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Shiga toxin (verotoxin)-producing Escherichia coli (STEC) is an important cause of foodborne disease. Since outcomes of 
the infections with STEC have a broad range of manifestation from asymptomatic infection or mild intestinal discomfort, 
to bloody diarrhea, hemolytic uremic syndrome (HUS), end-stage renal disease (ESRD), and death, the disease is a serious 
burden in public health and classified as a notifiable infectious disease in many countries. Cattle and other ruminants are 
considered to be the major reservoirs of STEC though isolation of STEC from other animals have been reported. Hence, the 
source of contamination extends to a wide range of foods, not only beef products but also fresh produce, water, and environ-
ment contaminated by excretes from the animals, mainly cattle. A low- infectious dose of STEC makes the disease relatively 
contagious, and causes outbreaks with unknown contamination sources and, therefore, as a preventive measure against 
STEC infection, it is important to obtain characteristics of prevailing STEC isolates in the region through robust surveil-
lance. Analysis of the isolates by pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem repeat 
analysis (MLVA) could help finding unrecognized foodborne outbreaks due to consumption of respective contaminated 
sources. However, though the results of molecular analysis of the isolates could indicate linkage of sporadic cases of STEC 
infection, it is hardly concluded that the cases are related via contaminated food source if it were not for epidemiological 
information. Therefore, it is essential to combine the results of strain analysis and epidemiological investigation rapidly to 
detect rapidly foodborne outbreaks caused by bacteria. This article reviews STEC infection as foodborne disease and further 
discusses key characteristics of STEC including pathogenesis, clinical manifestation, prevention and control of STEC infec-
tion. We also present the recent situation of the disease in Japan based on the surveillance of STEC infection.
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1. General introduction

As an important cause of foodborne disease, it is estimated 
by searching references published between January 1, 1990 
and April 30, 2012 that Shiga toxin (verotoxin)-producing 
Escherichia coli (STEC) causes 2,801,000 acute illnesses 
annually, and leads to 3,890 cases of hemolytic uremic 
syndrome (HUS), 270 cases of ESRD, and 230 deaths glob-
ally1). Similar estimation for STEC global burden, that is 
2.5 million illnesses and 1.2 million foodborne illnesses 
annually, has been given by WHO, although Norovirus was 
the leading cause of foodborne illness, causing 125 million 
cases and Campylobacter spp. caused 96 million foodborne 
illnesses2,3).

According to food poisoning statistics by the Ministry of 
Health, Labour and Welfare (MHLW) in Japan, the average 
number of food poisoning incidents and cases for the decade 
from 1981 to 1990 and from 2005 to 2014 were 967 and 
35,618 for the former and 1,207 and 25,852 for the latter, 
respectively4). However, approximately 28% of reduction 
was observed in the number of the cases as a whole and the 
number of cases per incidents decreased from 36.8 to 21.4 
between the two decades. On the other hand, as the num-
ber of incidents in the latter grew 1.25 times of that of the 
former, large foodborne outbreaks have been decreasing in 
number and small outbreaks and/or sporadic cases have been 
increasing. There are two different reporting systems for 
surveillance of STEC infections in Japan. One is based on 

the Law Concerning the Prevention of Infectious Diseases 
and Medical Care for Patients of Infections (the Infectious 
Diseases Control Law) and its purpose is to collect and 
compile reports of nationally notifiable infectious diseases, 
including STEC infections regardless of the route of infec-
tion. Since STEC infection is defined by isolation of STEC 
from the person except in the case of HUS, when serodiag-
nosis was possible, asymptomatic patients are also found in 
this system. The other is based on the Food Sanitation Law 
that collects reports of foodborne illness from municipal 
public health agencies and the system focuses on collecting 
symptomatic patients of food poisoning. Though the major 
cause of STEC infections is considered to be foodborne, 
there is a quite big difference between the numbers of STEC 
infection cases and the numbers of STEC food poisoning 
reported through each surveillance system (Fig. 1). The 
number of patients in food poisoning due to Salmonella spps. 
or Vibrio parahaemolyticus has gradually decreased since 
2001 but that of patients due to Campylobacter jejuni/coli 
has remained relatively high compared to that of Staphylo-
coccus spps. and STEC. The average number of the cases of 
STEC infection in the 11-year period from 2005 to 2015 was 
3,995 but that of food poisoning due to STEC was only 364 
for the same period. Although the number of cases of STEC 
infection includes 34% of asymptomatic patients during the 
period of 2009 to 20155–10), number of patients with STEC 
food poisoning is by far too small to compare to that of the 
cases of STEC infection. In this article we focus on STEC 
and STEC infection as foodborne illness discussing potential 

Fig. 1.  The number of patients of food poisoning by various causal agents in Japan from 2001 to 2015 and the 
number of notified STEC infection during the same period. Note that the number of patients of food poisoning by 
STEC is strikingly smaller than that of notified STEC infection. The number of patients with Salmonella species 
and Vibrio parahaemolyticus are in decline.
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preventive measures against STEC infection.

2. Shiga toxin (verotoxin)-producing E. coli 
(STEC) and STEC infection

2-1. Introduction
Diarrheagenic E. coli that are capable of causing disease 

in healthy individuals can be categorized into six well-
described categories: enteropathogenic E. coli (EPEC), 
Shiga toxin-producing E. coli (STEC), enterotoxigenic E. coli 
(ETEC), enteroaggregative E. coli (EAEC), enteroinvasive 
E. coli (EIEC) and diffusely adherent E. coli (DAEC)11). The 
categories of diarrheagenic E. coli are differentiated on the 
basis of pathogenic features reflecting profile of virulence 
factors of the isolate. We will use the term STEC to denote 
strains possessing Shiga toxin independent of accompanying 
virulence factors.

STEC was first recognized as a human pathogen in 1982, 
when E.coli O157:H7 caused two outbreaks of hemorrhagic 
colitis associated with consumption of undercooked ground 
beef12,13). Since then, a number of foodborne outbreaks of 
hemorrhagic colitis and HUS due to not only STEC O157:H7 
but also other serotypes of STEC have been reported 
worldwide. Since STEC resides in the gastrointestinal tract 
of cattle and other ruminants, contamination of meat with 
STEC during slaughter is a principal route by which these 
pathogens enter the food supply. However, a variety of foods 
have been identified as vehicles of STEC-associated ill-
nesses; these include ground beef14), roast beef15), salami16), 
raw milk17,18), cheese19,20), ice-cream21), yogurt22), Romaine 
lettuce23), lettuce24), unpasteurized apple cider or juice25–28), 
cantaloupe29), spinach30), radish sprouts31,32), and alfalfa 
sprouts33). STEC O157:H7 have been predominant serotype 
of STEC associated with human illness and the serotype 
had been the major target of most detection methods. But 
as Shiga toxin and/or genes for Shiga toxin have become the 
main target of most detection methods in STEC surveillance, 
more cases of non-O157 STEC are reported. STEC infection 
remains a leading cause of gastroenteritis among notifiable 
disease in Japan and is sometimes followed by a severe life-
threatening complication such as HUS.

2-2. Pathogenesis
2-2-1 Shiga toxins

Shiga toxins (Stxs) are key virulence factors produced by 
Shigella dysenteriae serotype 1 and STEC. Stxs have been 
shown to be responsible for exacerbating intestinal damage, 
and cause systemic complications involving the kidneys and 
central nervous system (CNS). The toxin is named after Dr. 
Kiyoshi Shiga, who identified the causative agent of dysen-

tery, Shiga’s bacillus, in an outbreak of dysentery in Japan 
in 189734). In 1977, Konowalchuk et al. showed that some 
strains of E. coli produced a cytotoxin capable of killing Vero 
cell, and the cytotoxin was referred to as Vero cytotoxin or 
Verotoxin35). In addition to the findings with the purification 
of Shiga toxin from S. dysenteriae serotype 1 in 198036,37), 
it was reported that a Shiga-like toxin was produced by E. 
coli O157:H7 strain that had caused an outbreak of hemor-
rhagic colitis in the United States38) and that this toxin was 
the same as the verotoxin shown to be produced by E. coli 
O157:H739). Now, the terms Shiga toxins or Verotoxins are 
used to describe the same toxin40).

There are two types of Stxs produced by STEC, Shiga 
toxin type 1 (Stx1) and Shiga toxin type 2 (Stx2), based on 
their antigenic characteristics compared to the prototypical 
Shiga toxin produced by S. dysenteriae serotype 141–43). It 
has been shown that purified Stx2 has 400-fold lower median 
lethal dose (LD50) in mice44) and is 1,000 times more toxic to 
human renal endothelial cells than Stx145). Epidemiological 
evidence also shows that Stx2-producing strains of STEC 
O157:H7 are more frequently associated with HUS than are 
strains producing Stx146,47).

These Shiga toxin family members have a monomeric A 
and pentameric B molecular configuration, as revealed by 
X-ray crystallography48,49). A catalytic A subunit is non-co-
valently associated with a pentamer of identical B fragments 
that form the B subunit, which is responsible for binding to 
cell surface receptors, glycosphingolipid globotriaosylce-
ramide (Gb3; also known as CD77 or the Pk blood group 
antigen)50–52). After binding to Gb3 receptors, the toxins are 
internalized and undergo retrograde intracellular transport 
to the endoplasmic reticulum (ER). During transport to 
the ER, catalytic A subunits dissociate from B subunits by 
proteolysis and disulfide bond reduction53–56). Since catalytic 
A subunit has a specific RNA N-glycosidase activity that 
cleaves an adenine base at position 4,324 of 28S ribosomal 
RNA of eukaryotic ribosomes57,58), it inhibits elongation 
factor-dependent amino-acyl tRNA binding and subsequent 
chain elongation59). However, delivery of the toxins to the 
ER and following retrotranslocation of the catalytic A sub-
units into the cytoplasm result in not only host cell protein 
synthesis inhibition, but activation of the ribotoxic stress 
and ER stress response and, in some cases, the induction of 
apoptosis, cytokines and chemokines60).

The stx genes in STEC strains are encoded by the genomes 
of prophages of the lambdoid family and are located down-
stream of the phage late gene promoter61). While stx1 is under 
control of the iron-regulated authentic promoter, which will 
result in induction of Stx1 expression at low concentration 
of iron62), the expression of stx2 depends primarily on the 
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late promoter63,64). DNA-damaging agents, such as mitomy-
cin C have been shown to increase Stx production through 
prophage induction65,66). Stx production in STEC strains, 
therefore, is intimately correlated with the Stx-encoding 
phages.

2-2-2 Adhesins  
Locus of enterocyte effacement

The ability of STEC to induce attaching and effacing 
(A/E) lesions of intestinal epithelia is shared by EPEC, 
Escherichia albertii (previously classified as Hafnia alvei), 
and Citrobacter rodentium67). The A/E lesions were typical 
histopathological observations in intestinal biopsy speci-
mens from patients and infected animals originally reported 
with EPEC infection, which are characterized by effacement 
of microvilli and intimate adherence between the bacterium 
and the surface of epithelial cells68,69).

The bacterial genes involved in formation of A/E lesion 
were shown to be located on a 35-kb locus of the chromo-
some of EPEC and STEC isolates67). This locus, called 
locus of enterocyte effacement (LEE) is not present in non-
pathogenic strains of E. coli but is found in EPEC and STEC 
strains capable of producing the A/E lesion. LEE-positive 
STEC serotypes have been referred to as enterohemorrhagic 
E. coli (EHEC)70) and LEE-positive STEC serotypes (such 
as O157:H7, O26:H11, O103:H2, O111:NM, O121:H19, and 
O145:NM) are much more commonly associated with HUS 
and with epidemic diseases than are LEE-negative sero-
types11,70,71).The LEE consists of five major operons, which 
encode a type III secretion system, multiple secreted pro-
teins, a bacterial adhesin called intimin, and a translocated 
receptor for intimin, Tir72–75). Intimin is a 95-kDa outer 
membrane protein that is encoded by eae gene (E. coli at-
taching and effacing) and necessary for the formation of A/E 
lesions69,76). The delivery of Tir into the host cell through type 
III secretion system is followed by binding of intimin to Tir 
that was recruited to the surface of the host cell membrane, 
which initiates formation of A/E lesions77). Although intimin 
is the primary adhesin in STEC, there are other adhesins 
contributing to the adhesive capabilities of STEC, including 
fimbrial adhesin proteins such as long-polar fimbriae78), au-
totransporters, flagella, and other adhesin proteins reviewed 
in reference79).

2-2-3 Acid tolerance
The infectious dose of STEC is estimated to be as low 

as or less than 100 organism80,81), which is attributed to 
its acid-resistant nature82–85). In addition to increasing the 
possibility of survival of the bacterium under gastric acid 
environment, the acid tolerance has enabled the pathogen to 

survive in various acidic food; apple cider (pH 3.7 to 4.0)86), 
buttermilk (pH 4.1)87), yogurt (pH4.17 to 4.39)87,88), and sour 
cream (pH 4.3)87). Acid resistance mechanism in E. coli in-
cludes a glucose-repressed system, glutamate- and arginine-
dependent systems89). While rpoS (encoding sigma factor) 
is essential for expression of glucose-repressed system, glu-
tamate- and arginine decarboxylase are required in amino 
acid-dependent systems. The two decarboxylase systems are 
believed to consume protons during the decarboxylation of 
glutamate or arginine, thereby preventing internal pH of the 
cell from decreasing to lethal levels90).

2-3. Animal Reservoir of STEC
Cattle and other ruminants91,92) are considered to be the 

major reservoirs of STEC, though STEC has also been 
isolated from other animals, such as dogs, cats, swine93), 
and horses94). Animal reservoirs for STEC O157:H7 includ-
ing amphibians and fish, as well as invertebrates, such as 
insects and mollusks, were reviewed elsewhere95,96). Aquatic 
species such as finfish and shellfish as dead-end hosts96) 
could transmit the organism to other animals, when they are 
consumed97–99).

In a survey performed on rectal content samples from 250 
beef cattle on 25 beef farms and 250 dairy cows on 25 dairy 
farms during summer in 2011 in Japan, STEC O157 was 
isolated from 16 (6.4%) beef cattle on 7 (28%) beef farms, but 
not obtained from any dairy cows tested100), and the previous 
investigation performed by the same authors four years apart 
showed very similar prevalence of STEC O157 (8.9%)101). 
In another study, prevalence of STEC strains in 932 healthy 
dairy cows from 123 farms was 12%, and 31 different O-
serogroups, including O26 but not O157, were identified102). 
Using stx-PCRs for screening, the same study also found 
that the prevalence of the stx gene positive samples among 
the dairy cows was 30.4%. Hussein103) reviewed published 
reports and summarized that the prevalence rates of E. coli 
O157 ranged from 0.3 to 19.7% in feedlots and from 0.7 to 
27.3% on pasture with regard to beef cattle and that corre-
sponding prevalence rates of non-O157 STEC were 4.6 to 
55.9% and 4.7 to 44.8%, respectively.

2-4. Sources of Human Infection
2-4-1. Undercooked Contaminated Beef Products

Since the most common source of STEC infection in hu-
man is consumption of contaminated foods, consumption of 
raw or undercooked foods of bovine origin has been the most 
common means of transmitting STEC infection. Ground beef 
is an especially efficient transmission vehicle of STEC and 
a multistate outbreak was traced to hamburgers distributed 
by a restaurant chain in 1993104), and undercooked hamburg-
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ers were implicated in a number of other outbreaks105–108). 
Hamburgers prepared at home were also implicated109,110). 
Needless to say, raw or undercooked beef products have a 
higher risk of transmitting contaminated bacteria to human 
and, in fact, the STEC O157 infections due to consumption 
of raw beef liver in 20106), a large STEC O111 outbreak due 
to consumption of Yukhoe, a Korean dish of raw beef and 
egg yolk7), and a diffuse outbreak from a restaurant chain 
due to cubically assembled meat111) were reported in Japan.

2-4-2. Contaminated Fresh Produce
Because STEC can attach to raw or processed fruits and 

vegetables, produce has also been a vehicle for transmission 
of the bacteria. Major outbreaks were linked to lettuce112), 
including a multistate outbreak; sprouts32) and spinach113) are 
implicated in numerous HUS cases, and the large outbreak of 
O104:H4 in 2011 in the European Union (EU) also implicated 
the consumption of sprouts114). Produce-associated outbreak 
surveillance data from the Centers for Disease Control and 
Prevention (CDC, U.S.A.) for the period from 2000 to 2009 
showed that, among produce commodities, leafy greens 
were the most frequently linked to outbreaks115). Typically, 
produce-mediated outbreaks were linked to foliage con-
taminated by irrigation/spray water116); STEC O157:H7 were 
shown to adhere to and penetrate roots117).

Fermentation of food products can reduce the viability of 
STEC. STEC O157:H7 declined up to 3.5 logs in soudjouk 
sausage118,119), but fermented products may provide a vehicle 
for infection if curing conditions are inadequate; an outbreak 
in Sweden was traced to improperly processed sausage120). 
Pickled vegetables7) and lightly salted vegetables8,121,122), 
which were eaten fresh, as salad, have also been implicated 
in the outbreaks. Salmon roe that was lightly salted as a 
topping of sushi (ikura-sushi) was contaminated with STEC 
O157:H7 and caused an outbreak in Japan123).

2-4-3. Environment-mediated Transmission
Manure is a good vehicle of STEC and some outbreaks 

have been associated with public events held on grazing 
areas, presumably strewn with manure. A scouting event 
held in Scotland on a muddy field grazed by sheep resulted 
in an outbreak with Pulsedfield gel electrophoresis (PFGE) 
indistinguishable isolates from patients, the field, and sheep 
feces124); culturable bacteria were isolated for 15 weeks from 
the field soil after the outbreak125). In a sporadic case of 
STEC O157 infection in Minnesota, the isolates in garden 
soil linked to the case could survive on manure-amended soil 
for more than two months126).

Agricultural fairs exhibiting livestock are often implicated 
in human STEC outbreaks127–129). An investigation of a fair-

associated STEC O157 outbreak suggested that infections 
can be caused by widespread contamination of a building, 
since there was no evidence implicating specific food or 
beverage sources but STEC O157 was recovered from the 
rafters of the building130). In an outbreak of STEC O157:H7 
infection associated with attendance at multiple rodeos that 
had used bulls from the same cattle supplier, isolates from 
all 14 patients showed indistinguishable PFGE pattern and 
isolates from nine patients had identical multiple-locus 
variable-number tandem repeat analysis (MLVA) patterns 
and five had minor differences, and an isolate of STEC O157 
identified from a dirt sample collected from the bullpens of 
one of the attended rodeos was indistinguishable by PFGE 
and MLVA form the main outbreak strain131). STEC O157:H7 
was recovered from 3.5% of leafy green samples of the 
plot at 60 m away from a cattle feedlot, whereas that was 
recovered from 1.8% of the samples at 180 m away from the 
same feedlot, suggesting airborne contamination with STEC 
O157:H7 from cattle production area132).

Waterborne STEC infection has been implicated in a num-
ber of sporadic cases and outbreaks133,134). STEC outbreaks 
were associated with swimming in lakes135,136) and pools137), 
and consumption of water from a private water supply138–140).

2-4-4. Direct Contact Transmission
Direct human-animal contact can transmit STEC, and 

the most important prevention step to reduce transmission 
resulting from human-animal contact is hand-washing141). 
STEC outbreaks have often been associated with animals 
in public settings. Children are at most risk, as highlighted 
by HUS cases in petting zoo142) or farm143,144) visit and in 
participation in lamb feeding event145).

STEC can be transmitted to humans through person-to-
person transmission. Through National Outbreak Reporting 
system in USA, estimated 40 foodborne outbreaks of STEC 
were reported in 2009, and five additional STEC outbreaks 
were reported as transmitted by person-to-person contact146). 
Person-to-person transmission of STEC is a recognized 
cause of outbreaks in childcare settings147–150), which may be 
related to close contact of children with immature immune 
systems and underdeveloped personal hygiene skills.

2-5. Epidemiology
2-5-1. Clinical course

STEC infection has a broad spectrum of clinical manifes-
tation; asymptomatic infection, nonbloody diarrhea, bloody 
diarrhea (hemorrhagic colitis), and HUS. Typical clinical 
course of STEC O157:H7 infection begins with ingestion of 
the organisms, followed by a 3-to-4-day incubation period 
before the first loose stool. Illness then begins with nonbloody 
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diarrhea and abdominal cramps. Most persons who seek 
medical attention develop bloody diarrhea, a typical feature 
of STEC O157:H7 infection, in the second or third day of ill-
ness151). Symptoms of infection with STEC O157:H7 usually 
subside in about a week, with no obvious sequelae. However, 
about 6 percent of patients develop HUS152) and it is usually 
diagnosed two to 14 days after the onset of diarrhea153). HUS 
is most likely to occur in young children and elderly152). In 
addition to age, risk factors for development of HUS include 
bloody diarrhea, fever, an elevated leukocyte count, antibi-
otic administration, and use of antimotility agents154–156). 
Although an association between non-O157 STEC and 
milder clinical symptoms have been reported157–159), further 
investigation is needed on whether features of the clinical 
illness vary among serotypes and how difference in viru-
lence factors might result in differences in clinical outcomes. 
Although limited data are available on dose response, some 
findings indicate that the infectious doses of STEC are rela-
tively low. For example, from an outbreak of O111 STEC in 
beef sausage in Australia, investigators extrapolated a dose 
range of 1 to 10 organisms, given as few as 1 cell per 10 
g of sausage80). Using the concentrations of STEC O145 in 
contaminated ice cream in an outbreak in Belgium, the esti-
mated infective dose was 400 colony forming unit (CFU)21). 
This is comparable to illness from STEC O157:H7, which 
can result from infection with as few as 10 cells81).

2-5-2. Surveillance
In the United States, all STEC infections that cause human 

illness are notifiable to the Nationally Notifiable Diseases 
Surveillance System. Incidence rate for STEC are shown in 
Fig. 2, and the mean incidence rate for STEC in the period 

from 2010 to 2014 was 1.98 in the United States160). On the 
other hand, in 2014, the Centers for Disease Control and 
Prevention (CDC) Emerging Infections Program analyzed 
the data gathered from the Foodborne Diseases Active 
Surveillance Network (FoodNet). A total of 697 laboratory-
confirmed cases of STEC non-O157 and 444 of STEC O157 
infections were identified, with incidence rates of 1.43 and 
0.91 per 100,000 persons, respectively161). An examination 
of STEC cases from Michigan demonstrated an increase in 
non-O157 STEC162) and similar increases in non-O157 STEC 
were reported in other studies163–165). In both the Ontario and 
British Columbia sentinel sites in Canada, a total of 61 cases 
of STEC infections were reported between 2011 and 2012, 
representing an incidence rate of 3.1 cases/100,000 person-
years166). In comparison, the annual combined incidence rate 
for STEC infection as notifiable disease in Canada for both 
years was 1.9 cases/100,000 person-years (Fig. 2). While a 
slight decrease in the incidence rate has been observed in 
Canada, the apparent increasing trend of the incidence rate 
was reported from New Zealand167). Except for the sudden 
increase of the incidence rate in the EU in 2011--probably 
due to a large outbreak of STEC O104 in Germany--it re-
mained less than 1.5 cases/100, 000 in the EU, though the 
data was available only up to 2012168), and the incidence rate 
in Australia has been about 0.5 since 2007169–173).

In Japan, STEC infection is a category III notifiable infec-
tious disease, along with other bacterial infections caused 
by Vibrio cholerae O1 or O139, Shigella species, Salmonella 
enterica serovar Typhi, and Salmonella enterica serovar 
Paratyphi A in the National Epidemiological Surveillance of 
Infectious Diseases (NESID) under the Infectious Diseases 
Control Law enacted in April 1999. Despite control measures 

Fig. 2.  Annual incidence rate per 100,000 population of STEC infection in Japan, EU, United States, Australia, 
New Zealand, and Canada, 2006 to 2014, except for the EU, for which data was available up to 2012.
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instituted since 1996, including designating STEC infection 
as a notifiable disease, and the disease being monitored 
effectively through nationwide surveillance, the annual 
incidence rate remains around 3.0 per 100,000 population 
(Fig. 2). Under a surveillance system for food poisoning 
based on the Food Sanitation Law, an STEC infection is 
reported as food poisoning by physicians or judged as such 
by the director of the health center and reported as such by 
the local government to the MHLW. During the investiga-
tion of the outbreaks, family members and colleagues of the 
patients were encouraged to have stool examination and it 
was revealed that approximately 35% of STEC infections 
were asymptomatic and that the proportion of asymptomatic 
infection was high among the middle-aged group whereas 
symptomatic cases were more frequent in young and old age 
groups174).

Apart from NESID, results of characterization (serotypes, 
Stx types, etc.) of STEC isolates at prefectural and municipal 
PHIs are reported to the Infectious Disease Surveillance 
Center (IDSC) at the National Institute of Infectious Diseases 
(NIID). The summary showed that STEC O157 serogroup is 
the predominant one, followed by O26, O111, O103, O121, 
O145, and others. However, as seen in the United States163) 
and continental Europe175,176), the percentage of non-STEC 
O157 serogroups among all STEC isolates from human 
infection has been increasing slightly; the rate of isolation 
frequency of STEC O157 has declined from approximately 
70% of all STEC isolates in 2000 to about 60% in 2015177,178). 
As a collaborating laboratory surveillance system between 
prefectural and municipal PHIs and NIID, PulseNet Japan, a 
national laboratory network that connects foodborne illness 
cases to detect outbreaks by the use of DNA fingerprint-
ing of the isolates, has been established179). It constitutes 
a part of PulseNet International180), and has contributed to 
investigations of domestic181) and international STEC O157 
outbreaks182).

2-5-3. Outbreaks in Japan
In the outbreaks with more than 10 culture-positive 

patients reported to the IDSC from 2000 to 2012, the main 
mode of transmission of the infection was person to person 
(41%), food borne (29%), and water borne (3%,), and in about 
one-third of the outbreaks, the mode of transmission of the 
infection remains unknown174). One major setting of these 
outbreaks was nursery schools, which may account for the 
high proportion of person-to-person transmissions of the 
infection in the outbreaks. The most prevalent serogroup of 
STEC in the outbreaks in nursery schools was O26 (52%), 
followed by O157 (27%), O111 (9%), O103 (4%), O121 (4%), 
O145 (3%), and OUT174), which may account for relatively 

mild clinical manifestations, including asymptomatic cases 
and, consequently, frequent person-to-person transmission 
observed in these outbreaks. Increased STEC outbreaks in 
childcare facilities due to non-O157 serogroups, particularly 
O26 and O111 during 2010 to 2013, were also reported by 
another group in Japan150). There were 13 STEC outbreaks 
that had more than 100 culture positive cases between 2000 
and 2015(Table 1)183,184). All 13 outbreaks appear to have 
resulted from consumption of contaminated foods, and, in 
some of these outbreaks, microbiological testing confirmed 
the implicated foods. These included beef products121); 
lightly salted cucumber122); Koumi-ae consisting of boiled 
spinach and steamed chicken meat seasoned with welsh 
onion, ginger, and soy sauce122); boxed meals185); lettuce5); 
school lunches6); Yukhoe (raw beef)7), and Japanese rice 
cakes7).

Low infectious doses of STEC--possibly fewer than 10 
organisms80,81)-- is a critical factor in the transmission of the 
STEC, when people consume raw or lightly cooked foods 
such as sushi and vegetables. Because sushi and raw or light-
ly cooked meat are popular foods in Japan, there have been 
outbreaks associated with consumption of salmon roe sushi 
in 1998123) and “rare” roast beef contaminated with STEC 
O157 in 2001121). In an STEC O111 outbreak associated with 
consumption of Yukhoe at Yakiniku chain restaurants, STEC 
O111:H8 was isolated from 85 of 181 patients (median age 
20 years); in 34 of those patients HUS developed; encepha-
lopathy developed in 21 patients; and 5 patients died7). HUS 
occurred most frequently in individuals aged 5–9 years, and 
this age group was significantly associated with acute en-
cephalopathy186). STEC O111:H8 was also isolated from the 
conserved part of the original meat preparations distributed 
to the chain restaurants.

Some of the outbreaks were associated with consump-
tion of vegetables. In addition to two large outbreaks in 
2011 (Table 1), there were four outbreaks associated with 
consumption of vegetables7); cabbage was identified as a 
vehicle of STEC O26:H11 in an outbreak and STEC O157:H7 
was isolated from pickled eggplant and green perilla, green 
perilla served with grated radish, and cucumber in three out-
breaks, respectively. A large outbreak of STEC O157:H7 in-
fection traced to a brand of lightly salted vegetables occurred 
in Sapporo, Hokkaido in 20128). STEC O157:H7 was isolated 
from the implicated product. Since the products were widely 
distributed, 169 patients were reported from five facilities 
for the elderly, hotels, restaurants, and families in Hokkaido 
and included four cases in different prefectures from which 
STEC O157:H7--with indistinguishable PFGE patterns and 
identical MLVA type--was isolated. STEC O157:H7 was iso-
lated from 73 of 169 patients, eight of whom, mostly elderly, 
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died. In August 2014, there was STEC O157 food poisoning 
of 510 cases, who consumed contaminated lightly pickled 
cucumbers sold at food stands during a fireworks display in 
Shizuoka Prefecture10).

2-6. HUS
HUS is a life-threatening illness characterized by he-

molytic anemia, thrombocytopenia, and renal failure, and 
it is the most common cause of acute renal failure among 
children in the United States187). Foodborne Diseases Active 
Surveillance Network reported that among 3464 STEC O157 
infections in the period of 2000-2006, 218 persons (6.3%) 
developed HUS and the highest proportion of HUS cases 
(15.3%) occurred among children aged less than 5 years and 
that death occurred in 0.6% of all patients with STEC O157 
infection and in 4.6% of those with HUS188). In Italy, an 
average of 33 sporadic cases of HUS per year were observed 
between 1988 and 2012, with a mean annual incidence of 
0.4 cases per 100,000 residents aged 0–15 years176). In 15 
EU countries, A total of 382 (6.6%) confirmed STEC cases 
(n=5746) developed HUS in 2012 and 59 per cent of HUS 
cases (n=226) were reported in 0–4 year-old children with 
O157 and O26 as dominant serogroups followed by 5–14 year 

old children with O157 as a dominant serogroup (74%)168). In 
Argentina, postdiarrheal HUS is endemic and approximately 
400 HUS cases were reported annually between 2002 and 
2011. The incidence ranged from 10 to 17 cases per 100,000 
children less than 5 years of age, and lethality was between 
1 and 4%189).

In Japan, due to an amendment of the case definition 
of STEC in the Infectious Diseases Control Law in 2006, 
HUS patient should be reported as having STEC infection 
if Stx was detected in feces, or O-antigen agglutinating 
antibody or anti-Stx antibody was detected in the serum of 
the patient. From 2006 to 2015, the average annual number 
of HUS cases (including serodiagnosed cases) was 99 and 
the incidence rate of HUS (HUS cases/symptomatic cases) 
was 3.6% (Fig. 3)111,190–197). As reported in previous studies, 
increased rates of HUS in children less than 10 years old and 
the elderly198,199) are shown in Fig. 3.

From 2006 to 2015, 65% of the 985 HUS cases were 
culture-confirmed by laboratory testing, and the rest of the 
cases were diagnosed by detecting antilipopolysaccharide 
antibody of E. coli in the serum of the patients or Stx in the 
stool samples of the patients.

STEC O157 was the predominant serogroup, occupying 

Table 1  Foodborne Outbreaks Caused by STEC in Japan

Year Prefecture/City Setting (reference) Serotype Stx type Symptomatic 
cases

Culture  
positives

Likely mode of  
transmission

2001 Chiba P. Patient’s home (113) O157:H7 Stx1&2 195 257 beef products (a)

2002 Fukuoka C. Nursery school (114) O157:H- Stx2 74 112 lightly salted cucumber (a)

2002 Utsunomiya C. Hospital and home  
for the elderly (114)

O157:H7 Stx1&2 123 111 Koumi-ae (a)

2003 Yokohama C. Kindergarten (183) O26:H11 Stx1 141 449 Foodborne

2004 Ishikawa P. High school (184) O111:H- Stx1&2 110 103 Foodborne

2007 Tokyo M. School refectory (173) O157:H7 Stx2 467 204 Foodborne

2007 Miyagi P.,  
Sendai C. & 
Akita C.

Restaurant (173) O157:H7 Stx1&2 314 173 boxed meals (a)

2009 Saga P. Nursery school (5) O26:H11 Stx1 N.D. 133 lettuce (a)

2010 Mie P. High school (6) O157:H7 Stx2 138 164 school lunch (a)

2011 Toyama P. Chain restaurants (7) O111:H8 Stx2, Stx- 181 102 Yukhoe (raw beef) (a)

O157:H7 Stx1, Stx2,Stx1&2 38

2011 Yamagata P. Festival (7) O157:H7 Stx1&2 287 189 Japanese rice cakes (a)

2012 Osaka C. Nursery school (8) O26:H- Stx1 68 115 Foodborne

2014 Shizuoka C. Street stall (10) O157:H7 Stx1&2 510 193 Foodborne
(a) Confirmed microbiologically; ND, no data.
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85% of all isolates in culture-confirmed HUS cases, followed 
by O111 (4.4%), O26 (2.7%), O121 (2.3%), O165 (1.2%), O145 
(0.6%), and the rest of the O serogroups, including O55, O74, 
O76, O115, O174, O183, and unknown serogroup samples. 
Although non-O157 serogroup strains were isolated in the 
culture-confirmed HUS cases, 94% of all STEC isolates in 
the culture-confirmed HUS cases were either Stx2 or both 
Stx1 and Stx2 producers, which is consistent with epidemio-
logical evidence that Stx2-containing STEC O157:H7 strains 
are more frequently associated with HUS than the strains 
containing Stx146,47,71).

2-7. Infection Control
Although it is rare to be able to find the source of infec-

tion in sporadic cases of STEC infection, many outbreaks of 
STEC infection have been associated with foods that become 
contaminated through direct or indirect environmental ex-
posure to waste products of cattle. Therefore, implementing 
effective measures to reduce or eliminate STEC from all 
stages of the food chain, starting from production to con-
sumption would lead to reducing STEC infection in humans. 
All steps ranging from reducing carriage of STEC by cattle 
used in food production to proper food preparation to kill 
STEC before consumption should be included. Certain farm 
management practices, especially those related to prevention 
of contamination and multiplication of STEC in feed and 
water, may provide practical means to reduce the prevalence 
of STEC in cattle on farms and in slaughter plants200). Good 

hygienic practices during food production are essential to 
keep microbiological contamination to a minimum. The 
most effective method of eliminating STEC from foods is to 
introduce a bactericidal treatment, such as heating201,202) or 
irradiation203–206). Since person-to-person contact is an im-
portant mode of transmission through the oral-fecal route in 
STEC infection, good hygiene practice is especially important 
in settings such as child-care facilities, where persons at high 
risk for STEC infection spend considerable time together. In 
addition, as the median duration of shedding reported from 
previous outbreaks in childcare facilities has been found to 
be between 20 and 50 days147,207–209), exclusion of ill persons 
from the facilities until the diarrhea has resolved should be 
considered. In general, routine handwashing before eating 
and after diaper changes and toileting is the best way to 
prevent the spread of infection in child-care facilities.

3. Control Measures Against Foodborne 
Disease Due to STEC

Among preharvest food safety interventions to reduce the 
prevalence and shedding level of STEC O157 by cattle, vac-
cines have been the most effective interventions documented 
to date.

Currently, only two commercially available vaccines 
against E. coli O157:H7 in cattle exist: a type III secreted 
proteins (Bioniche Life Sciences Inc., Belleville, Ontario, 
Canada), and a siderophore receptor and porin protein (Epi-

Fig. 3.  Incidence rate of HUS in STEC infection by age groups in Japan, 2006 to 2015. Incidence rate (%) was 
calculated as (number of patients with HUS) ÷ (number of symptomatic cases) × 100%.
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topix, LLC, Wilmar, MN, USA). Several systematic reviews 
and meta-analyses suggested that both vaccines effectively 
reduce the probability of feedlot cattle to shed STEC O157 
in feces210–213).

Some of the lessons learned from STEC outbreaks have re-
sulted in long-term improvements in food safety. In 1994, the 
U.S. Department of Agriculture (USDA), Food Safety and 
Inspection Service (FSIS) declared STEC O157:H7 an adul-
terant in ground beef in response to the multistate outbreak 
caused in 1993 by undercooked hamburgers contaminated 
with STEC O157214). Following these outbreaks, the U.S. 
Food and Drug Administration (FDA) issued more stringent 
guidelines for the internal temperature of cooked hamburg-
ers215). The pronouncement from FSIS was extended in 1999 
to all nonintact raw beef products216). Since the number of in-
fections and outbreaks due to STEC non-O157 has increased, 
FSIS documented risk profile for pathogenic non-O157 STEC 
and concluded that STEC O157 was not the only STEC 
representing a hazard217). Furthermore, FSIS decided on the 
implementation of sampling and testing manufacturing trim 
and other raw ground beef product components for STEC 
non-O157 in 2012218). STEC strains of serogroups O26, O111, 
O103, O145, O121, and O45 were declared as adulterant in 
these food commodities and included in the sampling plans 
in addition to STEC O157.

In the European Union (EU), although the limitations ex-
ist in categorizing the level of danger associated with STEC 
from nonhuman sources, the seropathotypes A and B of Kar-
mali’s scheme219) formed a large consensus in the scientific 
community and were endorsed by the European Food Safety 
Authority (EFSA). The scheme was based on the evalua-
tion of the virulence and serological features of the strains 
combined with their association with severe disease and 
epidemic outbreaks. STEC strains belonging to serogroups 
O157, O26, O111, O103, and O145 were included in the se-
ropathotypes A and B of the scheme. EFSA recommended 
focusing food testing for STEC on the seropathotype A and 
B groups220,221). However, the massive outbreak caused by 
an enteroaggregative STEC O104:H4 strain in 2011 in Ger-
many and other 12 European countries forced the European 
Commission (EC) to take measures against the possibility 
of other STEC crises in the EU. EFSA was asked to assess 
the public health risk caused by STEC and other pathogenic 
bacteria that may contaminate both seeds and sprouted seeds 
intended for direct human consumption222,223). Finally, the 
European Commission issued Regulation (EU) 209/2013, 
containing the microbiological criteria for STEC in sprouts 
and amending Regulation (EC) 2073/2005, which introduced 
for the first time in EU legislation a specific criterion for 
STEC regarding the presence in sprouts of the five STEC 

serogroups, i.e. O157, O26, O111, O103, and O145 plus STEC 
O104:H4224).

In Japan, STEC infections have been routinely notifiable 
since 1996. They are also reported as food poisoning by phy-
sicians or judged as such by the director of the health center 
under a surveillance system for food poisoning. Furthermore, 
the Abattoir Law Enforcement Regulation (Ministry of 
Health and Welfare Ordinance No. 44, September 28, 1953) 
was amended by the MHLW so that the measures for preven-
tion and reduction of STEC contamination at every step of 
the processes such as tying the rectum before evisceration 
at slaughter houses could be fulfilled. The MHLW has also 
formulated standards of a hygienic control manual for large 
cooking facilities based on the HACCP (Hazard Analysis 
and Critical Control Point) to prevent food poisoning due 
to food provided by these facilities. Although the official 
detection methods for STEC O26, O111, and O157225) was in 
use, a newer detection method for STEC O26, O103, O111, 
O121, O145, and O157 in food226) has been established and 
validated,227) reflecting a steady increase in non-O157 STEC 
infections. The method involved a combination of various 
chromogenic agars, targeting particular STEC serogroups, 
and molecular approaches such as real-time PCR based on 
the methods used by the USDA228) and EFSA221). In response 
to persistent food poisonings caused by raw beef, the MHLW 
revised the standards of beef product quality for raw-eating 
and put them into operation in October 2011. Further, after 
STEC O157 was detected in the inner part of cattle livers, 
the MHLW banned the marketing of cattle liver intended to 
be eaten raw. Probably as a consequence of these preven-
tive measures, the incidence of STEC O157 cases related to 
consumption of raw meat decreased by almost half in one 
year, from 2011 to 20128).

4. Conclusions

STEC infections continue to occur due to a variety of 
foods contaminated by this bacterium. Although foods of 
bovine origin contaminated with this pathogen have been 
a major source for infection, evidence of disease linked to 
other sources, including contaminated produce, water, and 
other environmental exposures, indicates a necessity for a 
comprehensive approach to STEC reduction or elimination 
at all levels of food production. However, despite various 
control measures taken today, reported incidence of non-
O157 STEC has been gradually increasing, partially due to 
recent improved detection methods, and massive outbreak 
due to a rare category of STEC that belonged to enteroaggre-
gative E. coli occurred in Europe, indicating the complexity 
of securing food safety when dealing with STEC.
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Surveillance of STEC infections, especially laboratory 
investigation of the implicated isolates based on molecular 
analytical methods, have revealed that complex ecology 
and genetics of this pathogen existed and indicated that 
combining the results of isolate analysis with epidemiologi-
cal information were important for accurate determination 
of the infectious source. Therefore, cooperative interplay 
of relevant authorities referring to public health, food, and 
veterinary science are indispensable for establishment of 
effective control measures and prevention against STEC 
infection.
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