Table 3.
Accuracy of semi-supervised node classification on Cora.
| Method | 90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% |
|---|---|---|---|---|---|---|---|---|---|
| GCN | 0.842 | 0.842 | 0.828 | 0.828 | 0.821 | 0.821 | 0.807 | 0.807 | 0.800 |
| αLoNGAE | 0.803 | 0.793 | 0.790 | 0.783 | 0.780 | 0.777 | 0.770 | 0.767 | 0.763 |
| GAT | 0.824 | 0.822 | 0.816 | 0.808 | 0.806 | 0.804 | 0.798 | 0.796 | 0.794 |
| MT-GAT (ours) | 0.874 | 0.864 | 0.861 | 0.856 | 0.855 | 0.850 | 0.848 | 0.832 | 0.827 |
The best results are shown in bold, and our MT-GAT with significant improvements over the baselines is shown with underlines.