue) distributions (pdf: probability density function) of reorientations dan.

The two normal distributions used in the fit with Equation A1, weighted by pturn and 1� pturn, are also displayed in dashed blue lines. (E) Two

independent Markov chains model for spontaneous navigation: the bout type chain controls the forward scoot (F) versus turning (T ) state, with

transitions rates kT!F and kF!T . The side chain controls the transitions between left (L) and right (R) headings when the animal is in the turning state,

with transition rate kflip. (F) Mean squared reorientation amplitude of bout nþ 1 as a function of the squared amplitude of bout n (grey), and its

associated analytical fit (blue, Appendix From behavior to circuit modeling of light-seeking navigation in zebrafish larvae Equation A5). (G) Average

reorientation of bout nþ 1 as a function of the reorientation at bout n (grey), and its associated analytical fit (blue, Equation A11). (H) Correlation in

reorientation angles Cq as a function of the number of bouts (grey) and associated fit (blue, Equation A14). (I) Mean square reorientation (MSR) Mq as a

function of the number of bouts, and associated fit (blue, Equation A17). The dotted line is the linear extrapolation of the first two data points and

corresponds to the diffusive process expected for a memory-less random walk (no correlation in bout orientation). (J) Orientation correlation of turning

bouts (thresholded at 0.22rad) as a function of the time elapsed between those bouts. The blue line is the exponential fit. Data from this and the

following figures are available at Karpenko (2019a) (copy archived at https://github.com/elifesciences-publications/programs_closed-loop_phototaxis).
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From behavior to circuit modeling of light-seeking navigation in zebrafish larvae). We found that

kf!t=pturn ¼ kt!f =pfwd » 0:8. This indicates that the probability to trigger a turn (resp. forward) bout is

decreased by only 20% if the previous bout is a forward (resp. turn) bout. For the sake of simplicity,

we ignore in the following this modest bias in bout selection and assume that the chaining of for-

ward and turning bout is memory-less by setting kf!t ¼ pturn and kt!f ¼ pfwd. We checked, using

numerical simulations, that this simplifying assumption has no significant impact on the long-term

navigational dynamics: the results presented in the following, notably the diffusion coefficient,

remain essentially unchanged when this small correlation in bout type selection is taken into

account.

In line with previous observations (Chen and Engert, 2014; Dunn et al., 2016), we also noticed

that successive turning bouts tended to be oriented in the same (left or right) direction (Figure 1G).

This orientational motor persistence was accounted for by a second Markov chain that set the orien-

tation of turning bouts, and was controlled by the rate of flipping direction noted kflip (Figure 1E

bottom). Notice that, in contrast with the model proposed by Dunn et al. (2016), although the ori-

entational state is updated at each bout, it only governs the direction of turning bouts. When a for-

ward bout is triggered, its orientation is thus unbiased.

This model provides an analytical prediction for the mean reorientation angle danh ijdan�1
at bout n

following a reorientation angle dan�1 at bout n� 1. This expression was used to fit the experimental

data (Figure 1G) and allowed us to estimate the flipping rate pflip ¼ 0:19 (99% confidence bounds

±0.017). We further computed the autocorrelation function of the reorientation angles and the Mean

Square Reorientation (MSR) accumulated after n bouts (Figure 1H–I). Both were consistent with their

experimental counterparts. In particular, this model quantitatively captures the ballistic-to-diffusive

transition that stems from the directional persistence of successive bouts (Figure 1I). As a conse-

quence, the effective rotational diffusivity at long time Deff ¼ 0:3rad2 is about twice as large than the

value expected for a memory-less random walk (i.e. with pflip ¼ 0:5, see dashed line in Figure 1I).

In this discrete Markov-chain model, time is not measured in seconds but corresponds to the

number of swim bouts. It thus implicitly ignores any dependence of the transition rates with the

interbout interval. We examined this hypothesis by evaluating the correlation in bouts orientations

as a function of the time elapsed between them. To do so, we first sorted the turning bouts by

selecting the large amplitude events (jdaj<0:22rad). We then binarized their values, based on their

leftward or rightward orientation, yielding a discrete binary signal sðtnÞ ¼ �1. We finally computed

the mean product hsðtnÞsðtpÞi for various time intervals Dt ¼ tp � tn. The resulting graph, shown in

Figure 1J, demonstrates that the correlation in orientation of successive bouts decays quasi-expo-

nentially with the inter-bout period. This mechanism can be captured by assuming that the orienta-

tion selection at each bout is governed by a hidden two-state continuous-time process. The simplest

one compatible with our observations is the telegraph process, whose transition probability over a

small interval dt reads kflipdt, and whose autocorrelation decays as expð�2kfliptÞ. Setting

kflip ¼ pflip=medianðtnÞ ¼ 0:2s�1, this model correctly captures the tn-dependence of the orientational

correlation of bouts.

In the two following sections, we use the discrete version of the Markov-chain model to represent

the fish navigation, and investigate how the model parameters are modulated in the presence of a

virtual distant light source. We then go back to the underlying continuous-time process when intro-

ducing a neuronal rate model for the orientation selection process.

Contrast-driven phototaxis can be described as a biased random walk
We first examined the situation in which the perceived stereo-visual contrast is the only cue accessi-

ble to the animal to infer the direction of the light source (tropotaxis regime). The visual stimulus

consisted of two uniformly lit half-disks, each covering one visual hemifield. The intensity delivered

to the left and right eyes, noted IL and IR respectively, were locked onto the fish’s orientation � rela-

tive to the virtual light source (Figure 2A): the total intensity (IL þ IR) was maintained constant while

the contrast c ¼ IL � IR was varied linearly with �, with a mirror symmetry at p=2 (Figure 2B). This

dependence was chosen to mimic the presence of a distant source located at � ¼ 0 for which the

contrast is null.

The orientation of the virtual source in the laboratory frame of reference was randomly selected

at initiation of each assay. After only a few bouts, the animal orientation was found to be statistically
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biased towards � ¼ 0, as shown in Figure 2C–D. This bias was quantified by computing the popula-

tion resultant v defined as the vectorial mean of all orientations (Figure 2E).

Trajectories that are strongly biased towards the source tend to exit the ROI earlier than unbiased

trajectories, which are more tortuous and thus more spatially confined. This generates a progressive

selection bias as the number of bouts considered is increased, as revealed by the slow decay of the

resultant vector length (Figure 2—figure supplement 1). In order to mitigate this selection bias, all

analyses of stationary distributions were restricted to bout indices lower than the median number of

bouts per trial (N � 17), and excluding the first bout. Under this condition, we found that ~77% of

zebrafish larvae display a significant phototactic behavior (Figure 2D–F, test of significance based

on a combination of two circular statistic tests, see Materials and methods), a fraction consistent

with values reported by Burgess et al. (2010) in actual phototactic assays .

From these recordings, we could characterize how the contrast experienced during the inter-bout

interval impacts the statistics of the forthcoming bout. Figure 2G displays the mean reorientation
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Figure 2. Contrast-driven phototaxis as a biased random walk. N ¼ 47 fish, 18, 322 bouts, mean of 13 trajectories per fish. All statistical analyses are

performed on the first 17 bouts, the first one excluded, for each assay. VS : virtual source. (A) Stimulus pattern delivered to the larva. The orientation

relative to the virtual source is noted �. (B) Left and right intensities (top panel) and contrast c ¼ IL�IR
ILþIR

(bottom panel) as a function of �. The virtual light

source is defined by a null contrast (c ¼ 0) and corresponds to a stable point (dc
d�<0). (C) Probability density function (pdf) of orientations relative to the

virtual light source for one fish during 20 trials, bouts 2 to 17 (n = 320 bouts). (D) Probability density function (pdf) of orientations for all tested fish

(N ¼ 47). Significantly biased toward the virtual source (V-test for non-uniformity with specified mean 0, pval<10
�11) (E) Definition of the mean resultant

vector v for one fish. The points represent the angular positions �n of the fish relative to the source. The vector v is defined as v ¼ 1

N

P

exp i�n
�

�

�

�. The

mean angle to the source is f ¼ argðvÞ (F) Resultant vectors v for individual fish. (G) Mean reorientation <d�n> per bout as a function of contrast c for all

fish. Error bars represent the standard error of the mean. Red line is the linear fit with slope 0.2 rad. (H) Illustration of the shift in turning distribution

(�t<0) induced by a negative contrast. (I) Means, (J) standard deviations and (K) relative weight of the turning distribution as a function of the contrast.

For each value of the contrast, these quantities were extracted by double-Gaussian fitting of the bout angles. The error bars represent the 99%

confidence interval from the fit. (L) Average reorientation at bout nþ 1 as a function of the reorientation at bout n in reinforcing (contrast and previous

bout orientation are consistent) or conflicting (contrast and previous bout orientation are in conflict) situations. The dashed line is the analytical

prediction in the absence of stimulation. (M) Probability of switching direction pflip as a function of the contrast, in situations of conflict or reinforcement.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Evolution of the mean resultant vector projected on the direction of the virtual light source with the bout index.

Figure supplement 2. Evolution of contrast-driven bias slope with the bout index.
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<d�> as a function of the instantaneous contrast c. This graph reveals a quasi-linear dependence of

the mean reorientation with c, directed toward the brighter side. Notice that the associated slope

shows a significant decrease in the few first bouts, before reaching a quasi-constant value (Figure 2—

figure supplement 2). This effect likely reflects a short term habituation mechanism as the overall

intensity drops by a factor of 2 at the initiation of the assay.

For a more thorough analysis of the bout selection mechanisms leading to the orientational bias,

we examined, for all values of the contrast, the mean and variance of the two distributions associ-

ated with turning bouts and forward scoots, as well as the fraction of turning bouts pturn (Figure 2H–

K). We found that the orientational drift solely results from a probabilistic bias in the selection of the

turning bouts (left vs right) orientation: the mean orientation of the turning bouts varies linearly with

the imposed contrast (Figure 2I). Reversely, the ratio of turning bouts and the variance of the two

distributions are insensitive to the contrast Figure 2J–K). These results indicate that the stereo-visual

contrast has no impact neither on bout type selection nor on bout amplitude.

As discussed in the preceding section, in the absence of visual cue, successive bouts tend to be

oriented in the same direction. During phototaxis, the selection of the turning orientation is thus

expected to reflect a competition between two distinct mechanisms: motor persistence, which favors

the previous bout orientation, and stereo-visual bias, which favors the brighter side. To investigate

how these two processes interfere, we sorted the bouts into two categories. In the first one, called

’reinforcement’, the bright side is in the direction of the previous bout, such that both the motor

and sensory cues act in concert. In the second one, called ’conflicting’, the contrast tends to evoke a

turning bout in a direction opposite to the previous one. For each category, we plotted the mean

reorientation angle at bout n as a function of the reorientation angle at bout n� 1 (Figure 2L). We

further estimated, for each condition and each value of the contrast, the probability of flipping orien-

tation pflip (Figure 2M and Appendix 2). These two graphs show that the stereo-visual contrast con-

tinuously modulates the innate motor program by increasing or decreasing the probability of

flipping bout orientation from left to right and vice versa. Noticeably, in the conflicting situation at

maximum contrast, the visual cue and motor persistence almost cancel each other out such that the

mean orientation is close to (pflip ~ 0:4).

Phototaxis under uniform stimulation is driven by a modulation of the
orientational diffusivity
We now turn to the second paradigm, in which the stereo-visual contrast is null (both eyes receive

the same illumination at any time), but the total perceived illumination is orientation-dependent (kli-

notaxis regime). We thus imposed a uniform illumination to the fish whose intensity I was locked

onto the fish orientation � relative to a virtual light source. We tested three different illumination pro-

files Ið�Þ as shown in Figure 3A: a sinusoidal and two exponential profiles with different maxima.

Despite the absence of any direct orientational cue, a large majority of the larvae (78%) displayed

positive phototactic behavior: their orientational distribution showed a significant bias towards the

virtual light source, that is the direction of maximum intensity (Figure 3B–E).

Although the efficiency of the phototactic behavior is comparable to the tropotaxis case previ-

ously examined, here we did not observe any systematic bias of the reorientation bouts towards the

brighter direction (Figure 3F). This indicates that the larvae do not use the change in intensity at a

given bout to infer the orientation of the source in order to bias the orientation of the forthcoming

turn. Instead, the phototactic process originates from a visually driven modulation of the orienta-

tional diffusivity, as measured by the variance of the bout angle distributions (Figure 3G). The use of

different profiles allowed us to identify which particular feature of the visual stimulus drives this mod-

ulation. Although the bout amplitude variance was dependent on the intensity I and intensity change

dI experienced before the bout, these relationships were found to be inconsistent across the differ-

ent imposed intensity profiles. In contrast, when plotted as a function of dI=I, all curves collapse (Fig-

ure 3—figure supplement 1). This observation is in line with the Weber-Fechner law

(Fechner, 1860), which states that the perceived change scales with the relative change in the physi-

cal stimulus. One noticeable feature of this process is that the modulation of the turning amplitude

is limited to illumination decrement (i.e. negative values of dI=I). In the terminology of bacterial che-

motaxis (Oliveira et al., 2016), the zebrafish larva can thus be considered as a ’pessimistic’ photo-

tactic animal: the orientational diffusivity increases in response to a decrease in illumination
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(corresponding to a negative subjective value), whereas its exploratory kinematics remain unchanged

upon an increase of illumination (positive subjective value).

Two kinematic parameters can possibly impact the orientational diffusivity: the fraction of turning

bouts pturn and their characteristic amplitude sturn. We thus extracted these two quantities and plot-

ted them as a function of dI=I (Figure 3H–I). They appear to equally contribute to the observed

modulation.

To test whether this uniform phototactic process has a retinal origin, or whether it might be medi-

ated by non-visual deep-brain phototreceptors (Fernandes et al., 2012), we ran similar assays on bi-

enucleated fish. In this condition, no orientational bias was observed, which indicates that the retinal

pathway is involved in orientational klinotaxis Figure 3—figure supplement 2, all p-values > 0.14,

pairwise T-tests).

A biased random walk model for phototaxis provides a quantitative
prediction of light-driven orientational bias
In the preceding sections, we quantified how visual stimuli stochastically modulate specific kinematic

parameters of the subsequent bout. We used these relationships to build a biased random walk

model of phototaxis. We then tested how such a model could reproduce the statistical orientational

biases toward the directions of minimal contrast and maximal illumination. The phototactic model

thus incorporates a visually-driven bias to the discrete Markov-chain model introduced to represent

the spontaneous navigation (Figure 4A). In line with the observation of Figure 2M, the rate of flip-

ping orientational state (left-to-right or right-to-left) was a linear function of the imposed contrast:

kR!L ¼ kflip þ ac and kl!r ¼ kflip � ac. The value of a was set so as to capture the contrast-dependent

orientational drift (Figure 2G) and was made dependent on bout index in order to account for the

observed short-term habituation process (Figure 2—figure supplement 2).

The selection of bout type was in turn linearly modulated by the relative change in intensity after

negative rectification, dI=I½ ��¼ minðdI=I; 0Þ. Hence, the turn-to-forward and forward-to-turn transition
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Figure 3. Orientational phototaxis driven by modulation of the global illumination. N ¼ 37 fish, n ¼ 26; 443 bouts, mean of 23 trajectories per fish. (A)

Top panel : Angle-dependent intensity profiles delivered to the larva. The virtual light source is located at � ¼ 0, defined as the point of maximum

intensity. The profiles are sinusoidal (uniform 1, purple) or exponentially shaped (uniform 2 and 3 orange and yellow, respectively). All statistics were

computed using bout index two to the median number of bouts per sequence (resp. 27, 17 and 15 for the three profiles). (B–D) PDF of the fish

orientations for the three profiles. All three distributions are significantly biased towards the virtual source (V-test for non-uniformity of circular data with

specified mean , pvals respectively 9:10
�3, 2:10�7 and 3:10�5).(E) Resultant vector v for all individual fish. (F) Mean reorientation per bout <d�> of all fish

as a function of � for the three profiles. No significant bias towards the source (� ¼ 0) is observed. (G) Variance of the reorientation angles <d�2> as a

function of the relative change in intensity experienced at the previous bout dI=I. Error bars are standard error of the mean. (H) Standard deviation sturn

of turning bouts as a function of dI=I. The standard deviation of forward scouts was set at sfwd , and sturn was then estimated using a double-Gaussian

fitting of the bout angles. Error bars are the 99% confidence interval from fit. (I) Probability of triggering a turning bout as a function of dI=I. Error bars

are the 99% confidence interval from the fit.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Variance of d� as a function of three different illumination parameters.

Figure supplement 2. Control for retinal origin of klinotaxis.
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rates read kt!f ¼ kturn þ b dI=I½ �� and kf!t ¼ kturn � b dI=I½ ��, respectively. We also imposed a linear

modulation of the turn amplitude variance sturn ¼ s
spont
turn � g dI=I½ ��. The values of b and g were

adjusted to reproduce the observed dependence of the turn-vs-forward ratio and bout amplitude

with dI=I (Figure 3H–I).

This stochastic model was tested under two conditions, tropo- and klino-phototaxis, similar to

those probed in the experiments (Figure 4B). In order to account for the sampling bias associated

with the finite size of the experimental ROI, the particles in the simulations also progressed in a 2D

arena. At each time step, a forward displacement was drawn from a gamma distribution adjusted on

the experimental data (Figure 5—figure supplement 1). Statistical analysis was restricted to bouts

executed within a circular ROI as in the experimental assay.

The comparison of the data and numerical simulation is shown in Figure 4C for the tropotaxis

protocol and in Figure 4D–F for the klinotaxis protocols. This minimal stochastic model quantita-

tively captures the distribution of orientations. It also reproduces the evolution of the orientational

bias with the bout index as measured by the length of the resultant vector (Figure 4G–J).
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Figure 4. A Markov-chain model of phototaxis captures the observed orientational distribution. (A) Decision tree for simulation: selection of forward

scoots vs turning bouts are governed by the relative intensity change at the previous bout. If a turning bout is triggered, the selection of left-right

orientation is biased by the stereovisual contrast. (B) 2D density profiles computed from all experimental and simulated trajectories for the three

different paradigms (no stimulation, lateralized illumination and uniform illumination). The color encodes the excess or deficit of density with respect to

the radially-averaged density without any stimulation. (C–F) Experimental (color) and simulation (solid line) probability density distributions of

orientations for the four phototactic configurations (stereo-visual stimulation, uniform stimulation with angular profiles 1 to 3). (G–J) Evolution of the

projection of the resultant vector onto the direction of the light source as a function of the bout number for the experiment (color) and simulation (solid

line). Error bar : standard error of the mean.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Inter-bout distance distribution.

Karpenko et al. eLife 2020;9:e52882. DOI: https://doi.org/10.7554/eLife.52882 9 of 24

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.52882


A neuronal model of the ARTR captures spontaneous and contrast-
driven navigation
The behavioral description proposed above indicates that larvae navigation can be correctly

accounted for by two independent stochastic processes: one that organizes the sequence of succes-

sive bouts amplitude and in particular the selection of forward vs turning events, while a second one

selects the left vs right orientation of the turning bouts. These two processes are independently

modulated by two distinct features of the visual stimulus, namely the global intensity changes and

the stereo-visual contrast, leading to the two phototactic strategies.

This in turn suggests that, at the neuronal level, two independent circuits may control these char-

acteristics of the executed swim bouts. As mentioned in the introduction, the ARTR is a natural can-

didate for the neuronal selection of bouts orientation. This small bilaterally-distributed circuit

located in the anterior hindbrain displays antiphasic activity oscillation with ~ 20s period

(Ahrens et al., 2013). The currently active region (left or right) constitutes a strong predictor of the

orientation of turning bouts (Dunn et al., 2016). This circuit further integrates visual inputs as each

ARTR subpopulation responds to the stimulation of the ipsilateral eye (Wolf et al., 2017).

Here, we adapted a minimal neuronal model of the ARTR, introduced in Wolf et al. (2017) to

interpret the calcium recordings, and tested whether it could explain the observed statistics of

exploration in both spontaneous and phototactic conditions. The architecture of the model is

depicted in Figure 5A and the equations governing the network dynamics are provided in Appendix

2. The network consists of two modules selective for leftward and rightward turning, respectively.

Recurrent excitation (wE) drives self-sustained persistent activities over finite periods of time. Recip-

rocal inhibition (wI ) between the left and right modules endows the circuit with an antiphasic dynam-

ics. Finally, each ARTR module receives an input current from the visual system proportional to the

illumination of the ipsilateral eye. Such architecture gives rise to a stimulus-selective attractor as

described in Freeman (1995) and Wang (2002).

The various model parameters were adjusted in order to match the behavioral data (see Appen-

dix 2). First, the self-excitatory and cross-inhibitory couplings were chosen such that the circuit dis-

played spontaneous oscillatory dynamics in the absence of sensory input. Figure 5B shows example

traces of the two units’ activity in this particular regime. From these two traces, we extracted a

binary ’orientational state’ signal by assigning to each time point a left or right value (indicated in

red and blue, respectively), based on the identity of the module with the largest activity.

In the present approach, tail bouts are assumed to be triggered independently of the ARTR activ-

ity. The latter thus acts as mere orientational hub by selecting the orientation of the turning events:

incoming bouts are oriented in the direction associated with the currently active module. In the

absence of information regarding the circuit that organizes the swim bouts emission, their timing

and absolute amplitude were drawn from the behavioral recordings of freely swimming larvae. Com-

bined with the ARTR dynamics, this yielded a discrete sequence of simulated bouts (leftward, right-

ward and forward, Figure 5B, inset). With adequate choice of parameters, this model captures the

orientational persistence mechanism as quantified by the slow decay of the turning bout autocorrela-

tion with the interbout interval (Figure 5C and Figure 5—figure supplement 1).

In the presence of a lateralized visual stimulus, the oscillatory dynamics become biased towards

the brighter direction (Figure 5D–E). Hence, illuminating the right eye favors longer periods of acti-

vation of the rightward-selective ARTR unit. The mean reorientation displays a quasi-linear depen-

dence with the imposed contrast (Figure 5D) consistent with the behavioral observations

(Figure 2G). At intermediate contrast values, the orientation of bouts remains stochastic; the effect

of the contrast is to lengthen streaks of turning bouts toward the light (Figure 5E). We also tested

whether this model could capture the competition mechanism between stereovisual bias and motor

persistence, in both conflicting and reinforcement conditions. We thus computed the dependence

of the flipping probability pflip as a function of the contrast in both conditions (Figure 5F). The result-

ing graph is in quantitative agreement with its experimental counterparts (Figure 2M).

We finally used this model to emulate a simulated phototactic task. In order to do so, a virtual

fish was submitted to a contrast whose amplitude varied linearly with the animal orientation, as in

the lateralized assay. When a turning bout was triggered, its orientation was set by the ARTR instan-

taneous activity while its amplitude was drawn from the experimental distributions. After a few

bouts, a stationary distribution of orientation was reached that was biased toward the virtual light
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source (Figure 5G). Its profile was in quantitative agreement with its experimental counterpart

(mean resultant vector length v ¼ 0:23 in simulation for v ¼ 0:24 in experimental data for bouts 2 to

17).

Discussion
Sensorimotor transformation can be viewed as an operation of massive dimensionality reduction, in

which a continuous stream of sensory and motor-related signals is converted into a discrete series of

stereotyped motor actions. The challenge in understanding this process is (i) to correctly categorize

the motor events, that is to reveal the correct parametrization of the motor repertoire, and (ii) to

unveil the statistical rules for action selection. Testing the validity of such description can be done by

building a minimal model based on these rules. If the model is correct, the motor variability unac-

counted for by the model should be entirely random, that is independent of the sensorimotor

history.

Here, we implemented a minimal model approach in order to unveil the basic rules underlying

phototaxis. We showed that zebrafish light-driven orientational navigation can be quantitatively

described by a stochastic model consisting of two independent Markov chains: one that selects
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Figure 5. A neuronal model of turning bout selection captures spontaneous and contrast-driven navigation. (A) Scheme of the Markov-chain model of

the orientation selection, and corresponding neuronal model of the ARTR. The latter consists of two units whose relative activation controls the

orientation of bouts. Persistent and self-alternating dynamics result from the recurrent excitation (wE ) and reciprocal inhibition (wI ) between each unit.

They further receive input currents proportional to the illumination of the ipsilateral eye. (B) Top: example traces of the simulated activity of the left

(red) and right (blue) modules in the absence visual stimulation (AU : arbitrary units). These continuous dynamics control the alternation between right

and left orientational states. Close-up: forward and turning bouts are triggered independently with a statistics drawn from the behavioral recordings.

The orientational state governs the orientation of the turning bouts. (C) Orientation correlation of turning bouts (thresholded at 0.22 rad) as a function

of the inter-bout interval tn. Result from the neuronal model is in blue, experimental data are in black. (D) Mean reorientation <d�> as a function of the

contrast c. (E) Example traces of the simulated activity for a constant contrast c ¼ 0:5. (F) Probability of flipping orientation as a function of the imposed

contrast c in situations of conflict or reinforcement (neuronal model). (G) Probability distribution function of � for 10 simulated phototactic trajectories

with a linear dependence of average reorientation on contrast. Each trajectory lasted 50,000 s. The dotted line is the orientational distribution in the

absence of visual stimulation.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparison of experimental and simulated trajectories.

Figure supplement 2. Simulated trajectories with different inter-bout intervals tn.
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forward scoots vs turning bouts and a second one that sets the orientation of the latter. We estab-

lished that the stereo-visual contrast and global intensity modulation act separately on each of these

selection processes. The contrast induces a directed bias of turning bouts toward the illuminated

side, but does not impact the prevalence of turning bouts vs forward scoots. Reversely, a global dec-

rement in illumination increases the ratio of turning bouts but does not favor any particular direction.

For the contrast-driven configuration (tropotaxis), the minimal model corresponds to an Ornstein-

Uhlenbeck process (Uhlenbeck and Ornstein, 1930), which describes the dynamics of a diffusive

brownian particle in a quadratic trap. In the klinotaxis configuration (in the absence of stereo-visual

contrast), the orientational bias solely results from a light-dependent modulation of the diffusivity, a

mechanism reminiscent of bacterial chemotaxis.

This stochastic minimal model is built on a simple decision tree (Figure 4A) with a set of binary

choices. However, to fully capture the orientational dynamics, we had to incorporate the continuous

increase in turning bout amplitude with the light decrement in an ad-hoc way. It is currently unclear

whether all turn bouts in our experiments can be assigned to a single class of swim maneuvers that

are modulated in amplitude, or whether these encompass distinct motor programs executed with

varying frequencies. In the latter case, it might be possible to represent this amplitude modulation

through an extension of the decision tree that would select between distinct turn bout categories.

Compared to previous studies on phototaxis, for example (Burgess et al., 2010), our approach

allowed us to clearly disentangle the contributions of spatial (stereovisual contrast) and time-depen-

dent (motion-induced change in global illumination) visual cues. Hence, the contrast-driven assays

were performed under constant overall illumination intensity (the sum of left and right intensities).

This allowed us to establish that, rather surprisingly, the probability of triggering a turn (vs a forward

swim) is insensitive to the imposed contrast. This possibility constitutes an important asset with

respect to standard experimental configurations, such as the one examined by Burgess et al.

(2010), in which the animal is submitted to an actual light source. Although these configurations pro-

vide a more realistic context, the visual stimulus effectively perceived by each eye can not be quanti-

tatively assessed, which precludes the design of predictive models. Conversely, once adjusted on

well-controlled virtual assays, our model could be numerically implemented in realistic environments,

and the trajectories could then be directly confronted with behavioral data. This would require to

first infer how the intensity impinging on each eye depends on the source distance and orientation

relative to the animal body axis.

Another critical and distinct aspect of the present work is its focus on the steady-state dynamics.

Our aim was to mimic the continuous exploration of an environment in which the brightness level

displayed slowly varying angular modulations. The luminosity profiles were thus chosen to ensure

that individual bouts elicited relatively mild changes in illumination. By doing so, we tried to mitigate

visual startle responses that are known to be elicited upon sudden darkening (Easter and Nicola,

1996). Although we could not avoid the initial large drop in illumination at the onset of each trial,

the associated short-term response (i.e. the first bout) was excluded from the analysis. In this

respect, our experiment differs from the study of Chen and Engert (2014) in which a similar closed-

loop setup was used to demonstrate the ability of larvae to confine their navigation within bright

regions. This behavior was entirely controlled by the animal’s response to light-on or light-off stimuli

as it crossed the virtual border between a bright central disk and the dark outer area. These sharp

transitions resulted in clear-cut behavioral changes that lasted for a few bouts. In comparison, our

experiment addresses a different regime in which subtle light-driven biases in the spontaneous

exploration cumulatively drive the animal toward brightest regions.

As we aimed to obtain a simple and tractable kinematic description, we ignored some other

aspects of the navigation characteristics. First, we focused on the orientation of the animal and thus

did not systematically investigate how the forward components of the swim bouts were impacted by

visual stimuli. However, in the context of angle-dependent intensity profiles, this effect should not

impact the observed orientational dynamics. More importantly, we ran most of our analysis using the

bout number as a time-scale, and thus ignored possible light-driven modulations of the inter-bout

intervals (tn). We showed, however, that the orientational correlation is controlled by an actual time-

scale. This result may have significant consequence on the fish exploration. In particular, we expect

that changes in bout frequency, reflecting various levels of motor activity, may significantly affect the

geometry of the trajectories (and not only the speed at which they are explored). We illustrated this

process by running numerical experiments at similar flipping rate kflip but increasing bout
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frequencies. The trajectories, shown in Figure 5—figure supplement 2, exhibit increasing complex-

ity as measured by the fractal dimension. This mechanism may explain the changes in trajectories’

geometry observed by Horstick et al. (2017) in response to sudden light dimming.

An important outcome of this study is to show that light-seeking navigation uses visual cues over

relatively short time scales. The bouts statistics could be captured with a first-order autoregressive

process, indicating that the stimulus perceived over one tn is sufficient to predict the forthcoming

bout. However, one should be aware that such observation is only valid provided that the sensory

context remains relatively stable. Hence for instance, a prolonged uniform drop in luminosity is

known to enhance the overall motor activity (generally estimated by the average displacement over

a period of time) for up to several tens of minutes (Prober et al., 2006; Emran et al., 2007;

Emran et al., 2010; Liu et al., 2015). This long-term behavioral change, so-called photokinesis,

might be regulated by deep brain photoreceptors (Fernandes et al., 2012; Horstick et al., 2017)

and thus constitutes a distinct mechanism. One particularly exciting prospect will be to understand

how such behavioral plasticity may not only modulate the spontaneous activity (Johnson et al.,

2019) but also affects the phototactic dynamics.

One of the motivations of minimal behavioral models is to facilitate the functional identification

and modeling of neural circuits that implement the identified sensorimotor operations in the brain.

Here, we used the behavioral results to propose a neuronal model of the ARTR that quantitatively

reproduces non-trivial aspects of the bout selection process. This recurrent neural circuit is a simpli-

fied version of working memory models developed by Brunel and Wang (2001); Wang (2001);

Wang (2002); Wang (2008) and adapted in Wang (2002) for a decision task executed in the parie-

tal cortex (Shadlen and Newsome, 1996; Shadlen and Newsome, 2001). In this class of models,

the binary decision process reflects the competition between two cross-inhibitory neural popula-

tions. The circuit is endowed with two major functional capacities: (1) it can maintain mnemonic per-

sistent activity over long periods of time, thanks to recurrent excitatory inputs; (2) it can integrate

sensory signals in a graded fashion to continuously bias the statistics of the decision. This model

thus naturally recapitulates the major functional features of the sensory-biased Markov side-chain -

motor persistence and contrast-driven continuous bias - that organizes the orientation selection.

It is tempting to generalize about this behavior-to-circuit approach, at least in small animals such

as Zebrafish or Drosophila, by representing any behavior as a coordinated sequence of competing

elemental actions biased by sensory feedback and organized within a hierarchical decision tree. The

identification of such decision trees through quantitative behavioral analysis may provide a blueprint

of the brain functional organization and significantly ease the development of circuit models of

brain-scale sensorimotor computation.

Materials and methods

Zebrafish maintenance and behavioral setup
All experiments were performed on wild-type Zebrafish (Danio Rerio) larvae aged 5 to 8 days post-

fertilization. Larvae were reared in Petri dishes in E3 solution on a 14/10 hr light/dark cycle at 28˚C,

and were fed powdered nursery food every day from 6 dpf.

Experiments were conducted during daytime hours (10 am to 6 pm). The arena consisted of a 14

cm in diameter Petri dish containing E3 medium. It was placed on a screen illuminated from below

by a projector (ASUS S1). Infrared illumination was provided by LEDs to enable video-monitoring

and subsequent tracking of the fish. We used an IR-sensitive Flea3 USB3 camera (FL3-U3-13Y13M-C,

Point Grey Research, Richmond, BC, Canada) with an adjustable macro lens (Zoom 7000, Navitar,

USA) equipped with an IR filter. The experimental setup was enclosed in a light-tight rig, which was

maintained at 26˚C using ’The Cube’ (Life Imaging Services).

For the stereovisual paradigm N = 47 larvae were tested, and N = 37 for the temporal paradigm

[(uniform 1) : 12, (uniform 2) : 11, (uniform 3) : 14]. All fish (N=75) that navigated in the ROI for a sig-

nificant period of time during the habituation period were also used to assess spontaneous naviga-

tion statistics.
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Behavioral assay
Closed-loop tracking and visual stimulation were performed at a mean frequency of 35 Hz, with a

custom-written software (Karpenko, 2019b; copy archived at https://github.com/elifesciences-publi-

cations/Analysis_Behavioral_Phototaxis) in Matlab (The MathWorks), using the PsychToolBox (PTB)

version 3.0.14 add-on. Positions and orientations (heading direction) of the fish, as well as bouts

characteristics, were extracted online and the illumination pattern was updated accordingly, with a

maximum latency of 34 ms. Heading direction was extracted with an accuracy of + /- 0.05 rad ( ~ 3�).

Behavioral monitoring was restricted to a circular central region of interest (ROI) of 8.2 cm diameter.

When outside the ROI, the fish was actively brought back into the ROI through the opto-motor reflex

(OMR), using a concentrically moving circular pattern. One second after the fish re-entered the ROI,

a new recording sequence was started.

Prior to the phototactic assay, all tested fish were subjected to a period of at least 8 min of habit-

uation under whole-field illumination at an intensity of Imax ¼ 450�W :cm�2. For both phototactic para-

digms, the absolute orientation of the virtual source was randomly selected when initiating a new

experimental sequence (each time the animal would re-enter the ROI). The orientation of the fish rel-

ative to the light source �n was calculated online using the absolute orientation of the fish an and the

orientation of the virtual light source asource : �n ¼ an � asource.

Lateralized paradigm. A circle of 6 cm in diameter was projected under and centered on the fish.

The circle was divided into two parts, covering the left and right side of the fish. The separation

between the two parts corresponded to the animal’s midline. A separation band (2 mm thick) and an

angular sector (30�) in front of the animal were darkened to avoid interception of light coming from

the right side of the fish by its left eye and vice-versa. The left and right intensities (IL and IR) were

varied linearly as a function of �, such that IL þ IR ¼ Imax. Since during the habituation period, the

whole arena was lit at maximum intensity Imax, the total intensity received by the fish drops by a fac-

tor of » 2 with the establishment of the circle, at the onset of the assay.

Although our imposed contrast profile displays two angles for which the contrast is null, namely

� ¼ 0 and p, only does the first one correspond to a stable equilibrium point. When � is close to

zero, any excursion away from this particular direction results in a contrast that drives the animal

back to the null angle. Conversely, when �»p, the contrast drives the animal away from p (unstable

equilibrium).

Temporal paradigm. The whole arena was illuminated with an intensity locked onto the fish orien-

tation � relative to a virtual light source. The initial orientation was randomly chosen at the beginning

of a recording sequence. Three different intensity angular profiles were implemented: (uniform 1) a

sinusoidal profile, with a maximum intensity of 60% of Imax, (uniform 2) an exponential profile, with a

maximum intensity of 60% of Imax and finally (uniform 3) an exponential profile with a maximum

intensity of 30% of Imax.

Data analysis
Data analysis was performed using a custom-written code in Matlab. All analysis programs and data

are available at Karpenko (2019a).

When representing the mean of one variable against another, bin edges were chosen such that

each bin would encompass the same number of data points. Circular statistics analyses (mean, vari-

ance, uniformity) and circular statistics tests, namely the circular V-test of non-uniformity of data and

the one-sample test for the mean angle of a circular distribution (tested on the orientation of the

light virtual light source) were performed using CircStat toolbox for Matlab (Berens, 2009).

Individual fish often exhibit a small yet consistent bias toward one direction (either leftward or

rightward). This bias was subtracted before performing the different analyses, in order to guarantee

that <a> ¼ 0 in the absence of a stimulus. The distribution of reorientation angles d�n during sponta-

neous swimming periods was fitted with a constrained double-Gaussian function. We imposed that

both the mean absolute angle and variance of the fitting function be consistent with the experimen-

tal measurements. This yields an expression with only one independent fitting parameter pturn in the

form:
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To evaluate the mean and variance of the forward and turn bouts under various visual contexts,

the distributions in different bins were also fitted with a constrained double-Gaussian model as in

(1). The stereovisual data distributions were fitted with two additional mean terms �turn and �fwd ;

and for the klinotaxis assay, with a constraint on sfwd and �fwd. The bins were constructed either on

the contrast c experienced just before bout n or on the relative difference of intensity experienced

at bout n� 1 : dI=I ¼ 2
In�1�In�2

In�1þIn�2

.

All distributions of �n and analyses of bias were computed using trajectories from bout index two

to the median number of bouts per sequence in each type of experiment. The median number of

bouts in each experiment was medstereo ¼ 17 for the tropotaxis experiment, and 27, 15, 17 for the kli-

notaxis assays for the 3 profiles 1–3, respectively.

Numerical simulations
The Markov-chain model simulations were performed using a custom-written code in MATLAB

(Karpenko, 2019b). Initial orientations and positions within the ROI were randomly sampled from,

respectively, a uniform distribution and a normal distribution centered on a circle of radius 20 mm

from the center of the ROI with a standard deviation of 1.3 mm (mimicking the starting points of

experimental data).

At each step, an angular step-size is drawn from the data: either from the turning distribution

with a probability pturn or from the forward distribution with a probability 1� pturn. Respective means

are �turn and �fwd and standard deviation sturn and sfwd. The left-vs-right orientations of the turns is

set by the probability of flipping sides pflip. For the spatially constrained simulations, the walker also

draws a distance step-size (between two successive positions) from two different gamma distribu-

tions: one for the turning bouts, a second one for the scoots. Under neutral conditions (uniform illu-

mination), all parameters are constant.

For the simulation under stereovisual phototactic conditions, pflip was varied linearly with the con-

trast (based on the data represented in Figure 2M). When simulating temporal phototaxis, the

parameters sturn and pturn were modulated by the relative illumination change dI=I experienced at

the previous steps (as represented in Figure 3H–I).
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Appendix 1

Modelling spontaneous navigation of zebrafish larvae
We model the discrete trajectories (sequences of bouts) as a stochastic process using two

independent Markov chains, depicted in Figure 1E. The bout type chain (top) controls the

alternation between forward and turning bouts, with possible states Fn and Tn at time n, while

the side chain (bottom) controls the left/right orientations of turning bouts, with possible

states Ln and Rn. All possible states are combinations of the states of the two chains, namely

fFLgn, fFRgn, fTLgn, and fTRng. The transition rates of the bout type chain are kF!T and kT!F,

where kF!T=kT!F ¼ pturn is the overall fraction of turning bouts. For the side chain, under

constant uniform illumination, the right and left states are equiprobable, and the two transition

probabilities are thus equal: kR!L ¼ kL!R ¼ pflip.

The two chains operate synchronously: at every time step transitions on both chains are

triggered simultaneously, and a reorientation value dan is drawn based on the resulting state.

When the fish is in a turning state, fTLgn or fTRgn, the reorientation angle is sampled from the

positive and negative side of a centered normal distribution with standard deviation sturn for

left and right turns, respectively. When the fish is in a forward state, fFLgn or fFRgn, the
reorientation angle is drawn from a normal distribution with standard deviation sfwd.

Therefore, for forward bouts the resulting dan can be positive or negative, irrespective of the

left/right state of the side chain. Altogether, the general statistical distribution of turning

amplitudes dan used in Figure 1F reads

PðdanÞ ¼ftðdanÞþff ðdanÞ (A1)

with

ft ¼ pturnNð0; s2

turnÞ and ff ¼ ð1� pturnÞN ð0; s2

fwdÞ (A2)

Mean amplitude at nþ 1

Within this framework, one can analytically compute the mean square angle at time nþ 1, as

detailed below:

da2

nþ1


 �

¼ PðFnþ1Þs2

fwd þPðTnþ1Þs2

turn (A3)

The two probabilities read:

PðFnþ1Þ ¼ PðFnÞð1� kF!TÞþPðTnÞkT!F

PðTnþ1Þ ¼ PðTnÞð1� kT!FÞþPðFnÞkF!T

such that

da2

nþ1


 �

¼ PðFnÞ s2

fwd þ kF!Tðs2

turn�s2

fwdÞ
h i

þPðTnÞ s2

turn þ kT!Fðs2

fwd �s2

turnÞ
h i

Using the functions defined in Equation A2 we introduce the function f ðdanÞ:

f ðdanÞ ¼ PðTnjdanÞ ¼
ftðdanÞ

ftðdanÞþff ðdanÞ
(A4)

The mean square amplitude at time nþ 1 can thus be written, as a function of dan as:

da2

nþ1


 �

¼ s2

fwd þ kF!Tðs2

turn �s2

fwdÞþ f ð danj jÞðs2

turn �s2

fwdÞð1� kT!F � kF!TÞ (A5)

This expression is used to fit the data in Figure 1F and estimate the two transition rates.

These are found to be close to the ratio of turning and forward bouts,

that is kF!T=pturn ¼ kT!F=ð1� pturnÞ»0:8. In the following, we set kF!T ¼ pturn and
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kT!F ¼ 1� pturn, thus ignoring the weak memory component in the selection of turning vs

forward bouts.

Mean reorientation at nþ 1

Similarly, one can compute the theoretical expression of the mean reorientation angle at time

nþ 1:

danþ1h i ¼ PðfFLgnþ1
Þ�f þPðfFRgnþ1

Þ�f þPðfTLgnþ1
Þ�LþPðfTRgnþ1

Þ�R (A6)

with

�f ¼ 0 and �L ¼��R ¼
ffiffiffiffi

2

p

r

sturn (A7)

Then:

PðfTLgnþ1
Þ ¼ PðTnþ1ÞPðLnþ1Þ ¼ pturn pflipPðRnÞþ ð1� pflipÞPðLnÞ

� �

PðfTRgnþ1
Þ ¼ PðTnþ1ÞPðRnþ1Þ ¼ pturn pflipPðLnÞþ ð1� pflipÞPðRnÞ

� �

and

danþ1h i ¼ pturnð1� 2pflipÞ
ffiffiffiffi

2

p

r

sturn PðLnÞ�PðRnÞ½ � (A8)

Without further assumption, this simply confirms danþ1h i ¼ 0. Given the reorientation at

time n, this expression now writes:

danþ1h idan
¼ pturnð1� 2pflipÞ

ffiffiffiffi

2

p

r

sturn PðLnjdanÞ�PðRnjdanÞ½ � (A9)

Since

PðLnjdanÞ ¼ PðLnjTn;danÞPðTnjdanÞþPðLnjFn;danÞPðFnjdanÞ

PðRnjdanÞ ¼ PðRnjTn;danÞPðTnjdanÞþPðRnjFn;danÞPðFnjdanÞ

and

PðLnjFn;danÞ ¼ PðRnjFn;danÞ ¼ 1=2

we obtain

danþ1h idan
¼ PðLnjTn;danÞ�PðRnjTn;danÞ½ �pturnð1� 2pflipÞ

ffiffiffiffi

2

p

r

sturnf ðdanÞ (A10)

Then, noting that

PðLnjTn;dan>0Þ ¼ 1

PðRnjTn;dan>0Þ ¼ 0

�

and
PðLnjTn;dan<0Þ ¼ 0

PðRnjTn;dan<0Þ ¼ 1

�

we finally obtain the formula used to fit the data in Figure 1G:

danþ1h idan
¼ signðdanÞ

ffiffiffiffi

2

p

r

pturnð1� 2pflipÞsturnf ðdanÞ (A11)

Autocorrelation of the reorientations
One can then compute the correlation of reorientation amplitudes, defined for q 2 N

� as:
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Cq ¼
dandanþq


 �

� danh i danþq


 �

ffiffiffiffiffiffiffiffiffiffiffiffi

da2
n


 �

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

da2
nþq


 �

q ¼ dandanþq


 �

da2
n


 � (A12)

with the normalization coefficient equal to the variance of reorientations

da2

n


 �

¼ pturns
2

turnþð1� pturnÞs2

fwd (A13)

The term dandanþq


 �

can be computed in a similar manner as for Equation A6, but with

more terms corresponding to the 16 possible combinations of states:

fFLgn;fFLgnþq fFLgn;fFRgnþq fFLgn;fTLgnþq fFLgn;fTRgnþq

fFRgn;fFLgnþq fFRgn;fFRgnþq fFRgn;fTLgnþq fFRgn;fTRgnþq

fTLgn;fFLgnþq fTLgn;fFRgnþq fTLgn;fTLgnþq fTLgn;fTRgnþq

fTRgn;fFLgnþq fTRgn;fFRgnþq fTRgn;fTLgnþq fTRgn;fTRgnþq

Only the four states in the bottom-right corner have a finite contribution, since all the

others terms are multiplied by �f ¼ 0. Thus:

dandanþq


 �

¼ PðfTLgn;fTLgnþqÞ�2

L þPðfTLgn;fTRgnþqÞ�L�Rþ
PðfTRgn;fTLgnþqÞ�R�LþPðfTRgn;fTRgnþqÞ�2

R

and, using Equation A7 and

PðfTLgnfTLgnþqÞ ¼ PðTnÞPðTnþqÞPðLnÞPðLnþqjLnÞ ¼
p2turn
2

PðLnþqjLnÞ

PðfTLgnfTRgnþqÞ ¼ PðTnÞPðTnþqÞPðLnÞPðRnþqjLnÞ ¼
p2turn
2

PðRnþqjLnÞ

PðfTRgnfTLgnþqÞ ¼ PðTnÞPðTnþqÞPðRnÞPðLnþqjRnÞ ¼
p2turn
2

PðLnþqjRnÞ

PðfTRgnfTRgnþqÞ ¼ PðTnÞPðTnþqÞPðRnÞPðRnþqjRnÞ ¼
p2turn
2

PðRnþqjRnÞ

and noting that

PðLnþqjLnÞ ¼ PðRnþqjRnÞ ¼
X

qþ1

i¼ 1

i~odd

q

i

� �

pi�1

flip ð1� pflipÞq�iþ1

PðLnþqjRnÞ ¼ PðRnþqjLnÞ ¼
X

qþ1

i¼ 1

i~even

q

i

� �

pi�1

flip ð1� pflipÞq�iþ1

one obtains

dandanþq


 �

¼ p2turn

X

qþ1

i¼1

ð�1Þqþ1
qipi�1

flip ð1� pflipÞq�iþ1

" #

�2

L ¼
2

p
1� 2pflip
� �q

p2turns
2

turn

and finally:

Cq ¼
2

p

p2turns
2

turn

pturns2
turn þð1� pturnÞs2

fwd

ð1� 2pflipÞq (A14)

This is the equation used to fit the data in Figure 1H.

An estimate of pflip was calculated as follows. If only turns are considered :
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dandanþ1h i ¼ pturnð1� pflipÞ jdanjjdanþ1jh i� pturnpflip jdanjjdanþ1jh i
¼ p2turn½ð1� 2pflipÞ jdanjjdanþ1jh i�

thus :

dandanþ1h i
jdanjjdanþ1jh i ¼ p2turnð1� 2pflipÞ ¼C1

And finally

pflip ¼
1

2
ð1� C1

p2turn
Þ (A15)

Mean square reorientation (MSR)
The mean square reorientation for a lag q 2 N

� is defined by:

Mq ¼ anþq �an

� �2
D E

(A16)

and can be expressed as a sum of correlations as follows:

Mq ¼
X

q

i¼1

danþi�1

 !2* +

¼
X

q

i¼1

X

q

j¼1

danþi�1danþj�1

* +

¼
X

q

i¼1

X

q

j¼1

danþi�1danþj�1


 �

¼ q da2

n


 �

þ
X

q

i¼1

X

q

j¼ 1

j 6¼ i

danþi�1danþj�1


 �

¼ q da2

n


 �

þ 2

X

q�1

i¼1

ðq� iÞ dandanþih i

¼ qþ 2

X

q�1

i¼1

ðq� iÞCi

" #

da2

n


 �

and using Equation A13 we finally obtain the expression used in Figure 1I:

Mq ¼ qþ 2

X

q�1

i¼1

ðq� iÞCi

" #

pturns
2

turn þð1� pturnÞs2

fwd

� �

(A17)
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Appendix 2

Neuronal model of the ARTR
The architecture of the ARTR neuronal model is shown in Figure 5A. The circuit consists of

two modules selective to lefward or rightward turning. Each module receives recurrent

excitatory, cross-inhibitory and sensory inputs. The firing rates of the left/right ARTR modules,

noted rL;R, are governed by two differential equations:

t_rL ¼�rLþf wErL �wIrRþ I0 þ ILðtÞð Þþ �ðtÞ
t_rR ¼�rRþf wErR �wIrLþ I0 þ IRðtÞð Þþ �ðtÞ

�

(A18)

where wErL;R is the recurrent excitatory current and wIrL;R is the cross-inhibitory current

originating from the contralateral side of the network. I0 is a constant input current and �ðtÞ is
a white noise. The function f is a non-negative spiking constraint such that fðx>0Þ ¼ x and

fðx<0Þ ¼ 0. We fixed t¼ 100ms, a typical slow synaptic time constant, as in Wang (2002). The

constant input current is set to I0 ¼ 20s�1 and the standard deviation of the noise current � is

set at 500s�1 as in Wolf et al. (2017). IR and IL are the visual input currents, proportional to

the intensity impinging the right and left eyes, respectively.

In this dynamical system, wI controls the anticorrelation between left and right module

activities. We fixed wI ¼ 7 such that the anticorrelation of the left and right signals (in the

absence of visual inputs) was comparable to the value -0.4 measured through calcium imaging

of the ARTR as reported in Wolf et al. (2017). The parameter wE controls the ability for each

side of the network to exhibit stable activity across time periods longer than t. The network

exhibits three different dynamic regimes depending on wE. One is characterized by an

absence of stable activity (low wE). For wE ~ 1, one module is constantly active while the other

remains silent. At intermediate values of wE, the network displays stochastic slow alternations

between both states. The fixation time, that is the characteristic decay time of the

autocorrelation of rL;R, is governed by wE. We chose wE ¼ 0:925 such that the auto-correlation

in orientation of turning bouts is similar to its experimental counterpart (Figure 5C and

Figure 1J).

To examine the effect of a stereovisual contrast c on the network dynamics, the sensory

input currents were set such that:

ILðtÞ ¼ Ilightð1� cÞ=2
IRðtÞ ¼ Ilightð1þ cÞ=2

�

(A19)

The value of the maximum current Ilight was set at Ilight ¼ 1000s�1 in order to reproduce the

contrast-dependent orientational bias (Figure 5D and Figure 2G).
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