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Abstract

Studies have used the Latent Differential Equation (LDE, Boker et al. 2004) model to estimate the 

parameters of damped oscillation in various phenomena, but it has been shown that correct, non-

zero parameter estimates are only obtained when the latent series exhibits little or no process noise 

(Deboeck and Boker, 2010). Consequently, LDEs are limited to modeling deterministic processes 

with measurement error rather than those with random behavior in the true latent state. The 

reasons for these limitations are considered, and a piecewise deterministic approximation (PDA) 

algorithm is proposed to treat process noise outliers as functional discontinuities and obtain correct 

estimates of the damping parameter. Comprehensive, random-effects simulations were used to 

compare results with those obtained using a State-Space Model (SSM) based on the Kalman filter. 

The LDE with the PDA algorithm (LDEPDA) successfully recovered the simulated damping 

parameter under a variety of conditions when process noise was present in the latent state. The 

LDEPDA had greater precision and accuracy than the SSM when estimating parameters from data 

with sparse jump discontinuities, but worse performance for diffusion processes overall. All three 

methods were applied to a sample of postural sway data. The basic LDE estimated zero damping, 

while the LDEPDA and SSM estimated moderate to high damping. The SSM estimated the 

smallest standard errors for both frequency and damping parameter estimates.

In this study, we examined systematic errors in estimating the parameters of the Latent 

Differential Equation (LDE) model of time series data (Boker et al., 2004), then used 

simulations to calibrate and test a novel method of correcting them. We then applied each of 

three methods to a sample of lateral, postural sway data and compared the results. We begin 

with a brief overview of common terms and methods, then review the advantages and 

limitations of the LDE in more detail.

A stochastic process is a series that changes according to a combination of deterministic and 

random components. Stochastic processes can be modeled in the frequency domain with 

spectral methods such as Fourier transforms, in the discrete time domain with 
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Autoregressive Moving Average (ARMA) models (Box and Jenkins, 1976), or in continuous 

time as stochastic differential equations (SDEs; e.g., Wei 2006; Tuma and Hannan 1984). 

Psychological researchers have increasingly taken interest in continuous-time modeling 

because it offers a convenient method of handling measurement interval irregularity and 

estimates parameters that can be easily compared over different interval schemes. For these 

reasons, differential equation models have also been sought to estimate the dynamics of 

change as inherent, quantitative traits of a system, a common idea in econometrics (i.e., 

“deep structural parameters”), and more recently in psychological research (Boker, 2002).

When time series of data are obtained from sensors or questionnaires, variation may be due 

to multiple sources of randomness. Measurement error is defined as variation superimposed 

upon the true trajectory as a result of imperfect measurement, without influencing the 

process that is measured. If measurement error is present, then the true state of a system at 

any time can only be estimated from the data. If the trajectory includes process noise, then 

the true state varies randomly to some extent, often due to unmeasured, exogenous 

disturbances. In continuous time, the solution of a stochastic differential equation with 

process noise is called a diffusion process. Modeling diffusion processes requires 

distinguishing measurement noise from process noise while estimating the parameters of 

systematic variation. State-Space Models (SSM, e.g., Hunter, 2018) achieve this using 

iterative algorithms that numerically solve the SDE, conditioning each random distribution 

at time t on the estimated mean and covariance of the state at time t − 1. One of the oldest 

and most well-known algorithms for this recursive conditioning is the Kalman filter 

(Kalman, 1960b; Kalman and Bucy, 1961), which solves the SDE by sequentially predicting 

each state from its previous estimate, then making corrections as a function of current 

observed values and the estimated variances of process and measurement noise. For linear 

differential equation models, the Kalman filter produces minimum-variance unbiased 

estimates (MVUE) of the latent states from one or more indicators and can be re-run over 

iterations of optimization to estimate the structural and measurement parameters of an SDE, 

including random noise distributions. Nonlinear models may differ in these properties, 

depending on the functional form of the nonlinearities and methods used to accomodate 

them. Estimation for nonlinear models can be accomplished using the Extended Kalman 

Filter (EKF, Kalman, 1960a), or the sigma point filter (or Unscented Kalman Filter, UKF, 

Wan and Van Der Merwe, 2000).

Techniques such as the Kalman filter often fit differential equations to data using the form of 

an analytic solution to predict each subsequent state. While analytically solving linear 

differential equations is straight-forward, some nonlinear differential equations do not have 

analytic solutions and are not approximated well by the linearized prediction methods most 

commonly used. One alternative method involves fitting polynomial splines to short, 

overlapping segments of the series and taking the estimated coefficients to be estimates of 

derivatives at the times around which each segment is centered (GLLA, Boker et al., 2010). 

The segments are obtained by “time-delay embedding” the data into shifted, duplicate 

columns:
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Y(D) =

y0 yτ y2τ … yτ(D − 1)
y1 y1 + τ y1 + 2τ … y1 + τ(D − 1)
y2 y2 + τ y2 + 2τ ⋯ y2 + τ(D − 1)
⋮ ⋮ ⋮ ⋱ ⋮

yN − τ(D − 1) ⋯ yN − 2τ yN − τ yN

(1)

The embedding dimension, D, or number of columns to embed, and the spacing parameter, 

τ, are decided a priori to capture dynamic behavior at a particular time scale and to adjust 

the degree of spline smoothing. The embedded data can then be projected onto a matrix of 

discrete polynomial approximations to produce the estimated latent states and their 

derivatives, which can subsequently be analyzed for linear or nonlinear structural relations.

Recently, a branch of differential equation modeling has appeared that uses this method, 

called the Latent Differential Equation (LDE, Boker et al., 2004; Boker, 2012). Rather than 

estimating derivatives and performing analyses in multiple steps, this approach 

simultaneously estimates the variances of each order of derivative as well as their linear 

structural relations as latent variables in a structural equation model (see: Bollen, 1989). The 

model is specified similarly to the latent growth curve (Preacher, 2008), but with rows 

representing time-embedded segments of the series rather than independent individuals.

Although the above derivative approximation method may confer advantages for analyzing 

certain nonlinear, possibly chaotic systems, the LDE has thus far only been used to model 

linear systems with simple solutions. The most commonly used specification is the Damped 

Linear Oscillator (Chow et al., 2005), in which variation of the latent state (x) over time (t) is 

governed by the two coefficients of a 2nd-order, linear differential equation: frequency of 

oscillation (η) and damping or change in amplitude (ζ):

ẍt = ηxt + ζẋt + βut + wt wt N 0, σW (2)

yt = cxt + ϵt ϵ N 0, σϵ (3)

The observed variable (y) is then a linear combination of the latent state and normally 

distributed measurement error (ϵ). Together, the coefficients η and ζ describe the stability of 

the state about some point of equilibrium over time and the rate of recovery from random 

movement due to process noise (w) and known, exogenous forces (u), hence they provide 

one possible model of stress and emotional resilience. Figure 1a shows a deterministic 

trajectory following from initial conditions described by the differential equation 

ẍt = − .62xt − .17ẋt with initial conditions x0 = 1, ẋ0 = 0. A Monte-Carlo simulated data set 

generated from the same equation with the added process noise term wt is shown in Figure 

1b.

LDEs have been used to model affect (Steele and Ferrer, 2011; Chow et al., 2005), well-

being following loss of a spouse (Bisconti et al., 2004), depressive symptomology 
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(Nicholson et al., 2011), feelings of intimacy (Boker and Laurenceau, 2006), working 

memory (Gasimova et al., 2014), and physiological synchrony in romantic (Helm et al., 

2012) and maternal relationships (Zentall et al., 2006).

Despite the growing number of applications, it has been shown that the LDE does not 

estimate the damping parameter correctly when the latent state is disturbed by process noise 

(Deboeck and Boker, 2010). Many of the studies that did not begin measurement at a point 

of intervention while controlling for process noise after t0 reported damping estimates (ζ )
statistically indistinguishable from zero. We gathered several reported parameter estimates 

into Table 1. A raw value of ζ is not sufficient to judge its effect size because it depends on 

the corresponding value of the frequency, η. To standardize and interpret all of the ζ effect 

sizes across studies, we converted them to a dimensionless form as the the ratio (r) of 

amplitudes at consecutive oscillation peaks x0 and x1, using r = x1/x0 = e
πζ
−η  (see Strogatz, 

2000, p. 64–66 for more on dimensionless coefficients). An undamped system thus has r ≈ 
1, and a critically damped system has r ≈ 0. The studies by Helm et al. (2012), Chow et al. 

(2005), and Gasimova et al. (2014) used the univariate LDE and reported no damping (i.e., 

an amplitude ratio of 1; See Table 1). Conversely, Bisconti et al. (2004) reported a 60% 

reduction in amplitude over the series of well-being measures in bereaved widows. The key 

difference is that in the study of bereaved widows, the series was initiated following a major, 

focal disturbance (the loss of a spouse), and the subject matter was such that subsequent 

disturbances of comparable magnitude were unlikely. The results are interpreted correctly as 

a decay in amplitude over the whole series, rather than in a recurrent impulse-response 

manner. Other studies estimated slight individual damping (Steele and Ferrer, 2011; Zentall 

et al., 2006) when using the coupled, multivariate version of the damped oscillator. We 

expect that the mechanism of bias is not fundamentally different for the coupled models, but 

the case is complicated by the allowance of forcing behavior between separate oscillators.

Many previous simulation studies have not shown the model’s basic limitation because they 

excluded process noise entirely, focusing instead on measurement error over deterministic 

trajectories (Boker et al., 2004; Chow et al., 2005; Hu et al., 2014; McKee et al., 2018). The 

severe parameter estimate bias due to process noise limits the LDE to modeling 

deterministic solutions with measurement error but makes it inappropriate for diffusion 

processes. While the study by Deboeck and Boker (2010) first demonstrated this problem, 

subsequent LDE literature has not yet addressed it.

The inability of the LDE to estimate the damping parameter likely results from the 

combination of its polynomial approximation scheme and its method of decomposing the 

observed covariance structure. While the Kalman filter conditions each state estimate on 

prior estimates, the LDE model algebra does not include any expectation that higher order 

derivatives at time t − Δ determine lower-order derivatives at time t, though by definition, 

xt = xt − Δ + Δẋt − Δ . Instead, derivatives are treated as independent and identically 

distributed over time, and only their contemporaneous covariance, ΣX, Ẋ, Ẍ, is modeled:
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A =
0 0 0
0 0 0
η ζ 0

, S =
V X CX, Ẋ 0

CX, Ẋ V Ẋ 0
0 0 V W

(4)

ΣX, Ẋ, Ẍ = (I − A)−1S(I − A)− ⊤ (5)

=
V X

CX, Ẋ V Ẋ

ηV X + ζCX, Ẋ ζV Ẋ + ηCX, Ẋ η2V X + ζ2V Ẋ + 2ηζCX, Ẋ + V W

(6)

Furthermore, the LDE fits polynomial splines over time-embedded intervals and treats the 

coefficients as estimated derivatives, though they are contemporaneously dependent for 

reasons not described by the model. To illustrate this, suppose that the time-delay 

embedding interval iterates forward by one occasion, introducing a large disturbance in its 

last column. The best-fitting polynomial over the new interval will include changes to the 

level, slope, and curvature, even though its expected values at the time points shared with the 

prior interval should remain nearly unchanged. The only paths describing dependence 

between derivatives in the LDE are the system dynamics, η and ζ, and the covariance CX,Ẋ. 

With no mechanism to contrast the influence of disturbances against expected changes due 

to prior states, contemporaneous dependence introduced by disturbances will appear as 

additional bias to the estimates of system dynamics. The LDE only decomposes the 

contemporaneous covariance matrix of the lagged data columns, which provides no 

information to distinguish covariance due to system dynamics from the inherent covariance 

of polynomial coefficients fit to the overlapping intervals of data. This is demonstrated in 

Figure 2. It can be seen that the overlapping polynomials create a smooth approximation that 

resembles an undamped system when the true series is actually a damped system with 

disturbances. The bottom scatter plot reflects the positive correlation of slope and curvature 

due to the intervals in which the disturbances accelerate the state away from equilibrium 

(shown in red). Excluding these intervals from the time-delay embedding structure results in 

two, independent segments (blue) for which the damping estimate, the slope of the dashed, 

blue line, matches the regression slope of the undisturbed, damped oscillator.

If the model cannot distinguish process noise from system dynamics, then the non-random 

relationships estimated (i.e. η and ζ) will be biased by stochastic behavior, as we have seen. 

However, by estimating the influence of individual observations on the covariance structure 

of the derivatives, we can manipulate the time-delay embedding pattern to minimize 

derivative covariance due to process noise. This approach is proposed to work for cases in 

which the LDE’s contemporaneous latent structure fits well to at least a plurality of the time-

embedded data rows, which can thus be used as a reference distribution for identifying 

stochastic outliers. Outliers are therefore classified relative to the model’s expectation. We 

discuss this requirement in more detail later.
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In this study, we attempted to augment the LDE with an algorithm that automatically locates 

such outliers and treats them instead as functional discontinuities in the latent state. While it 

is unlikely that the LDE can be made to model diffusion processes analogous to iterative 

filtering methods without itself being reformulated as an iterative method, this approach 

allows the LDE to model a series as piecewise deterministic trajectories with measurement 

error. We therefore refer to this algorithm as Piecewise Deterministic Approximation (PDA), 

or LDEPDA when used specifically with the LDE.

Other problems arise from the formulation of the LDE that we did not aim to address with 

this study. Other authors have pointed out that modeling the data as independent when they 

are not violates the assumptions of the likelihood function and is expected to produce 

incorrect standard errors and likelihood ratio tests (Oud and Singer, 2008). This has usually 

been addressed in LDE applications by bootstrapping estimates of standard errors. Second, 

the best-fitting polynomial to approximate any given interval of a sine wave will 

systematically exhibit less curvature than the exact Taylor approximation of the sine wave at 

the center point of that interval (See Appendix). The error in curvature approaches zero as 

the interval width approaches zero, or as the order of the approximating polynomial 

approaches infinity. Resulting bias to parameters can be mitigated by using a sufficiently 

high-order polynomial approximation to the sinusoidal trajectory, or if possible, by using 

smaller sampling intervals and a smaller embedding dimension. We used an embedding 

dimension of half the true oscillation period, and for model simplicity and consistency with 

previous applications, only used derivatives up to the 2nd order. As a consequence, some 

minor bias to the parameters is expected.

Methods

Piecewise Deterministic Approximation (PDA) algorithm

When modeling time-delay embedded data, an outlier to the multivariate distribution of lags 

is not strictly an occasion of measurement, but a segment of consecutive occasions that does 

not exhibit the same dynamics as the best-fitting plurality of other segments. We assume that 

such a plurality exists due to true dynamic behaviors that are stable over time and accurately 

characterized by the model. If no such plurality exists, then the dynamics estimated are 

simply the average behavior, which may not necessarily be representative of any particular 

interval of the series. If multiple dynamics underlie the series, then common methods of 

mixture modeling and moderation variables can be applied equally well to the LDE as with 

any linear structural equation model. We limited our scope to the simplest case, wherein the 

data are best described by one underlying set of stationary dynamics, obfuscated by additive 

noise. As a result of time-delay embedding, individual measurements are repeated across 

multiple rows and will only be excluded if they represent extreme stochastic behavior fewer 

than D occasions apart. Otherwise, the following algorithm will only introduce 

discontinuities in the overlap of the time-delay embedded segments.

The ideal circumstances for our solution can be characterized as a “shot noise” process, in 

which disturbances are infrequent, of large magnitude, and interspersed by periods of 

deterministic behavior. The process noise may be in such cases defined as a Bernoulli-

Gaussian process, with each disturbance following a probability of occurrence and a 
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Gaussian-distributed magnitude. If the probability of occurrence is small, few rows of data 

need to be excluded to estimate the true dynamic behavior. If process noise is simply 

Gaussian, then disturbances occur at every occasion and the series is better characterized as 

a diffusion process.

To detect outliers, we fit the LDE to the embedded data, then compute a vector of squared 

Mahalanobis distances (M) of each row of data (x ), given by:

mt(x ) = x − μ X
TΣ−1 x − μ X ∈ M(X) (7)

Where μ X is the vector of expected column means, and Σ is the expected covariance matrix 

estimated by the model (Mahalanobis, 1936). M will then be greatest for rows of data that 

are least well described by the model. Because M is χ2-distributed with D degrees of 

freedom, one possible threshold for outlier classification would be a χ2 critical value. 

However, we chose an alternative strategy for a few reasons: First, the unembedded data are 

presumed to have some sequential dependence due to the intrinsic dynamics, implying a 

non-diagonal covariance structure for each embedded row x . This could be readily 

accounted for by the covariance Σ, but any mis-specification of the mean or covariance 

structure would leave M as a noncentral χ2 distribution with the noncentrality parameter 

being a function of the kind of mis-specification. Second, recall that the data are embedded 

into overlapping segments of length D. If an outlier exists in the last element of a row, then it 

will exist in the next D − 1 rows as well. Third, the sequence of Ms are themselves 

dependent due to the embedding: neighboring Ms rely on almost all of the same underlying 

observations. Thus although any particular M may be χ2-distributed, the set of all Ms will 

not be. Therefore a simple, constant threshold based on the χ2 distribution may not always 

suffice to classify outliers with sufficient sensitivity and specificity when M exhibits the 

non-stationary and autocorrelated behavior we expect, shown in Figure 3.

By subtracting out any autocorrelation in M(x ) we make the series of distances stationary 

and level, making it easier to distinguish singular outliers from neighboring points:

mt′(x ) = mt(x ) − ∑
i = 1

q
aimt − i(x ) ∈ M′(X) (8)

where each ai is an estimated autoregressive coefficient, making mt′(x ) the residuals of an 

AR(q) model. To decide on the order (i.e., maximum lag) of the autoregression, we must 

further consider the structure of time-delay embedded, identical columns of data. The mean 

and variances of the column will be nearly identical, differing only by the exclusive of 

observations 1 through D − 1 in columns 2 through D as those columns are time-shifted. 

Similarly, each off-diagonal of the covariance matrix will contain nearly identical values 

representing the covariances of observations at t and t − n. As equation 8 shows, mt(x ) is 

function of this covariance structure as expected by the model and the row vector of data. 

Assuming the existence of a best-fitting plurality, if row vector x  of length D contains an 

outlier in column D, covariances Ci,j for columns i and j, where i ≠ j and i,j ≤ D, will all be 

reduced. If an outlier exists in any column k, for 1 < k < D, then only Ci,j, where i ≠ j and i,j 
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≤ k, will be reduced. As mt(x ) sums over the relative influence of each row upon each Ci,j, 

rows with outliers in element D will have the largest values of mt. Assuming no additional 

outliers are introduced in the D − 1 rows to follow, those rows will exhibit diminishing 

values of mt, and no additional deviation when k = 1. Figure 3a demonstrates this using 

sparse outliers, showing the highest values for the first rows in which each occurs. The 

simple decay pattern of mt between sparse outliers can be described by a low-order 

autoregressive process. If an additional outlier is introduced in element l, for 1 < k < l ≤ D, 

then that row’s deviation from the model-defined expectation once again increases, resulting 

in both patterns of accumulation and oscillation in mt. Figure 3b shows how the signature 

increase in mt accumulates with frequent outliers. This pattern is better described by a 

higher-order autoregressive process. The chosen autoregressive order q should therefore be 

appropriate to both D and the expected frequency of process noise outliers in the data. We 

chose to automate specification of the autoregression with q = Dp
1
2  where p is the outlier 

probability. Our formula is only a heuristic, and the selection of q can be made more or less 

conservative by modifying the exponent of p. Figure 3 illustrates the series of squared 

Mahalanobis distances for series with sparse process noise outliers (left) and frequent 

outliers (right).

After leveling the series, the next step is to ensure that all rows guaranteed to contain the 

outlier are classified. To do this, we “smear” M′ forward by taking the maximum of the 

preceding (D − 1) values.

s(mt′) = max(mt′, …, mt − D + 1′ ) ∈ S(M′) (9)

Thus, an observation at column j that induces unusual dynamics over row i is removed from 

all rows in which it occurs except when j = 1, in which case the dynamic behavior of row i is 

initiated by the observation and not necessarily deviant. Using equation 9, we can define a 

threshold ϕ and classify all outliers as S(M′) > μM′ + ϕσM′, that is, all points in M′ greater 

than ϕ standard deviations away from its mean. The transformation from M(X) to S(M′) is 

illustrated in Figure 4.

To summarize:

1. Fit the LDE to the whole embedded data matrix.

2. Compute S(M), the a -differenced and (D − 1)-smeared Mahalanobis distances.

3. Re-fit the LDE model excluding rows where S(M′) > μM′ + ϕσM′

4. Recompute S(M′) for all data using the expected values given by step 3.

5. Repeat from step 3 until convergence is reached as Δrange(M′) ≤ 0

To specify the model as deterministic, we constrained V Ẍ to 0 so that the estimated 

curvature of each row of data is modeled only as a function of the corresponding slope and 

intercept, assuming no process noise. This increases the Mahalanobis distance for rows that 

depart from a deterministic expectation.
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As the density of outliers is increased, the algorithm will result in a diminishing overlap of 

segments, and hence, reduced repeated measurement occasions across columns of the time-

delay embedded data matrix. At a high enough density, some measurement occasions will be 

excluded altogether. The LDE currently overstates the precision of its parameter estimates 

due to time-delay embedding, but if this algorithm is used, estimates of precision are 

expected to become more accurate as redundant measurement occasions are excluded. If the 

series is accurately characterized as a system of stationary dynamics with discrete, stochastic 

outliers, then we expect an improvement in statistical power with the reduced residual 

variance. However, because the outlier classification is formulated in terms of the mean and 

standard deviation of M, its sensitivity scales inversely with the magnitude of outliers.

Consider two extreme cases: In the first, a stationary series exhibits no stochastic outliers 

beyond t0, but is subject to Gaussian measurement error. Given an accurately specified 

model of the dynamics, every row of data will fit well in absolute terms, but nonetheless 

vary. If a high value of ϕ is used and the sample size is small, there may be no sufficiently 

deviant rows of data to exclude. If a low value of ϕ is used and the sample size is large, 

several may be excluded purely on the basis of measurement error. In this case, the primary 

concern is an unnecessary loss of power. In the second scenario, the series is independent 

over time with no stationary dynamics at all. The algorithm may result in spurious estimates 

of dynamics, as the data are reduced to any remaining, cohesive behaviors that coincide by 

chance. This error can be avoided by evaluating the autocorrelation function (ACF) of the 

series before fitting the model. An independent series will have no significant 

autocorrelation at any time lag. The algorithm can be extended to include stopping criteria to 

address some of these concerns, for instance, by defining a limit on the number or 

percentage of rows that can be excluded and by prerequisite tests of temporal dependence 

via the ACF. If the LDE is used with this algorithm, rates of row exclusion should be 

disclosed along with the standard errors of the estimates. In the next section, we outline a 

procedure for determining a value of ϕ as a function of D and series length.

Calibration of LDEPDA hyperparameters

We aimed to configure the PDA algorithm’s hyperparameter, ϕ, to minimize bias to the 

estimated amplitude ratio. To do this, we constructed a calibration procedure that used 

simulated data and optimization to determine an appropriate value of ϕ. In this section, we 

describe our performance objective for LDEPDA, the procedure for reaching it, and the 

hyperparameter values obtained.

Following from our prior analysis of the classification threshold ϕ, we defined it as a linear 

combination of embedding dimension D and series length N with a vector of weights, β.

ϕ = β0 + β1D + β2N (10)

To calibrate ϕ, LDEPDA was iteratively fit to a single set of simulated shot noise processes, 

optimizing the following error function f with respect to β:
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r = e
πζ
−η (11)

ϵ = r − r (12)

f(β) = σϵ + E[ϵ ϵ2 < 1] (13)

here r is the amplitude peak ratio converted from ζ and η, and r  is its estimated value from 

ζ and η . This dimensionless conversion ensures that the scale of estimate error remains 

constant over iterations between which the true, raw effect sizes differed by an order of 

magnitude. We used the sum of the estimate errors of the amplitude ratio and their outlier-

trimmed mean (Equation 13) to jointly minimize both variance and bias in the estimates. We 

attempted multiple strategies of calibration and determined that this function results in a 

central mass of estimates with less bias than achieved by least-squares, due to a heavy tail of 

unidirectional outliers in the results from LDEPDA.

A representative set of shot noise series was generated with the parameter values and 

properties given in Table 2, with a total of 24 combinations over 8 conditions. Three series 

were generated under each condition, making 72 series in total. Dimensionless forms of the 

frequency and damping parameters were used to generate the data, with frequency specified 

by the number of data occasions per oscillation period as 2π
−η , and damping determined by 

the amplitude ratio.

f(β) was non-differentiable with respect to β due to the role of dichotomous outlier 

classifications in the resulting parameter estimate error. Therefore, derivative-free 

optimization via the Differential Evolution algorithm (Mullen et al., 2011) was used 

(maximum of 5000 generations, population size=20, F=0.5, Crossover probability=.9, 

strategy: DE / rand / 1 / bin with per-vector-dither) to search for a global minimum of f with 

respect to β. Optimization converged by 240 generations (f(β) = 0.317456) to the following 

values:

ϕ = − 0.152344 + 0.004885D + 0.0022N, (14)

These values were used in each subsequent application of LDEPDA.

Validation of the LDEPDA Procedure

We aimed to validate the LDEPDA procedure by determining whether it can correct the 

estimation errors in the LDE and successfully recover the amplitude ratio when the data-

generating values are known. Both the SSM and LDE were used as benchmarks for 

comparisons of performance. The simulated data were generated from a wide variety of 

parameters to obtain a comprehensive comparison of the robustness of each model and to 

map scenarios in which each would be preferable.
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Design.—We used random-effects simulations to evaluate the precision and accuracy of 

parameter estimation with the algorithm for a comprehensive range of parameter values, data 

properties, and process noise distributions, and to compare estimates to those obtained using 

both the basic LDE and the Kalman-filtered SSM. In the first simulation, each series was 

generated according to the 2nd-order SDE given in equation 2 (e.g., Figure 1b), where w ~ 

N(0,σw). For simulated diffusion processes, the AR order for LDEPDA was set equivalent to 

D (i.e., p = 1). In the second simulation, each series was generated according to a shot noise 

process where outliers were additive discontinuities in the level (x) that occurred randomly, 

with normally-distributed magnitude (i.e., a Bernoulli-Gaussian process). For shot noise 

processes, the AR order of LDEPDA was set at each iteration to Dp
1
2 , using the data-

generating value of p (though this must be guessed in real applications). All models were fit 

to the same data at each iteration, allowing direct comparisons of the parameter estimates’ 

precision. Random samples were generated indefinitely for each simulation until sufficient 

statistical power was achieved to model the estimate error in the results. 40,000 diffusion 

processes and 80,000 shot noise processes were generated and modeled. Trials were only 

excluded on account of OpenMx output status codes indicating optimization failure.

Parameters and conditions were generated from uniform distributions with ranges given in 

Table 3. Data were generated using the dimensionless forms of the parameters to ensure that 

their possible topological effects were evenly represented over the given ranges. Frequency 

was represented by the number of occasions per oscillation with a minimum value of 8, thus 

excluding the special case in which D = 3, i.e., polynomial interpolation with no smoothing 

and hypersensitivity to all noise. Amplitude ratios were limited to values representing 

damped systems (r < 1) to exclude unstable series with continually growing variance.

Software.—All simulations and analyses were conducted in R version 3.4.2 (R Core Team, 

2017). Model specification and data generation used the R package OpenMx (Neale et al., 

2016), a free, open-source platform for Structural Equation, State-Space (see: Hunter, 2018), 

and other statistical modeling. Diffusion processes were generated using mxGenerateData() 

from a continuous-time state space model. Shot noise processes were generated using the R 

package deSolve with function lsoda and a list of randomly generated, additive events. 

Autoregression for the PDA algorithm was fit using the R function ar() using Ordinary Least 

Squares.

Models.—Three versions of the 2nd-order damped linear oscillator model were specified: 

one LDE tested without PDA but with process noise variance freely estimated, one LDE, 

identical to the first, but with process noise variance constrained to 0 and used with PDA, 

and one SSM that included estimation of process noise variance. Both LDE models used an 

embedding dimension set at each iteration to half of the expected period to best capture the 

oscillation frequency.

The study by Deboeck and Boker (2010) that first demonstrated the LDE’s estimation 

problems only fit models using observed and expected covariance matrices. We used Full 

Information Maximum Likelihood (FIML), fitting the model to each row of data for both 

basic LDE and for use with PDA.
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Optimization.—All models used the default OpenMx optimization algorithm, but with the 

gradient descent step replaced with Nelder-Mead (Nelder and Mead, 1965) for robustness to 

sub-optimal, local solutions. The OpenMx default configuration of the Nelder-Mead 

algorithm was used1 with a maximum of 5 × 105 iterations and the command mxTryHard(), 

with argument extraTries=15 for quasi-global search of the likelihood space using 

stochastically varied start values. Box constraints were used to ensure η < 0 and all estimated 

variances > 0.

Analyses.—Data were only excluded from analysis on the basis of a non-zero OpenMx 

status code, representing model non-convergence. Raw parameter estimates η and ζ  were 

converted back to their dimensionless forms, as measures per period (λ)2 and the ratio of 

amplitude over consecutive peaks (r), respectively, for direct comparison with the 

corresponding data-generating values λ and r. Parameter estimate error magnitude was 

calculated as (λ − λ)2 and (r − r)2 and regressed upon the corresponding values for each 

simulated condition. Data were subset for the multiple regressions according to error outlier 

thresholds for both amplitude ratio ((r − r)2 < 2) and period ((λ − λ)2 < 20) to only model the 

central mass of estimates and avoid obfuscation due to extreme and infinite values. Pearson 

correlation was used to determine whether estimate errors followed a similar pattern of 

occurence between different models applied to the same data.

Results

Model non-convergence rates are given in Table 4, grouped by OpenMx output status code. 

Only a very small proportion of iterations included convergence failure in at least one of the 

models, and these iterations were excluded from further analyses. The highest rates occurred 

for the basic LDE when modeling shot noise processes, with 3.92% of the iterations in total 

failing to converge.

Coefficients of the multiple regression of squared estimate error onto each simulated 

condition are given in Table 5 and may be used to directly estimate the empirical error 

variance of each parameter from values of each condition. Because of the high 

dimensionality of the results, it is not possible to give a complete visualization of the 

relationships between the conditions and the estimation error. However, Figures 5, 6, 7, and 

8 are vignettes of the parameter space comparing scenarios in which the LDEPDA or SSM 

either failed differentially or achieved comparable results.

The first simulation examined typical diffusion processes with normally distributed, 

continuous process noise. When modeling diffusion processes, the basic LDE had the 

greatest bias in both period and damping. The LDEPDA was robust to diffusion processes as 

long as the true period was low and a suitably low embedding dimension was chosen. The 

SSM estimates of the diffusion process were in all cases unbiased and with smaller variance 

than the LDEPDA. Estimates from the LDEPDA came closer to their true values than those 

1The OpenMx default control options for Nelder-Mead include α = 1, betao = 0.5, βi = 0.5, γ = 2, σ = 0.5.
2Equivalent to 2π times the natural frequency, as data were generated using the natural frequency.
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from the SSM in 21.8% of the diffusion process iterations, across all conditions. LDEPDA 

estimates of damping were more accurate when period was small (less than 14 occasions), 

and became highly unreliable for larger periods.

The second simulation examined shot noise processes in which additive, functional 

discontinuities are randomly interspersed between periods of deterministic behavior. In these 

simulations, the LDEPDA outperformed the SSM in both the bias and variance of the 

damping estimates under specific conditions. These conditions included a large period 

length, low outlier probablity, low measurement error, and small to moderately high 

damping. The SSM tended to underestimate the period and overestimate the effect of 

damping. When discontinuities occurr at high frequency, the shot noise series somewhat 

better resembles a diffusion process, but does not become identical to one. Figure 8 shows 

the recovered performance of the SSM under such conditions, and the appearance of a 

curvilinear bias to the results from the LDEPDA, dependent on the true amplitude ratio. 

Both LDE models showed less bias to period than the SSM overall. Estimates of the 

damping parameter from the LDEPDA were closer to the true values than those from the 

SSM in 48.5% of shot noise process iterations across all conditions. Figure 9 shows a map of 

all conditions in which the LDEPDA tended to outperform or parallel the SSM for modeling 

shot noise processes. Specifically, the LDEPDA damping estimates were better when period 

was greater than 20 to 30 measurement occasions, scaling with measurement error, when 

damping effects were small to moderately large, and when outlier probability was below 

20%. Outlier probability had a non-linear relationship with the performance of each model, 

with the SSM excelling under higher outlier probabilities. The SSM damping estimates were 

also more robust to measurement error.

The basic LDE invariably estimated all varieties of data to be undamped series, regardless of 

other conditions. This bias is apparent both visually in Figures 5–8 and by its large, negative 

coefficient on the true damping value in Table 5. The LDE did obtain a small number of 

correct estimates of damping by virtue of a low outlier probability resulting in series with no 

discontinuities at all. As we have shown, that is the only scenario in which it can correctly 

estimate the damping. Estimates of the period were relatively unbiased in the case of shot 

noise processes.

Figure 10 shows the multivariate distributions of amplitude ratio and period estimates over 

all conditions for the SSM and LDEPDA. Estimate errors for both parameters, over both 

types of process were uncorrelated between models overall. The variances and distribution 

tails for the LDEPDA amplitude ratio estimates were much larger than the SSM for both 

types of process. LDEPDA estimates of period were generally biased upward for diffusion 

processes, while estimates of period from the SSM were biased downward for shot noise 

processes.

Application: Postural Sway

To briefly demonstrate an application of all three models to real data and the possible 

variation of their results, we used a public postural balance data set published by Santos and 

Duarte (2016). We extracted a single series of lateral center-of-pressure from one healthy 
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individual, sampled at 100 Hz over 60 seconds. The series was then truncated to a 40-second 

run of stationary oscillations and downsampled to 10 Hz, making 401 observations total.

Many methods may be used to decide on an embedding dimension. Because the model 

supposes damped, sinusoidal oscillation, spectral analysis provides a natural description of 

oscillatory patterns in the series. Spectral data analyses use the Discrete Fourier Transform 

(DFT) to decompose the series into the sum of sinusoids over a range of harmonic 

frequencies, with amplitudes and phase shifts unique to each frequency (Wei, 2006). Thus, 

the amplitude spectrum can be used to determine the relative contributions of each 

oscillation to the variance of the signal, typically with noise contributing to the high 

frequencies. We used the simple periodogram of the data to detect the most prominent 

oscillation frequency and decide an embedding dimension for both LDE models. If data are 

abundant, alternative spectral approaches such as Bartlett’s method or windowing techniques 

may be preferable by canceling out corruption of the spectrum due to noise.

The raw series and its spectral density are shown in Figure 11. Major frequency components 

ranged from 0.1–0.5 Hz, or 2 to 10 seconds per oscillation period. To model the shortest 

oscillations and avoid excessive bias to parameters, we chose the embedding dimension D = 

6 for both models, a 0.6-second interval, or one-third of the expected period. The 

classification threshold parameters were set to the values given in equation 14, and the PDA 

AR order was set to 2, expecting a frequency of outliers (p) less than 15%.

Table 6 contains point estimates η and ζ  with bootstrapped 95% quantile confidence 

intervals. Boostrapping used 500 iterations of resampling for each model. Resampled data 

was sorted by time index for the LDEPDA to avoid complications of time-dependence with 

LDEPDA. Each iteration re-ran the entire algorithm to account for variance in the 

classification results. The SSM used block resampling with randomly located blocks of 

length 80 to avoid introducing an abundance of discontinuities that may bias the 

bootstrapped standard error distribution. Conversions to damped frequency (in Hz) and 

amplitude ratio are given in the second and fourth row, also with bootstrapped quantile 

confidence intervals. The basic LDE produced the expected zero estimate for the damping 

parameter, which translates to an amplitude decay rate of less than 1%. The LDEPDA and 

SSM estimated much larger change in amplitude due to damping. Both estimating an 

amplitude decay rate around 30–60%, though the LDEPDA’s estimate of amplitude ratio 

was much more variable, with a confidence interval that included one (and equivalently, ζ
included zero). η was similar between LDE and LDEPDA, but the conversion to damped 

frequency in Hz took into account the larger damping effects in the LDEPDA. Thus, the 

LDE describes a somewhat larger oscillation period as a result of ζ . The raw η and damped 

frequency estimated by the SSM fell entirely outside of the confidence intervals of the LDE. 

The confidence intervals of those parameters in the LDEPDA overlapped with both those of 

the LDE and the SSM.

Table 6 also contains the number of rows of data, total observations, and free parameters for 

each model. The LDEPDA removed 153 rows of time-delay embedding, leaving a total of 

1488 observations over 248 rows. Because the sample structure differs between all three 
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models, we cannot compare them on the basis of common model fit indices such as the 

−2Log-Likelihood, AIC, or BIC, which are all determined by sample size.

Discussion

LDEs have been used in many settings of behavioral research but display some important 

weaknesses. This paper presented a method for correcting one such weakness: the 

consistently incorrect estimation of the damping parameter in the presence of process noise. 

We first showed that when using local polynomial approximation methods to estimate the 

derivatives of a function, stochastic disturbances result in false dynamics that bias the 

covariance of the estimated derivatives and consequently result in bias to the linear effects 

estimated with an LDE. Our correction method, Piecewise Deterministic Approximation 

(PDA), detects and removes rows of data that are particularly laden with noise, treating them 

instead as functional discontinuities in the latent state. We conducted two simulation studies 

to evaluate the performance of PDA for LDEs and compared the results to those obtained by 

SSM with Kalman filtering. Last, we applied all three methods to a sample of lateral 

postural sway data and compared the resulting estimates of oscillation frequency and 

damping.

The first task of the study was to calibrate the classification threshold φ according to a range 

of possible scenarios that can arise in the data. We accomplished this using a small, 

representative sample of simulated series with variation over conditions expected to impact 

estimation. Three parameter values were discovered which jointly minimize the bias and 

error variance of estimates as a function of the embedding dimension and series length. The 

results of the calibration depended chiefly on two decisions: the simulated sample and the 

objective function. Our calibration of the algorithm may be improved with the use of a 

larger, more diverse simulated sample that expresses a wider range of data conditions. 

Increasing the number of series per condition would also improve its representativeness and 

convergence properties. However, with increased conditions and overall sample size, the 

runtime of optimization also increases multiplicatively. For that reason, we chose a 

somewhat limited sample that we intend to nonetheless capture common properties and 

limitations of psychological data, in total observations per series, oscillation period, and 

measurement error variances. Second, the objective function was specifically chosen to find 

a solution which balances minimal bias with variance, though the two statistics are in many 

cases inversely related. If bias does not obscure the relative, between-persons comparability 

of the estimates and such comparisons are the primary goal of the analysis, then an objective 

function may be chosen which instead minimizes the variance only. In this case, our primary 

aim concerned the elimination of bias. Another way to improve the generality of the 

algorithm’s performance would be to include more terms and parameters in the objective 

function, especially if aspects like measurement error and outlier probability can be 

determined beforehand.

The random-effects simulation studies mapped the performance of both the SSM and the 

LDEPDA over a comprehensive space of data-generating properties and model parameters. 

It is clear from the results that the LDEPDA can be used to model both diffusion and shot 

noise processes, but is only preferable for the latter under the specific conditions shown in 
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Figure 9. The LDEPDA’s performance was worst when applied to series with high-

frequency oscillations and a high frequency of disturbances. Similarly, it did not outperform 

the SSM under any conditions for which the series was a diffusion process. As evidenced by 

both Figure 10 and by comparing the multiple regression coefficients in Table 5, LDEPDA 

error was far more sensitive to each condition than the SSM and for some, liable to 

consistently produce extreme errors.

Figure 7 shows that for shot noise processes, the SSM consistently deviates from the true 

amplitude ratio for shot noise processes with an oscillation period longer than 14 occasions 

and the outlier probability is low. It is unsurprising that the LDEPDA better reflects shot 

noise processes, given that it fits a deterministic model between sparse, dichotomously 

classified disturbances. Despite violation of the distributional assumptions of the SSM, it 

nonetheless produced reliable and unbiased estimates of damping when period length was 

short. SSMs can be correctly specified for non-normal stochastic distributions, or be fit using 

objective functions such as Ordinary Least Squares that relax the assumptions of normality 

invoked here by maximum likelihood. It is also possible to use row-wise model fit indices to 

segment data for an SSM in a similar manner as the PDA algorithm. A truly fair comparison 

of models for shot noise processes should include possible modifications to the SSM that we 

specified and is beyond the scope of this study.

The results of our brief application to postural control data accorded with our expectations, 

given the results of the simulations. The basic LDE estimated that posture control is an 

undamped oscillator, but both the LDEPDA and SSM estimated that it is moderate to highly 

damped, with each oscillation tending toward a 30–60% reduction in amplitude per 

successive peak. Besides the evidence we have provided that the basic LDE’s zero estimate 

of damping is spurious, it is likely that natural, organic, and highly complex processes such 

as human postural regulation will include components of random disturbance and 

compensate with damping-like behavior. One drawback of the LDEPDA is apparent in the 

large confidence intervals for damping, which encompassed zero despite a moderate effect 

size. The large confidence intervals are due to uncertainty in the classification step, which 

was re-run at each iteration of bootstrapping. It is difficult to guarantee statistical power by 

these methods because the algorithm reduces the number of usable data automatically. It 

may be possible to improve that aspect by including parameteric standard errors or the 

number of rows removed in the calibration objective function. More importantly however, 

the high variability in outlier classification likely indicates that disturbances were too small 

and too frequent to be easily classified. Visual inspection of the data reveal almost no large 

jumps that can obviously qualify as discontinuities. It is more likely that the standing posture 

was only disturbed by a multitude of small, frequent, internal forces such as blood 

circulation and inconsistent muscle tension. The power of the analyses benefits from correct 

choice in the underlying noise distributions and type of process, and such a pattern of 

disturbances is consistent with a Gaussian diffusion process. We therefore have reason to 

think that the results of the SSM are more credible in this case.

It is also notable that the raw frequency estimate from the SSM fell outside of the basic 

LDE’s confidence intervals, while the LDEPDA frequency estimate was much closer. The 
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oscillation period estimated by the LDEPDA was, as a function of the much higher damping 

value, substantially lower than that estimated by the basic LDE.

Even with our outlier classification algorithm, using LDEs to model stochastic processes 

may be inadvisable for several reasons. The true generality of our results and the threshold 

values used to obtain them cannot be concluded from necessarily limited simulations and the 

lack of a comprehensive, analytic exposition. It would be prudent to precede any application 

to real data with simulations and a calibration process that reflects the nature of that data as 

best as possible. Results can vary widely depending upon several technical decisions without 

obvious answers, including the autoregressive model for the squared Mahalanobis distances, 

time-delay embedding dimension, and classification threshold, though we have provided 

basic principles and simulation results to assist with each of these. Theoretical 

considerations are equally important. The best choice in model depends on a priori evidence 

for the kind of forcing functions and noise that affect the dynamical system in question. We 

were unable to identify any certain advantages of the LDEPDA over the SSM with Kalman 

filtering for estimating the parameters of linear diffusion processes, and indeed the Kalman 

filter has been proven for that task analytically. The best scenarios in which to use the 

LDEPDA are those with sparse stochasticity that cannot or need not be described 

parametrically, such as unknown jump discontinuities.

The generality of the algorithm with respect to model specification is also not certain. LDEs 

have not been widely generalized beyond simple first and second-order linear, ordinary 

differential equations, so we have only sought to correct errors present in that context. Our 

review of the literature suggests a similar pattern of bias in the multivariate, coupled 

oscillator LDE, but we constrained our study and development to the univariate case only. 

Those interested in further developing or applying LDE-based methods should consider the 

limitations present in its simplest manifestations before attempting more complex analyses 

such as nonlinear models and whether the same model is possible through alternative 

methods. For example, we previously demonstrated a method of modeling compound, multi-

timescale oscillators as an LDE (McKee et al., 2018). If our outlier detection algorithm is 

used with this method, the multiplicatively larger embedding dimension (D) implies that 

much larger stretches of data must be removed to completely eliminate stochastic outliers 

and obtain unbiased estimates. For a much simpler solution, the same model can be specified 

as an SSM with a few changes to the transition matrix (A), the state loading matrix (C), and 

the process noise variance-covariance matrix (Q):

Ẋt = AXt + W t

Y = CXt + ϵt
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Xt =

x1, t
ẋ1, t
x2, t
ẋ2, t

Ẋt =

ẋ1, t
ẍ1, t
ẋ2, t
ẍ2, t

A =

0 1 0 0
η1 ζ1 0 0
0 0 0 1
0 0 η2 ζ2

C = 1 0 1 0 Q =

0 0 0 0
0 V arW 1 0 CovW 1, W 2
0 0 0 0
0 CovW 1, W 2 0 V arW 2

As mentioned earlier, the Kalman filter estimates a predicted and corrected value for each 

state in the series, so disturbances and measurement error scores can be computed as well. 

For a model such as this, stochastic outliers may be unique to each timescale within a 

univariate series and can be extracted from the model as the difference of the predicted and 

corrected state estimate: wt = xt|t − xt|t − 1, while measurement error is the difference of the 

observed value from the state estimate: ϵt = yt − Ct|t. Post-hoc analyses of estimated process 

noise can help determine whether the model is correctly specified, as autocorrelation in the 

scores should be minimized. Estimation of stochastic outliers may also be of substantive 

interest, for instance, by revealing unmeasured, stressful events in data on health and well-

being, likely instances of drug use, or changes in dynamic behavior.

The methods examined in this study represent only two approaches to continuous-time 

differential equation modeling. For an alternative SEM approach, ctsem (Driver et al., 2017) 

provides continuous-time panel modeling for time-series data (the Exact Discrete Method, 

or EDM), with advantages for analyzing large, multi-person ensembles (Oud and Singer, 

2008). A comparison of SEM and Kalman filtering methods is also given by Chow et al. 

(2010), and Oud (2017) compared estimation of damped linear oscillator parameters using 

the multivariate LDE, EDM, and an Approximate Discrete Method (ADM). Functional Data 

Analysis (Ramsay, 2005) includes a variety of techniques for non-parametric curve-fitting 

and differential equation modeling, including techniques for piecewise deterministic 

processes with measurement error. For the multi-level modeling of linear dynamics, 

Bayesian estimation methods have been used with state-space models (Oravecz et al., 2011).

It is possible to model stochastic oscillators with piecewise deterministic trajectories using 

the LDE with our algorithm to detect stochastic outliers and treat them as functional 

discontinuities. This approach appears to reliably estimate damping and frequency 

parameters under specific conditions and is even preferable to the SSM when the data 

behave according to a shot noise processes with sparse disturbances and long oscillation 

periods. There are, however, several disadvantages to consider: The augmented LDE 

involves many more heuristically-determined technical steps over the SSM with room for 

error, inaccurate standard error estimates due to unmodeled autocorrelation between rows of 

data and duplicated measures, parameter bias due to local polynomial approximation, 

inability to model continuous process noise with the system dynamics, and uncertain 

generalizability of both the model and the algorithm as a consequence. It is also difficult to 

determine the requirements for statistical power by this method, as the end results are 

governed by automated transformations of the data structure that depend highly on the 
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underlying behavior of the data. The limited scope of our study did not include alternations 

to the SSM that would correct its specification for Bernoulli-Gaussian process noise. Despite 

this, the SSM was still more accurate than the LDEPDA for a majority of the shot noise 

processes generated. We nonetheless demonstrated that when the data act according to 

deterministic behavior with infrequent jump discontinuities or process noise outliers, 

estimates of the dynamics by the basic SSM can be unpredictable and biased, while the 

LDEPDA is a workable alternative.
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Appendix: Derivative bias from quadratic approximation

In this appendix we show that the best quadratic approximation over any non-zero interval of 

a sinusoid underestimates the true derivatives at the interval’s center point. Take a quadratic 

function ϕ(x, a, b, c) that minimizes the ℒ2-norm with cos(x + x0) over the interval [−r, r]:

ϕ(x) = ax2 + bx + c, (15)

f ϕ(x), r, x0 = ∫
−r

r
cos x + x0 − ϕ(x) 2dx, (16)

We show that the derivatives of ϕ(x) with respect to x are less than the derivatives of cos(x + 

x0) for positive interval r, and approach equality as r goes to zero.

If we minimize f with respect to constants a, b, and c, we obtain the best-fitting quadratic 

approximation of cos(x + x0) over the interval [−r, r]. To do this, set ∇f(r, x0) = 0 and solve 

for a, b, and c to get:

a(r, x0) = 15(r2cos(x0)sin(r) + 3rcos(x0)cos(r) − 3cos(x0)sin(r))
2r5 , (17)

b(r, x0) = 3(rcos(r)sin(x0) − sin(x0)sin(r))
r3 , (18)

c(r, x0) = −ar3 + 3cos(x0)sin(r)
3r , (19)

Each coefficient of ϕ(x) approaches 0 as r is increased. There is a singularity at r = 0. Using 

L’Hôpital’s rule, we find that as r → 0, each coefficient approaches the coefficient of its 

corresponding term in the 2nd-order Taylor approximation of cos(x + x0):
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lim
r ∞

a r, x0 = 0,
b r, x0 = 0,
c r, x0 = 0,

, lim
r 0

a r, x0 = −cos x0
2 ,

b r, x0 = −sin x0 ,
c r, x0 = cos x0 ,

(20)

To see that the limit at r = 0 is the global maximum of a, and maxima and minima of a with 

respect to x0 are simply nπ where cos(x0) = ±1:

argmax
x0

a(r, x0) = nπ, for any n ∈ ℤ, (21)

max
x0

a(r) = ± 15 r2sin(r) + 3rcos(r) − 3sin(r)
2r5 (22)

Because the denominator contains the highest power of r, the function oscillates with 

monotonically decreasing amplitude and its global maximum is approached as r → 0. 

Therefore, the 2nd derivative of quadratic approximation ϕ(x) over any interval greater than 

zero will be of a smaller magnitude than the true derivatives of cos(x + x0). If such estimates 

are used in place of exact derivatives in a differential equation, then estimated linear, 

proportional relations will also be biased toward zero.
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Figure 1. 
Solutions of ordinary (left) and stochastic (right) 2nd-order differential equations with initial 

values x0 = 1 and ẋ0 = 0
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Figure 2. 
Polynomial approximations fit to overlapping intervals of an undamped oscillator (top), 

damped oscillator (middle), and an equivalently damped oscillator with one exogenous 

disturbance (bottom). The colored curves are quadratics fit to overlapping intervals of the 

state function. Scatter plots of the slope and curvature coefficients are shown to the right 

with regression lines showing the direction of covariance. Intervals that include the 

disturbance are shown in red. False dynamics (red) result from spline-smoothing over 

disturbances and will bias the slope of the regression line, i.e. the estimated damping (ζ), 

McKee et al. Page 24

Multivariate Behav Res. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



toward zero. Excluding the disturbed intervals results in two independent trajectories with 

the true, damped behavior.
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Figure 3. 
Squared Mahalanobis distances (M) given two frequencies of process noise outliers. The 

time dynamics of M depend on the frequency of outliers.
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Figure 4. 
Steps for outlier / discontinuity classification using the Mahalanobis distance
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Figure 5. 

Results vignette 1, diffusion process: Period ≤ 14, σϵ ≥ 1
4 . LDEPDA is robust to diffusion 

processes with high measurement error when the period and embedding dimension are 

small.
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Figure 6. 

Results vignette 2, diffusion process: Period > 24, σϵ ≤ 1
8 . LDEPDA fails when the period 

and embedding dimension are large, even if measurement error is low.
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Figure 7. 

Results vignette 3, shot noise process: Period > 14, σϵ ≤ 1
8 , p ≤ .15. SSM fails when process 

noise behaves as infrequent jump discontinuities and the period is large. LDEPDA had low 

bias and variance.
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Figure 8. 

Results vignette 4, shot noise process: Period ≤ 14, σϵ ≤ 1
8 , p ≥ .5. At higher frequencies, 

jump discontinuities begin to behave similarly to a diffusion process. Variance increases and 

curvilinear bias appears in LDEPDA estimates of amplitude ratio. SSM estimates amplitude 

ratio accurately, but with bias to period.

McKee et al. Page 31

Multivariate Behav Res. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Overall model performance comparisons of damping estimate accuracy for shot noise 

processes. Each condition was binned into 10 cells. Cells colored black represent parts of the 

condition and parameter domain where the LDEPDA damping estimates were more 

frequently closer to the data-generating values than the the SSM estimates. When the data 

represented a shot noise process, LDEPDA outperformed SSM for larger oscillation period, 

smaller damping effects, low outlier probability, and low measurement error. Grid 

comparisons of diffusion processes are not shown because LDEPDA did not outperform 

SSM under any conditions.
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Figure 10. 
Estimate error covariance plots comparing the estimate error distributions of the LDEPDA 

and the SSM.
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Figure 11. 
Top: Lateral postural sway data sampled at 10Hz for 40 seconds. Bottom: Spectral Density 

plot of the same data showing peaks around 0.5Hz.
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Table 1

Estimates of frequency and damping obtained from six past studies, with damping converted to ratio of 

amplitude over successive peaks. Studies without asterisks used the univariate LDE. The others used variants 

such as the coupled LDE or GOLD, which may have slightly different properties regarding the estimation of 

damping.

Study η ζ Amplitude Ratio

**Steele and Ferrer (2011) −0.3700 −0.0420 0.8050

** −0.5760 −0.0030 0.9877

** −0.4100 0.0040 1.0198

** −0.4480 −0.0340 0.8525

** −0.5440 0.0120 1.0524

** −0.6110 −0.0220 0.9154

Helm et al. (2012) −0.0040 −0.0010 0.9515

−0.0040 −0.0010 0.9515

−0.0108 −0.0007 0.9791

−0.0100 −0.0020 0.9391

−0.0090 −0.0010 0.9674

−0.0141 −0.0006 0.9843

−0.0630 0.0010 1.0126

−0.0490 0.0020 1.0288

−0.0650 −0.0010 0.9878

−0.0840 0.0010 1.0109

−0.0470 0.0010 1.0146

−0.0620 0.0010 1.0127

**Zentall et al. (2006) −0.088 −0.053 0.573

** −0.173 0.003 1.023

Chow et al. (2005) −0.830 −0.010 0.966

−0.830 −0.010 0.966

−0.840 −0.020 0.934

−0.840 −0.010 0.966

−0.840 −0.010 0.966

−0.940 −0.010 0.968

Gasimova et al. (2014) −0.061 −0.004 0.950

* −0.010 0.000 1.013

* −0.025 0.000 1.004

Bisconti et al. (2004) −0.015 −0.018 0.630

*
LDE Variants: Results from GOLD,

**
Results from coupled oscillator
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Table 2

Parameters and settings for the simulated calibration data set

Parameter Values

Series length N (Occasions) 100, 200

Measurement Error (σϵ) .0625

Period λ (Occasions) 8, 20

Damping r (Amplitude ratio) .25, .75

Outlier probability .125, .25, .5
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Table 3

Simulation parameters and settings

Parameter / Setting Values

Series length N (Occasions) U(80, 500) ∈ ℤ
Measurement Error (σ∈ U(0.03125, 0.5) ∈ ℝ
*Process noise (σw2 ) 0.3

Period λ (Occasions) U(8, 40) ∈ ℤ
Damping r (Amplitude ratio) U(0.1, 0.9) ∈ ℝ
**Outlier probability U(0, 1) ∈ ℝ

*
Diffusion processes only

**
Shot noise processes only
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Table 4

Rates of non-convergence for all three models. Status code 0 indicates successful optimization, 5 indicates a 

non-convex Hessian, and 6 indicates a non-zero gradient with no possible improvement.

Diffusion Process

Code LDE LDEPDA SSM

0 42060 (98.66%) 42424 (99.51%) 42618 (99.96%)

5 321 (0.75%) 174 (0.41%) 15 (0.04%)

6 252 (0.59%) 35 (0.08%) 0 (0%)

Shot Noise Process

Code LDE LDEPDA SSM

0 80869 (96.08%) 82739 (98.31%) 83362 (99.05%)

5 1742 (2.07%) 618 (0.73%) 522 (0.62%)

6 1554 (1.85%) 808 (0.96%) 281 (0.33%)
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Table 5

Coefficients of multiple regression for Period error (λ − λ)2 and amplitude ratio error (r − r)2 onto the 
simulation conditions.

Diffusion Process

Amplitude ratio error (r − r)2 Period error (λ − λ)2 (Occasions)

LDE LDEPDA SSM LDE LDEPDA SSM

Intercept 0.93910 0.18202 0.01156 1.00278 1.68523 1.15073

σϵ 0.00431 −0.05445 0.00465 −0.14330 −0.19550 0.19767

N −0.00054 −0.00007 −0.00013 0.00610 0.01100 −0.00604

λ 0.00482 0.00981 0.00092 0.35211 0.25444 0.14105

r −1.04321 −0.36127 0.04019 −6.05156 −5.10173 −2.68161

Shot Noise Process

Amplitude ratio error (r − r)2 Period error (λ − λ)2 (Occasions)

LDE LDEPDA SSM LDE LDEPDA SSM

Intercept 0.82099 0.07163 −0.14472 −0.55648 −0.05119 4.57989

σϵ 0.00421 0.01940 −0.10322 0.23471 0.52872 −3.89788

N −0.00035 −0.00041 −0.00014 −0.00361 −0.00325 −0.00142

λ 0.00345 0.00625 0.00700 0.14088 0.21189 0.44433

r −0.95630 −0.05849 0.21161 −0.36047 −0.61647 −11.73631

p 0.09937 0.03854 0.03838 0.00283 −1.15405 1.72661
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Table 6

Model information and point estimates of frequency (η) and damping (ζ ) with estimated 95% quantile 

confidence intervals and conversions to Hz and peak amplitude ratio.

LDE LDEPDA SSM

η −7.45 (−8.38, −6.53) −7.43 (−8.75, −5.96) −4.55 (−5.57, −4.60)

ζ −0.01 (−0.44, 0.33) −0.49 (−0.96, 0.21) −0.65 (−0.98, −0.58)

Frequency (Hz) 0.43 (0.37, 0.46) 0.36 (0.27, 0.46) 0.28 (0.24, 0.30)

Amplitude Ratio r 0.99 (0.59, 1.47) 0.57 (0.34, 1.27) 0.39 (0.25, 0.44)

Rows 396 248 401

Observed Statistics 2376 1488 401

Parameters 8 7 7
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