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Jennifer A. Sweet12,13,15, Benjamin L. Walter   12,14, Sydney S. Cash17,19, Paymon G. Rezaii   5,   
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Hybrid kinetic and kinematic intracortical brain-computer interfaces (iBCIs) have the potential to 
restore functional grasping and object interaction capabilities in individuals with tetraplegia. This 
requires an understanding of how kinetic information is represented in neural activity, and how this 
representation is affected by non-motor parameters such as volitional state (VoS), namely, whether 
one observes, imagines, or attempts an action. To this end, this work investigates how motor 
cortical neural activity changes when three human participants with tetraplegia observe, imagine, 
and attempt to produce three discrete hand grasping forces with the dominant hand. We show that 
force representation follows the same VoS-related trends as previously shown for directional arm 
movements; namely, that attempted force production recruits more neural activity compared to 
observed or imagined force production. Additionally, VoS-modulated neural activity to a greater 
extent than grasping force. Neural representation of forces was lower than expected, possibly due 
to compromised somatosensory pathways in individuals with tetraplegia, which have been shown to 
influence motor cortical activity. Nevertheless, attempted forces (but not always observed or imagined 
forces) could be decoded significantly above chance, thereby potentially providing relevant information 
towards the development of a hybrid kinetic and kinematic iBCI.
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Intracortical brain-computer interfaces (iBCIs) that command neuroprosthetics have the potential to restore lost 
or compromised function to individuals with tetraplegia. iBCIs typically detect neural activity from motor cortex, 
which encodes kinetic and kinematic information in rhesus macaques1–14. iBCIs that extract kinematic parame-
ters have allowed individuals to command one- and two-dimensional computer cursors15–26, prosthetics27–29, and 
functional electrical stimulation of paralyzed muscles30,31. Additional work has characterized closed-loop kinetic 
control in nonhuman primates32–34 and open-loop force modulation in human participants35,36. These studies 
could potentially move iBCI technology towards restoring functional tasks requiring both kinetic and kinematic 
control.

Motor cortex can exhibit activity in the absence of motor output, such as during mental rehearsal or move-
ment observation37,38. Furthermore, rather than representing fixed motor parameters, M1 may adapt to achieve 
the task at hand39. A body of work has investigated how motor cortex modulates to different volitional states, 
including passive observation, imagined action, and attempted or executed action, mostly in the context of kin-
ematic outputs. For example, kinematic imagery produces similar neural activity patterns as movement execu-
tion – or attempted movement, in persons with tetraplegia – but more weakly and in a smaller subset of motor 
areas40–43. Furthermore, in individuals with tetraplegia, observed, imagined, and attempted arm reaches recruit 
shared neural populations, but nonetheless yield unique patterns of activity44. This supports the existence of a 
“core” network that modulates to all volitional states, and the recruitment of additional neural circuitry during 
the progression from passive observation to attempted movement44–48.

The effects of volitional state on non-kinematic representation, including that of grasping forces, remains 
uncertain. In able-bodied participants with implanted with sEEG electrodes, executed forces produce stronger 
neural signals than imagined forces49. This supports fMRI findings in able-bodied individuals and participants 
with spinal cord injury, who exhibited weaker, less widespread BOLD activations when imagining (vs. attempting) 
forces50. However, while this trend was readily apparent during a standard two-tailed analysis of all able-bodied 
subjects, it only appeared in the SCI group when within-subject comparisons were implemented.

To our knowledge, neural modulation to observed, imagined, and attempted forces has not been evaluated at 
the resolution of intracortical activity in humans. Furthermore, while open-loop force decoding was achieved in 
a single individual with tetraplegia36, the extent to which force is neurally represented in this patient population, 
or how volitional state may affect this representation, is unresolved. Therefore, the present study evaluates how 
volitional state (observe, imagine, and attempt) during kinetic behavior (grasp force production) influences neu-
ral activity in motor cortex. Specifically, we characterize the topography of the neural space representing force 
and volitional state in three individuals with tetraplegia, both at the level of single neural features extracted from 
multiunit intracortical activity, and at the level of the neural population. We show that 1) volitional state affects 
how neural activity modulates to force; namely, that attempted forces generate stronger cortical modulation than 
observed and imagined forces; 2) grasping forces are reliably decoded when attempted, but not always when 
observed or imagined, and 3) volitional state is represented to a greater degree than grasping forces in the motor 
cortex.

Results
Characterization of individual features.  A major goal of this study was to determine whether force-re-
lated tuning was present at the level of single neural features extracted from multiunit intracortical activ-
ity (Fig. 1A), and to assess the extent to which volitional state affected this tuning. These neural features were 
extracted during a force-matching behavioral task, as illustrated in Fig. 1B, in which participants T8, T5, and 
T9 observed, imagined, and attempted producing three discrete forces using either a power or a pincer grasp. 
Supplementary Table S1 shows a full list of sessions and their associated parameters. In all participants, two 
neural features were extracted from each of the 192 recording electrodes implanted in motor cortex. Threshold 
crossing (TC) features, defined as the number of times the neural activity crossed a pre-defined, channel-spe-
cific noise threshold, are numbered from 1–192 according to the recording electrode from which they originate. 
Corresponding spike band power (SBP) features, defined as the root mean square of the signal in the spike band 
(250–5000 Hz) of each channel, are numbered from 193–384.

Figure 2 shows four representative TC and SBP features in participant T8 that are tuned to one of four mar-
ginalizations of parameters as evaluated with 2-way Welch-ANOVA: force only, volitional state only, neither force 
nor volitional state, both force and volitional state independently, and an interaction between force and volitional 
state. Supplementary Figs. S6 and S7 show corresponding feature traces for participants T5 and T9, respectively. 
Additionally, Supplementary Figs. S8–S11 contain rasters for exemplary single sorted units that are tuned to these 
factors in participant T8.

For each neural feature, peristimulus time histograms (PSTHs) averaged within individual forces (Column 1) 
and within individual volitional states (Column 2) are illustrated in Fig. 2. SBP Feature 272 was tuned to force only 
(row 2); as such, it showed go-phase differentiation across multiple force levels that were statistically discrimina-
ble (corrected p < 0.05, 2-way Welch-ANOVA, Benjamini-Hochberg method). In contrast, TC feature 182 was 
tuned to volitional state only (row 1), and, therefore, did not exhibit force discriminability but were discriminable 
across multiple volitional states (corrected p < 0.05, 2-way Welch-ANOVA). TC Feature 79, which was tuned 
independently to both force and volitional state, was statistically discriminable for both parameters.

Column 3 of Fig. 2 graphically represents the simple main effects of the 2-way Welch-ANOVA analysis, as 
represented by mean go-phase neural deviations from baseline activity for each force level within each volitional 
state. In these panels, features that are tuned independently to force exhibit a similar pattern of modulation to 
light, medium, and hard grasping forces, regardless of the volitional state used in the trial. These include TC 
Feature 182 (row 2), which is tuned to force only, and TC Feature 79 (row 4), which is tuned independently to 
both force and volitional state. In contrast, SBP Feature 257 (row 5) exhibits a statistically significant interaction 
between force and volitional state (p < 0.05). For this feature, the mean neural deviations attributed to each force 

https://doi.org/10.1038/s41598-020-58097-1


3Scientific Reports |         (2020) 10:1429  | https://doi.org/10.1038/s41598-020-58097-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

level are affected by the volitional states used to emulate them. This suggests that volitional state could affect the 
degree to which interacting features are tuned to force in participant T8.

Figure 3 summarizes the tuning of all 384 TC and SBP features in each participant across both power and 
pincer grasps, during the active “go” phase of the behavioral task. In participant T8, these data are averaged over 
multiple experimental sessions. Figure 3A shows the average fraction of features in the neural population that 
were tuned to the four marginalizations of interest (corrected p < 0.05, 2-way Welch-ANOVA). In all participants, 
a substantial proportion of modulating features are tuned to volitional state only. A second population of features 
– denoted by blue and red bars – exhibit independent go-phase tuning to force (27.0% in T8 power, 24.3% in T8 
pincer, 3.6% in T5 power, 8.3% in T5 pincer, and 2.3% in T9 pincer). A majority of these force-tuned features 
exhibit “mixed selectivity”, in that they are also independently tuned to volitional state. A final subset of features 
exhibits a statistically significant interaction (corrected p < 0.05, 2-way Welch-ANOVA) between force-related 
and volitional-state-related modulation. Figure 3B further subdivides these interacting features into those that 
are tuned to force within each individual volitional state (corrected p < 0.05, 1-way Welch ANOVA). Note that in 
participant T9, no interacting features were detected. In participants T8 and T5, a larger proportion of interacting 
features are recruited by attempted forces than by observed and imagined forces. Therefore, in these two partic-
ipants, an overall greater proportion of neural features are tuned to force during the attempted volitional state.

Figure 1.  (A) Experimental setup. Prior to the current study, participants were implanted with two 96-channel 
microelectrode arrays in motor cortex as a part of the BrainGate2 Pilot Clinical Trial. The microelectrode arrays 
recorded neural activity while participants completed a force task. Two neural features (threshold crossings, 
spike band powers) were extracted from each channel in the arrays. (B) Experimental session architecture. Each 
session consisted of 12–21 blocks, each of which contained ~20 trials (see Supplementary Table S1). In each 
trial, participants observed, imagined, or attempted to generate one of three cued forces with either a power 
grasp or a closed pincer grasp; to perform a wiggling finger movement; or to rest. Trial types were presented in 
a pseudorandom order. Each trial contained a preparatory (prep) phase, a go phase where forces were actively 
embodied, and a stop phase where neural activity was allowed to return to baseline. Participants were prompted 
with both audio and visual cues, in which a researcher squeezed an object associated with each force level. 
Visual cues were presented with a third person, frontal view, in which the researcher faced the participants 
while squeezing the objects. Lateral views are shown here for visual clarity, but were not displayed as such to the 
participants.
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Figure 2.  Single features are tuned to force and volitional state. Rows: Average per-condition activity (PSTH) 
of five exemplary TC and SBP features tuned to force only (session 1), volitional state (VoS) only (session 
4), neither factor (session 1), both factors (session 4), and an interaction between both factors (session 4) in 
participant T8 (2-way Welch ANOVA, corrected p < 0.05, Benjamini-Hochberg method). Neural activity was 
smoothed with a 100-ms Gaussian kernel prior to trial averaging to aid in visualization. Statistically significant 
p-values for force modulation, VoS modulation, and interaction are indicated with asterisks. Neural activity 
in Column 1 is averaged over all volitional states, such that observable differences in modulation are due to 
force alone (~50–90 trials per force level, depending on session number). Similarly, Column 2 depicts the 
activity of individual features during distinct volitional states, averaged over all force levels (~50–90 trials per 
volitional state, depending on session number). Simple main effects are represented graphically in Column 3 via 
normalized mean neural deviations from baseline activity during force trials within each of the three volitional 
states. Modulation depths were computed over the go phase of each trial, and then averaged within each force-
VoS pair. Error bars indicate 95% confidence intervals.
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Neural population analyses.  The next goal was to examine how volitional state affected force-related 
tuning at the neural population level. To this end, feature vectors representing individual trials were projected 
into low dimensional “similarity spaces” using continuous similarity (CSIM) analysis, adapted from Spike-Train 
Similarity (SSIM) analysis51, as described in the Methods. Briefly, CSIM makes pair-wise comparisons between 
patterns in neural features and then projects these pair-wise comparisons into a low-dimensional representation 
using t-distributed Stochastic Neighbor Embedding (t-SNE)52. In the low-dimensional representation, feature 
activity during an individual trial is represented as a single point, and the distance between points denotes the 
degree of similarity between trials.

Figure 4A shows the relationship between single-trial activity patterns using two-dimensional CSIM plots 
for a representative session from each participant-grasp pair. In concordance with the single feature data, clus-
tering of trials according to volitional state is evident in all participants during both power and pincer grasping 
(Kruskall-Wallis p < 0.00001). In contrast, force-related clustering of trials occurred only during sessions 1, 7, 
and 11 and was most apparent during attempted force production (Kruskal-Wallis, p < 0.0001). These trends 
are further illustrated in Fig. 4B, which shows the distribution of pairwise distances between trials within and 
between volitional states in the upper left panel, as well as within and between forces within each volitional 
state. The medians corresponding to the within-condition and between-condition distributions are farthest apart 
for volitional state, are closest together for observed and imagined forces, and are separated by an intermediate 
amount for attempted forces. This indicates that volitional state has a stronger influence on trial similarity than 
even attempted forces. In other words, trials cluster more readily according to volitional state than to force in the 
CSIM space.

In order to further quantify the degree to which volitional state and force were separable at the population 
level, VoS and force classification was performed using an LDA classifier operating on 10-dimensional CSIM 
space projections. To determine the time resolution at which force- and VoS-related information could be 
decoded, the LDA was applied to 10-dimensional CSIM data of varying window lengths, beginning at the start of 
the go phase, as described in the Methods and as shown in Fig. 5. Further, to determine how force and volitional 
state were represented in the neural space as a function of time, time-dependent classification accuracies were 
determined by applying the LDA to CSIM data with a 400 millisecond sliding window stepped in 100 millisec-
ond increments (Fig. 6). For both of these analyses, chance performance was estimated by applying the LDA to 
the neural data during 10,000 random shuffles of the trial labels. The mean of the empirical chance distribution 
(averaged across participants) was 33.9%, with 95% of samples between 26.6 and 40.3%. Both Figs. 5 and 6 show 
that, in agreement with the structure observed in the CSIM neural space in Fig. 4, VoS is decoded with greater 
accuracy than force for all participants and grasps. However, force-related information also appears to be present, 
and is decoded above chance throughout the go phase of attempted force production in all participants (but not 
always across other VoS conditions). In other words, volitional state appears to affect the degree to which force is 
represented at the level of the neural population.

To elaborate the extent to which individual volitional states were represented in the neural space, classifi-
cation accuracies of individual volitional states were computed, averaged over the go phase of the behavioral 

Figure 3.  Overall Tuning of Neural Features. (A) Fraction of neural features significantly tuned (2-way Welch-
ANOVA, corrected p < 0.05) to force and/or volitional state during the go phase of force production. For 
participant T8, results are averaged across multiple sessions. Error bars indicate standard deviation. (B) Fraction 
of total features exhibiting a statistically significant interaction (2-way Welch-ANOVA, p < 0.05) between force 
and volitional state, subdivided into force-tuned features during observation (O), imagination (I), and attempt 
(A). Force tuning within each volitional state was determined via one-way Welch-ANOVA (corrected p < 0.05). 
Error bars indicate standard deviation. Results show that features with an interaction between force and VoS are 
more likely to have force tuning in the attempt condition than in the observed or imagined conditions.
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Figure 4.  Feature population activity patterns. (A) Two-dimensional CSIM plots for a representative session 
from each participant-grasp pair. Each point represents the activity of the entire population of simultaneously-
extracted features during a single trial. The distance between points indicates the degree of similarity between 
single trials. Clustering of similar symbols denotes similarity between trials with the same intended force level, 
while clustering of similar colors indicates similarity of trials within the same volitional state. In all panels, the 
distribution of distances for pairs of trials within the same VoS displayed a significantly smaller median than 
distances between trials in different VoS categories (Kruskall-Wallis p < 0.00001). Analyzing pair-wise distances 
for trials within and between force conditions produced different results across sessions. Asterisks in the top left 
corner denote sessions with significantly smaller within-force than across-force distances (*p < 0.05 **p < 0.01, 
and ***p < 0.0001) within each VoS, as indicated by the color of the asterisks. (B) Distribution of pairwise 
distances within and between categories for VoS (upper left) and and observed, imagined, and attempted force. 
Distances were normalized and pooled across all sessions shown. Triangles on the X-axis denote medians for 
each distribution. Overall, VoS had a stronger effect on trial similarity than even the attempted force condition.
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task, and then compiled into confusion matrices. Figure 7 shows that, while all volitional states are classified at 
above-chance accuracy, observation and attempt appear to be classified with greater accuracy than imagery in 
multiple datasets. In particular, attempt is classified with high accuracy across all sessions, while observation is 
classified with high accuracy during Sessions 1, 7, and 11. During Sessions 9 and 10, observation and imagery are 
classified with similar accuracy and tend to be confused with each other more often than they are confused with 
attempt. These results suggest that attempt (and possibly observation) drives volitional state representation to a 
greater degree than imagery.

Discussion
Force representation persists in motor cortex after tetraplegia.  The primary study goal was to 
characterize how volitional state affects neural representation of force in human motor cortex at the feature-en-
semble level. We found that force-related activity persists in motor cortex, even after tetraplegia. This validates 
fMRI findings in individuals with spinal cord injury, who exhibited BOLD activity that modulated to imagined 
force50; as well as intracortical findings in an individual with tetraplegia36. The present work expands upon these 
studies by demonstrating force-related activity in multiple people with paralysis within single features (Figs. 2–3) 
and the neural population (Figs. 4–6).

The present work also shows quantitative, electrophysiological evidence that force modulation depends on 
volitional state. Briefly, attempted forces recruit more single features (Fig. 3), separate more distinctly in the 
CSIMS neural space (Fig. 4), and yield higher classification accuracies (Figs. 5–6) than observed and imagined 
forces. This validates previous kinematic40–44 and kinetic49,50 volitional state studies, in which attempted actions 
were more readily decoded and yielded stronger BOLD activations than other volitional states.

Volitional state modulates neural activity to a greater extent than force.  The present work 
demonstrates that volitional state is represented robustly within the neural space in individuals with tetraplegia 
(Figs. 4–7). In particular, individual volitional states recruit an overlapping population of neural features (Fig. 3), 
but nonetheless result in unique activity patterns (Fig. 4). This supports the theory of overlapping yet distinct 

Figure 5.  Feature ensemble CSIM force and volitional state decoding accuracies as a function of window 
length. Offline decoding accuracies were computed using an LDA classifier implemented within a 
10-dimensional CSIM representation of the neural feature data, using 10-fold cross-validation. 10-dimensional 
CSIM data of window lengths ranging from 100 ms to 3000 ms were passed to the LDA, as described in the 
Methods. Each window began at the start of the go phase and ended at the time point indicated on the x-axis. 
For participant T8, each panel shows session-averaged decoding performances from each participant-grasp 
pair. The T8 power and pincer panels were averaged over 5 and 3 sessions, respectively. Standard deviations 
across T8 sessions are indicated by the dotted lines. Gray line indicates the upper boundary of the 95% empirical 
confidence interval of the chance distribution, estimated using 10,000 random shuffles of the trial labels.
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Figure 6.  Time-dependent feature ensemble CSIM force and volitional state decoding accuracies. Offline 
decoding accuracies were computed using an LDA classifier implemented within a 10-dimensional CSIM 
representation of the neural feature data, using 10-fold cross-validation. The LDA was applied to a 400 ms 
sliding window, stepped in 100 ms increments. Each panel shows decoding performance for a representative 
session from each participant-grasp pair, where time = 0 indicates the start of the active “go” phase of the trial. 
The gray line indicates the upper boundary of the 95% empirical confidence interval of the chance distribution, 
estimated using 10,000 random shuffles of the trial labels.

Figure 7.  Feature ensemble volitional state go-phase confusion matrices. Offline decoding accuracies were 
computed using an LDA classifier implemented within a 10-dimensional CSIM representation of the neural 
feature data, using 10-fold cross-validation, over a 400 ms sliding window stepped down in 100 ms increments. 
Classification accuracies for individual volitional states were averaged over all time points within the go phase 
of the trial, resulting in a confusion matrices of true vs. predicted (P) observed (O), imagined (I), and attempted 
(A) volitional states. Note that the attempted volitional state is classified with a high accuracy rate across all 
sessions, while observed trials are classified with high accuracy during sessions 1, 7, and 11.
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neural populations corresponding to each volitional state44. Additionally, while individual volitional states are 
represented at above-chance levels in all participants, the attempted state recruits the most neural features (Fig. 3) 
and is classified with high accuracy (Fig. 7), compared to the other volitional states. In contrast, the imagined 
volitional state was classified least accurately and was often confused with observation. These results appear to be 
consistent with previous intracortical volitional state investigations in humans, in which the attempted state was 
shown to recruit more single units and result in higher firing rates, while the imagined state recruited the fewest 
number of single units in a human participant with the highest neural volitional state representation44. Taken 
together, the current study results suggest that volitional states are represented similarly in multiple individuals 
with tetraplegia, regardless of whether these states were used to emulate kinematic vs. kinetic tasks.

Here, however, force representation was weaker than volitional state representation. Specifically, while many 
features modulated primarily to volitional state, few exhibited force tuning; and most of these were also tuned 
to volitional state (Fig. 3). Additionally, volitional state was discriminated more reliably from feature ensemble 
activity than even attempted forces (Figs. 4–6). This relative deficiency of force information, which contrasts with 
previous work in nonhuman primates1–3,12,53 and able-bodied humans35,49,50,54–57, could have potentially resulted 
from several factors. Here, we discuss the effects of two such factors, which include the visual cues used to prompt 
the force task and the effects of deafferentation in individuals with tetraplegia.

Effects of visual cues on neural activity.  During most experimental sessions presented in this study, visual cues 
were used to prompt the observation, imagery, and attempt of forces. Briefly, a researcher lifted one of six grasp-
able objects associated corresponding to light, medium, and hard power and pincer grasping forces to indicate 
the preparatory phase; squeezed the object during the active “go” phase; and ultimately released the object at the 
beginning of the stop phase of the trial. In response to these visual cues, participants were instructed to observe, 
imagine, or attempt emulating sufficient force to crush the object squeezed by the researcher.

As discussed, this visually-cued behavioral task yielded three separate yet overlapping populations of the 
neural features corresponding to each volitional state. Previous studies in non-human primates have identified 
a class of cells within motor cortex, termed “mirror neurons”, that exhibit changes in activity in response to the 
observed and executed volitional states58–61. The presence of these neurons may account for the degree of overlap 
between feature populations tuned to observation, imagery, and attempt. Additional studies have demonstrated 
that the activity of neurons responding to observed and executed actions depends on characteristics of how the 
motor actions are observed. For example, neural activity has been shown to depend on whether the observed 
action is static versus dynamic62, whether it occurs within versus beyond the participant’s reach63,64, and whether 
it is presented within an allocentric versus an egocentric reference frame65,66.

The visual cues in this study were static during the active “go” phase of the task, occurred within the partic-
ipants’ extrapersonal space, and were presented using a third-person perspective. Since some of these charac-
teristics are associated with weaker neural activity during action observation62,63,65, the visual cues included in 
this study may partially account for the weak force representation demonstrated here. However, many of these 
same non-human primate studies suggest that static, third-person, and extrapersonal visual cues can still elicit 
robust neural responses to observed actions in able-bodied individuals. For example, one study demonstrated 
force encoding during the reach phase of an observed motor task–before contact had been made with the object, 
such that the only force-related information available to the monkey was from previous knowledge of the object’s 
weight67. In light of these findings, it is likely that robust force-related representation can be elicited even in 
response to relatively “weak” visual stimuli, such as the static squeezing of graspable objects. Furthermore, while 
separate yet overlapping populations of neurons respond to first-person versus third-person views of motor acts, 
the number of neurons within each of these populations is relatively similar, albeit larger for first-person views65. 
Similar results were found for neurons recruited during the observation of motor acts within the peripersonal 
versus the extrapersonal space63. Therefore, while it is still possible that the current study’s visual cues contributed 
to the weak force representation observed here, this contribution was likely minor.

Effects of deafferentation in individuals with tetraplegia.  An additional explanation for the deficiency in neu-
ral force representation could include the effects of deafferentation-induced cortical reorganization in tetraple-
gia68,69. Notably, these effects were absent in the previously cited non-human primate literature, which predicts 
robust representation of observed and executed motor actions in able-bodied individuals63,65,67. In individuals 
with spinal cord injury, force-related BOLD activity has been shown to overlap minimally with able-bodied force 
activity50, suggesting that altered cortical networks in tetraplegia could affect the extent of force representation in 
motor cortex. However, kinematic representation is well preserved in tetraplegia, as evidenced by high decoding 
accuracies in kinematic iBCIs16,18,19,23,27–30,44. Therefore, a discrepancy exists between kinematic and kinetic rep-
resentation in tetraplegia.

This discrepancy may result from sensory feedback differences between the able-bodied and paralyzed states – 
and indeed, between kinematic and kinetic tasks attempted by individuals with tetraplegia. Without sensory feed-
back, motor performance is significantly compromised70–72; while reintroducing visual56,70, auditory57, tactile73, 
or proprioceptive74 feedback enhances motor-related neural modulation and BCI control. Moreover, in an indi-
vidual with tetraplegia who had intact sensation, motor cortical neurons modulated to both passive joint manip-
ulation and attempted arm actions75. Taken together, these studies suggest that multiple sensory inputs influence 
motor cortical activity, and that diminished sensory feedback compromises modulation to motor parameters.

Of all sensory modalities, tactile and proprioceptive feedback are the most relevant to fine control of grasping 
forces73,76,77. This is because kinetic tasks are largely controlled through feedback via somatosensory pathways78,79, 
which are profoundly altered in tetraplegia80. Participants T8, T5, and T9 were deafferented and received no feed-
back regarding their own force output. In contrast, kinematic studies in people with paralysis were performed in 
the context of directional movements that rely on visual feedback, which remains intact after tetraplegia. After 
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complete sensorimotor deafferentation, parameters relying on visual pathways could be preserved in motor cor-
tex, while those relying on somatosensory feedback could diminish. This could explain the relatively weak force 
tuning observed here, as opposed to the robust force modulation seen in able-bodied literature.

Limitations of open-loop task.  In this study, participants observed, imagined, and attempted discrete 
grasping forces, with the understanding that they could not execute these forces. This open-loop investigation 
is a key first step towards elucidating neural force representation; however, it came with inherent limitations 
regarding how participants engaged in the task. For example, volitional states may be challenging for some indi-
viduals with paralysis to differentiate cognitively, though previous work suggests this is generally achievable44. 
Additionally, since participants received no sensory feedback, the study findings depended on each participant’s 
understanding of the task and their ability to kinesthetically observe/imagine/attempt discrete force levels despite 
their chronic tetraplegia. Furthermore, while the use of visual cues enhanced this understanding by increasing 
the applicability of the force task to participants, the various objects and the hand shapes used to squeeze them 
may have been reflected in the neural data along with forces and volitional states. Finally, while participants were 
instructed to vary only the amount of force needed to crush these objects, there was no way to measure their 
intended kinematic and kinetic outputs, which could have differed somewhat between force levels.

To address and mitigate these challenges, participants completed a Kinesthetic Force Imagery Questionnaire 
(KFIQ), adapted from the Kinesthetic and Visual Imagery Questionnaire81, in order to qualitatively assess the 
degree to which they emulated various force levels during each volitional state. In addition, participants reported 
in their own words how they differentiated between observed, imagined, and attempted forces. For example, par-
ticipant T8 reported conceiving of a virtual arm performing the task during force imagery, whereas he emulated 
forces with his own arm during the attempt state. In all participants, KFIQ scores rose with volitional state in 
concordance with the neural data, as shown in Supplementary Fig. S5.

Furthermore, prior to completing the sessions presented in this main text, participant T8 completed a series 
of additional sessions, summarized in Supplementary Table S2, in which he was asked to observe, imagine, and 
attempt producing forces both when visual cues were included and when visual cues were omitted. Supplementary 
Figs. S1 and S2 show that the visual cues do introduce extraneous preparatory and stop phase neural activity 
within force trials, which is in agreement with previous non-human primate studies of neural activity occurring 
immediately before and after observed force tasks60,82. However, Supplementary Figs. S2 and S3 suggest that the 
visual cues do not influence neural activity during the active “go” phase of the trial.

Finally, participants performed kinematic control trials where they embodied finger wiggling movements. 
Supplementary Fig. S4 shows that force trials were more correlated with each other than with kinematic trials, 
especially during attempted forces. Additionally, the participants’ KFIQ scores, which reflect embodiment of 
forces as opposed to kinematics, were often lower for finger wiggling than for force (Supplementary Fig. S5). 
Though only a closed-loop study could guarantee that participants were emulating forces, the KFIQ scores, and 
their correlation with the neural data, indicate that this was likely the case.

Force representation differences across participants.  Relative to other participants, T8’s motor cor-
tical activity exhibited the most force-tuned features, the clearest separation between attempted forces in CSIM 
space, and the highest force decoding accuracy. In contrast, T5’s force modulation was more robust during pincer 
grasping (Session 11) than during power grasping (Session 10), and T9’s force modulation appeared to be rel-
atively weak overall. The study’s open-loop nature partially explains these discrepancies: T5 had difficulty dis-
tinguishing light, medium, and hard forces during Session 10, but improved during Session 11. Additionally, 
differences in pathology may account for T9’s relatively weak force representation. While T8 and T5 were other-
wise neurologically healthy participants with cervical spinal cord injury, T9 had advanced ALS, which may have 
comparatively affected his motor-related cortical activity. Future work with a greater number of participants, 
with different paralysis etiologies, will be needed to more comprehensively investigate these inter-participant 
differences.

Implications for iBCI development.  A long-term motivation behind this study is to investigate the fea-
sibility of incorporating force control into closed-loop iBCIs. This work validates the presence of kinetic infor-
mation in motor cortex and shows that volitional state influences force modulation. Therefore, while decoding 
intended forces in real time appears feasible, future closed-loop force iBCIs will need to take non-motor param-
eters into account. For example, the data suggest that iBCI force decoders should be trained on neural activity 
generated during attempted (as opposed to imagined) force production.

More broadly, accurate force decoding will likely depend on increasing neural force representation in indi-
viduals with tetraplegia. Since closed-loop decoding performance often exceeds open-loop performance83–85, 
simply providing visual feedback about intended forces could improve neural force representation. In addition, 
somatosensory feedback has been shown to elicit motor cortical activity in a tetraplegic individual with intact 
sensation75. This supports the possibility of enhancing force-related neural representation with somatosen-
sory feedback. In completely deafferented individuals, graded tactile percepts have been evoked on the hand 
via microstimulation of somatosensory cortex77,86, indicating that it is possible to provide closed-loop sensory 
feedback about intended grasping forces in this population. More work is needed to determine the extent to 
which sensory feedback affects motor cortical force representation, and how this representation translates into 
closed-loop iBCI force decoding performance. Nevertheless, this study shows promise for informing future 
closed loop iBCI design and provides further insight into to the complexity of motor cortex.
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Methods
Study permissions and participants.  Study procedures were approved by the US Food and Drug 
Administration (Investigational Device Exemption #G090003) and the Institutional Review Boards of University 
Hospitals Case Medical Center (protocol #04-12-17), Massachusetts General Hospital (2011P001036), the 
Providence VA Medical Center (2011-009), Brown University (0809992560), and Stanford University (pro-
tocol #20804). Participants were enrolled in the BrainGate2 Pilot Clinical Trial (ClinicalTrials.gov number 
NCT00912041). All research was performed in accordance with relevant guidelines and regulations. Informed 
consent, including consent to publish, was obtained from the participants prior to their enrollment in the study.

This study includes data from three participants with chronic tetraplegia. All participants were implanted 
in the hand and arm area on the precentral gyrus87 of dominant motor cortex with two, 96-channel microelec-
trode intracortical arrays (1.5 mm electrode length, Blackrock Microsystems, Salt Lake City, UT). Participant 
T8 was a 53-year-old right-handed male with C4-level AIS-A spinal cord injury that occurred 8 years prior 
to implant; T5 was a 63-year-old right-handed male with C4-level AIS-C spinal cord injury; and T9 was a 
52-year-old right-handed male with tetraplegia due to ALS. Surgical details can be found at25,30,88 for each respec-
tive participant.

Neural recordings and feature extraction.  In all participants, broad-band neural recordings were sam-
pled at 30 kHz and pre-processed in Simulink using the xPC real-time operating system (The Mathworks Inc., 
Natick, MA, US; RRID: SCR_014744). From each pre-processed channel, extraction of two neural features from 
non-overlapping 20 millisecond time bins was performed in real time, as illustrated in Fig. 1A. These included 
192 unsorted threshold crossing (TC) and 192 spike band power (SBP) features. Here, we evaluated the neu-
ral space by characterizing TC and SBP features as opposed to sorted single units, in order for our results to 
be directly applicable to iBCI systems, and because iBCI performance has been shown to be comparable when 
derived from thresholded data as opposed to spike-sorted data89–92. Supplementary Figs. S8–S11 illustrate a visual 
comparison of neural activity from threshold crossings and sorted single units extracted from identical chan-
nels. Unless otherwise stated, all offline analyses were performed using MATLAB software (The Mathworks Inc., 
Natick, MA, US; RRID: SCR_001622). Neural recordings, multiunit feature extraction methods, and single unit 
sorting methods for this study are described in more detail within the Supplementary Information.

Behavioral task.  During data collection, all participants observed, imagined, and attempted producing three 
discrete forces (light < medium < hard) with the dominant hand, using either a power or a pincer grasp, over 
multiple data collection sessions. T8 completed eight sessions between trial days 511–963 relative to the date 
of his microelectrode array implant surgery; T9 completed one session on trial day 736; and T5 completed two 
sessions on trial days 365 and 396. Supplementary Table S1 lists all relevant sessions and their associated task 
parameters.

Each session consisted of multiple 4-minute data collection blocks, as illustrated in Fig. 1B. During each block, 
one volitional state (observe, imagine, or attempt) and one hand grasp type (power or pincer) were presented. 
Blocks were arranged in a pseudorandom order, in which volitional states were assigned randomly to each set of 
three blocks chronologically. This ensured an approximately equal number of blocks per volitional state, distrib-
uted evenly across the entire session. All blocks consisted of approximately 20 trials. Participants were encouraged 
to take an optional break between experimental blocks.

During each trial, participants were prompted to use kinesthetic imagery93,94 to internally emulate a) a “light” 
squeezing force, b) “medium” force, c) “hard” force, d) a finger wiggling movement, or e) rest, with the dominant 
hand. Finger wiggling trials served as a kinematic control for the force trials. Trials were presented in a pseu-
dorandom order by repeatedly cycling through a complete, randomized set of five trial types until the end of the 
block.

Participants received audio cues indicating which force to produce (prep phase), when to produce it (go 
phase), and when to relax (stop phase). Participants also observed a researcher squeezing one of six graspa-
ble objects corresponding to light, medium, and hard forces (no object was squeezed during “rest” trials). 
These objects were grouped into two sets of three, corresponding to forces embodied using a power grasp 
(sponge = light, stress ball = medium, tennis ball = hard) and a pincer grasp (cotton ball = light, nasal aspirator 
tip = medium, eraser = hard), as shown in Fig. 1B. At the start of each trial, the researcher presented an object 
indicating the force level to be observed, imagined, or attempted. At the end of the prep phase (at the beginning 
of the go phase), the researcher squeezed the object. The prep phase lasted between 2.7 and 3.3 seconds. The vari-
ability in the prep phase time reduced confounding effects from anticipatory activity. The researcher squeezed the 
object during the go phase (3–5 seconds), and then released the object at the beginning of the stop phase (3–5 sec-
onds). These visual cues were presented during the majority of experimental trials in a third-person, frontal per-
spective, in which the researcher faced the participants while squeezing the objects. Visual cues were presented 
during the majority of force trials; however, during two experimental sessions, visual cues were omitted during 
some trials to determine whether force-related information resulted from the presence of objects. Supplementary 
Figs. S1 and S2 visually compare neural feature activity recorded during these trials with feature activity recorded 
when both audio and visual cues were presented.

During force observation blocks, participants simply observed these actions without engaging in any activity. 
During force imagery and attempt blocks, participants imagined generating or attempted to generate sufficient 
force to “crush” the object squeezed by the researcher. For force imagery blocks, participants were instructed to 
mentally rehearse the forces needed to crush the various objects, without actually attempting to generate these 
forces.

To assess the extent to which participants embodied discrete forces during each volitional state, participants 
completed a Kinesthetic Force Imagery Questionnaire (KFIQ), adapted from the Kinesthetic and Visual Imagery 
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Questionnaire (KVIQ)81 after each experimental block. Briefly, participants rated on a scale of 0–10 how vividly 
they kinesthetically emulated various force levels during light, medium, hard, and wiggling force trials, where 
0 = no force embodiment, and 10 = embodiment as intense as able-bodied force execution. The KFIQ is described 
in more detail within the Supplementary Information.

Effects of audio vs. audiovisual cues.  During all experimental sessions presented in Figs. 2–7, partici-
pants received audio cues indicating which forces to produce and when to embody these forces. Participants also 
received visual cues during most sessions, in which they observed a researcher squeezing objects corresponding 
to the forces they were asked to observe, imagine, or attempt to produce. These visual cues were presented in 
order to encourage participants to emulate light, medium, and hard forces within the framework of a real-world 
setting. The goal was to elicit appropriate neural responses to the force task by providing participants with mean-
ingful visual information about which forces they were emulating. More specifically, the visual cues were imple-
mented to make the physical concept of light, medium, and hard forces seem less abstract to the participants after 
several years of deafferentation.

To determine the extent of any resulting confounds of object size, hand grasp shape, and other factors within 
the neuronal responses to the force task, additional supplemental data was collected from participant T8, who 
was cued to observe, imagine, or attempt producing forces using either only audio cues or both audio and visual 
cues. These additional data, which are summarized in Supplementary Table S2, are solely presented within the 
Supplementary Information and do not appear in the main text. Within each supplemental session, correlation 
coefficients were computed between pairs of trial-averaged feature time courses that resulted from audio-only 
cues (a) and audiovisual cues (av). These correlations were computed within each volitional state, and within 
each phase of the task (prep, go, stop), in order to discern whether neuronal responses to the visual cues varied by 
volitional state or trial phase. For each individual session, this correlational analysis was performed on 120 neural 
features with the highest signal to noise ratio. Additional methods can be found in the Supplementary Materials.

Assessment of kinetic vs. kinematic activity.  Prior to determining the effects of volitional state on neu-
ral force representation in the main dataset, we performed an initial analysis to determine whether force-related 
modulation of neural feature activity was distinct from modulation to kinematic activity. Briefly, correlation coef-
ficients were computed between pairs of trial-averaged go-phase feature modulation time courses during force 
(light, medium, hard) and finger-wiggling trials, within each volitional state. For each participant, this analysis 
was performed on 120 neural features with the highest signal to noise ratio (SNR), as described and presented in 
the Supplementary Information.

Characterization of individual features.  The first goal of this study was to characterize the tuning prop-
erties of individual features. Neural activity resulting from the three volitional states (observe, imagine, attempt) 
and the three discrete forces (light, medium, hard) resulted in nine conditions of interest. For each condition, 
each neural feature’s peristimulus time histogram (PSTH) was computed by averaging the neural activity over 
go-phase-aligned trials, which were temporally smoothed with a Gaussian kernel (100-ms standard deviation) 
to aid in visualization.

Additionally, the effect of discrete force levels and volitional states on the activity of individual features was 
assessed. This analysis consisted of feature pre-processing performed in MATLAB, as well as statistical analysis 
implemented within the WRS2 library in the R programming language95. Features were pre-processed to calculate 
each neural feature’s mean deviation from baseline during the go phase of each trial. For each feature, baseline 
activity was computed by averaging neural activity across multiple “rest” trials. Next, trial-averaged baseline activ-
ity was subtracted from neural activity that occurred during individual experimental trials. Finally, the resulting 
activity traces were averaged across multiple time points spanning each trial’s go phase, which yielded a collection 
of go-phase neural deviations from baseline.

In R, it was determined that the distribution of go-phase neural deviations passed normality tests (analysis of 
Q-Q plots and Shapiro-Wilk test, p < 0.05) but was heteroskedastic (Levene’s test, p < 0.05). Thus, a robust 2-way 
Welch ANOVA on the untrimmed means was implemented to evaluate the main effects (force and VoS), as well 
as their interaction (p < 0.05). Features that demonstrated a significant interaction between force and VoS were 
further separated into individual VoS conditions (observe, imagine, attempt). Within each VoS condition, a 1-way 
Welch ANOVA was implemented on go-phase neural deviations to find features that had significant force tuning 
(p < 0.05). All p-values were corrected for multiple comparisons using the Benjamini–Hochberg procedure96. 
Taken together, the results of the 1-way and 2-way Welch ANOVA constituted the tuning properties for each 
individual feature during a given experimental session.

Neural population analysis and decoding.  In addition to characterizing individual features, this work 
sought to elucidate how much volitional state affects the neural representation of force at the population level. To 
this end, similarity analysis was used to examine the intrinsic relationship between the activity patterns observed 
across conditions51,97,98. This approach is based on pair-wise comparisons between neural activity patterns and 
makes no a priori assumptions about the structure of the data. T-distributed Stochastic Neighbor Embedding 
(t-SNE)52 was used to project these pair-wise measurements into a low-dimensional representation, which facil-
itated statistical analysis as well as data visualization while still capturing the relationship between individual 
trials. This dimensionality reduction technique is well suited to similarity analysis, because it explicitly attempts 
to preserve nearest-neighbor relationships in the data by minimizing KL-divergence between local neighborhood 
probability functions in the high and low dimensional spaces. That is, it explicitly attempts to preserve relation-
ships between data points that are close together in the high-dimensional space, which makes it ideal for analyz-
ing neural datasets that lie on or close to a nonlinear manifold. In the low-dimensional “similarity space”, a neural 
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activity pattern is represented by a single point. The distance between points denotes the degree of similarity 
between the activity patterns they represent. Two identical activity patterns correspond to the same point in this 
space; the more different they are, the farther apart they lie in the similarity space projection.

We have previously used this method to compare spike trains using point process distance metrics51. In the 
present study, the algorithm was adjusted to operate on continuous (binned) data, in order to include threshold 
crossing (TC) and spike band power (SPB) extracted features. This modified technique is referred to as continu-
ous similarity (CSIM) analysis. Similarity between feature vectors was evaluated as one minus the cosine of the 
angle between them. Note that this metric is not affected by the magnitude of the vectors; this property made the 
analysis more robust to non-stationarities in the data. All features were binned using non-overlapping 20-ms 
windows, and then smoothed with a 20-bin (400 ms) Gaussian kernel. Two-dimensional CSIM projections were 
derived over the entire duration of the go-phase. After CSIM was applied, all trials were labeled post-hoc with 
their associated forces and volitional states, in order to visualize how these experimental parameters affected the 
degree of similarity between neural activity patterns. Here, the goal was to visualize how force and volitional state 
affected the activity of the neural population, as represented by the low-dimensional CSIM manifold.

The force- and VoS-related information content within this manifold was quantified in two ways. First, force- 
and VoS-related clustering of trials was evaluated by comparing the distributions of CSIM distances within and 
between conditions using a Kruskal-Wallis test. The neural space was identified as representing volitional state 
when the median CSIM distances between trials with the same volitional states were smaller than the distances 
between trials with different volitional states. Similarly, when the median CSIM distances between trials with the 
same force were smaller than the distances between trials with different forces, the neural space was identified as 
representing force.

Second, CSIM was also used to generate discrete state force and volitional state classifiers. TC and SBP features 
were projected onto a 10 dimensional CSIM representation using data from a 400 ms sliding window, stepped in 
100 ms increments. For each window, an LDA classifier was used to generate time-dependent force and volitional 
state decoding accuracies, using 10-fold cross-validation. Additionally, the effect of the analysis window size on 
classification accuracy was examined, starting with 100 ms following the go cue and increasing window length 
in 100 ms increments up to three seconds. For both sets of analyses, force decoding accuracies were determined 
within each volitional state, in order to determine how volitional state affected the degree to which force-related 
information was represented within the neural space. These decoding accuracies were compared to the empirical 
chance distribution of decoding accuracies, estimated using 10,000 random shuffles of trial labels.

Data availability
The data can be made available upon reasonable request by contacting the lead or senior authors.

Code availability
Source code for the CSIM algorithm is publicly available at https://donoghuelab.github.io/SSIMS-Analysis-
Toolbox/.
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