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Background: Colorectal cancer (CRC) has been confirmed to be the third most commonly diagnosed 
cancer in males and the second in females. We investigated the blood plasma metabolome in CRC patients 
and in healthy adults to elucidate the role of monosaccharides, amino acids, and their respective metabolic 
pathways as prognostic factors in patients with CRC.
Methods: Fifteen patients with CRC and nine healthy adults were enrolled in the study and their blood 
plasma samples analyzed by gas chromatography-mass spectrometry (GC-MS). Univariate Student’s t-test, 
multivariate principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) 
were conducted on MetaboAnalyst 4.0. The analysis of metabolic profiles was carried out by the web-based 
extension Metabolite Sets Enrichment Analysis (MSEA).
Results: Overall, 125 metabolites were identified in plasma samples by GC-MS. In CRC patient samples, 
nine metabolites, including D-mannose and fructose, were significantly more abundant than in controls; 
conversely, eleven amino derivatives were less abundant, including methionine, valine, lysine, and proline. 
Methionine was significantly less abundant in died patients compared with survivors. The most significantly 
altered metabolic pathways in CRC patients are those involving monosaccharides (primarily the catabolic 
pathway of fructose and D-mannose), and amino acids (primarily methionine, valine, leucine, and isoleucine).
Conclusions: The abundance of D-mannose in CRC patient samples contributes to inhibiting the growth 
of cancer cells, while the abundance of fructose may be consistent either with low consumption of fructose 
by aerobic glycolysis within cancer cells or with a high bioavailability of fructose from diet. The reduction 
in methionine concentration may be related to increased activity of the threonine and methionine catabolic 
pathways, confirmed by high levels of α-hydroxybutyrate.
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Introduction

Colorectal cancer (CRC) has been recently confirmed to be 
the third most commonly diagnosed cancer in males (10.9%) 
and the second in females (9.5%), showing a mortality rate 
of 9.0% and 9.5%, respectively (1). In the United States, the 
CRC 5-year relative survival rate is 90% in localized forms; 
however, it drastically drops to 14% in distant-stage disease 
diagnosis (2). Consequently, early detection and diagnosis 
of CRC are crucial to reducing mortality. Several non-
invasive and invasive diagnostic approaches are currently 
available in routine clinical practice (3); most of them show 
low sensitivity and specificity often in conjunction with 
unsatisfactory patient compliance. Novel diagnostic and 
prognostic tests, including liquid biopsy (4) and molecular 
and genetic testing such as the detection of KRAS, BRAF, 
NRAS and PIK3CA gene mutations (5), the investigation 
on the role of miRNAs (6) and the study of interactions 
between epigenetic changes and gene mutations (7),  
are emerged over the last decade. Unfortunately, the 
effectiveness and the reliability of molecular and genetic 
tests are still controversial and not yet included in routine 
clinical protocols (8). Beyond the potential relevant value 
of genomics and transcriptomics in assessing CRC risk 
factors and drug discovering for individualized therapies, 
what matters in patient’s management is a very early 
diagnosis of CRC as well as the timely recognition of 
metabolic changes due to either the progression/regression 
of the disease or the effects of the therapeutic treatment. 
Metabolic changes anticipate clinical changes and represent 
the dynamic molecular phenotype, constituted by the 
activation states of signaling and metabolic pathways, which 
in turn result from the interaction between genomics, 
transcriptomics and environmental factors, including the 
state of the disease. The extensive network of biochemical 
interactions recognizable in a cell, tissue or biological 
fluid, can be qualitatively or quantitatively investigated by 
metabolomics, that consists of the study of metabolism in a 
comprehensive way (9). Since metabolic reprogramming is 
a significant phenomenon of cancer, being a basic hallmark 
of cancer-inducing tumorigenesis and malignant phenotype, 
metabolomics has been extensively used in cancer 
research to profile alterations in pathways of intermediary 
metabolism (10). Over the last decade, a consistent number 
of studies have investigated the metabolomic changes 
associated with CRC (11-15); however, most of the studies 
are affected by several limitations and by the lack of 
attempts at exploring potential clinical applications. The 

primary aim of our study was to identify new biomarkers 
associated with CRC, by comparing the metabolic profile 
of patients with that of healthy adults; moreover, we aimed 
to investigate the role of monosaccharides, amino acids and 
their respective biochemical pathways as prognostic factors 
in CRC.

Methods

Study design and population

Fifteen patients (11 males) with histological diagnosis of 
CRC, were enrolled; between July and September 2015, 
eight patients underwent surgery for rectal cancer and 
seven for colon cancer at the Colorectal Surgery Unit 
of the University of Cagliari. The average postoperative 
follow-up period was 42.4 months; death occurred in three 
patients (20.0%) after 3, 4, and 26 months from surgery, 
respectively (Table 1). Pre-treatment staging consisted of 
physical examination, serum carcinoembryonic antigen 
(CEA) testing, colonoscopy, abdominal and chest computed 
tomography (CT) scan, magnetic resonance imaging (MRI) 
or endorectal ultrasound for rectal cancer. Three types of 
surgical procedures were applied: anterior resection in 11 
patients (73.3%), right hemicolectomy in 3 (20.0%) and 
local excision by transanal endoscopic microsurgery (TEM) 
in 1 (6.7%). Nine healthy adults (4 males) aged 30–67 years 
with serum CEA concentration below the limit of detection 
(0.5 mg/L) were enrolled in the study as a control group. 
The study protocol was approved by the local institutional 
review board of the University of Cagliari (CA-302-
26/05/2014) and was conducted in accordance with the 
Helsinki Declaration of 1964, revised in 2008. All patients 
signed informed consent to the study.

Sample collection and preparation

Blood samples were collected in a sterile plastic test tube 
containing spray-dried K3 ethylenediaminetetraacetic acid 
(K3EDTA) as an anticoagulant; all patients samples were 
collected before surgery and before the initiation of any 
adjuvant chemotherapy treatment. After centrifugation  
(5 minutes at 1,000 g), plasma was separated and immediately 
frozen at −80 ℃ until analysis. For samples preparation, a 
modified version of a standard protocol was applied (16).  
Firstly, 400 μL of thawed plasma were transferred in 
Eppendorf tubes, treated with 1,200 μL of cold methanol, 
mixed by vortexer, and centrifuged 15 minutes at 16,100 g.  
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Then, 370 mL of supernatant was transferred into glass 
vials and evaporated to dryness overnight in an Eppendorf 
vacuum centrifuge. Subsequently, 50 μL of a 0.24 M  
(20 mg/mL) solution of methoxylamine hydrochloride 
in pyridine were added to each vial, samples were 
mixed by vortexer and left to react for 17 h at room 
temperature. Then, 50 μL of N-Methyl-N-trimethylsilyl 
trifluoroacetamide (MSTFA) were added and left to react 
for 1 h at room temperature. The derivatized samples 
were diluted with hexane (200 μL), with tetracosane  
(0.01 mg/mL) as internal standard, just before gas 
chromatography-mass spectrometry (GC-MS) analysis.

GC-MS analysis

The derivatized samples were analyzed by using a global 
unbiased mass spectrometry-based platform with GC-MS 
incorporating an Agilent 5975C interfaced to the GC 7820  
(Agilent Technologies, Palo Alto, CA, USA). The system 
was equipped with a DB-5ms column (Agilent J&W 
Scientific, Folsom, CA, USA); the injection temperature 
was set at 230 ℃ and the detector at 280 ℃. Helium (the 
carrier gas) flow rate was equal to 1 mL/min. GC oven 
starting temperature program was 90 ℃ with 1 min hold 
time and ramping at a rate of 10 ℃ per minute, reaching a 
final temperature of 270 ℃ with 7 min hold time. One mL 
of the derivatized sample was injected in split (1:5) mode. 
After a solvent delay of 3 min, mass spectra were acquired 
in full scan mode using 2.28 scans per second with a mass 
range of 50–700 Amu. Each acquired chromatogram was 
analyzed through the free software AMDIS (Automated 
Mass Spectral Deconvolution and Identification System; 
http://chemdata.nist.gov/mass-spc/amdis). Each peak was 
identified by comparing the corresponding mass spectra 
and retention times with those stored in an in-house made 
library including 255 metabolites. Further metabolites were 
identified by using the National Institute of Standards and 
Technology’s mass spectral database (NIST08) (17) and 
the Golm Metabolome Database (GMD) (18). By applying 
this approach, we accurately identified 96 compounds, 
while further 28 metabolites were tentatively assigned, 
based on GMD and NIST libraries. AMDIS analysis 
produced a matrix spreadsheet (Microsoft Excel®, Microsoft 
Co, Redmond, WA, USA) as a preliminary tool for the 
subsequent chemometric analysis.

Statistical analysis

Univariate Student’s t-test, multivariate principal component 

analysis (PCA) and partial least square-discriminant analysis 
(PLS-DA) were conducted on MetaboAnalyst 4.0 (19) 
and used to observe data variance in unsupervised and 
supervised modes. The validity of the PLS-DA model was 
assessed by statistical parameters: the correlation coefficient 
R2, and the cross-validation correlation coefficient Q2. 
The goal was to identify pathways significantly impacting 
in a given phenotype. Since many pathways were tested 
simultaneously, P values were adjusted for multiple testing. 
The analysis of metabolic profiles in the context of the 
metabolic pathway was conducted by using the web-
based extension Metabolite Sets Enrichment Analysis 
(MSEA), a tool integrated into the software framework 
of the MetaboAnalyst 4.0 platform (20). MSEA was used 
to investigate whether the compounds being part of the 
metabolites set are randomly distributed throughout an 
ordered list or predominantly recognized at the top or 
bottom.

Results

Overall, 125 compounds recognized in more than one 
sample were annotated. The univariate and multivariate 
analysis indicates two main classes of metabolites associated 
with CRC subjects: monosaccharides and amino derivatives. 
Univariate analysis revealed 10 metabolites significantly 
different between CRC patients and controls. PLS-
DA analysis showed a clear separation between CRC 
patients and controls (accuracy =0.75, R2 =0.71, Q2 =0.45) 
highlighting the absence of any overlap between data groups 
(Figure 1). The most significant metabolites discriminating 
tumor samples (T) from controls (C) are reported in  
Figure 2; metabolites were ranked on the basis of the 
variable importance in projection (VIP) score. In CRC 
patient samples, nine metabolites were more abundant than 
in controls: D-mannose (an aldose hexose monosaccharide), 
fructose (a ketose hexose monosaccharide), the sugar-
like unknown molecule A203003, proline + carbon 
dioxide (CO2), alanine + CO2, erythritol, 3-methyl-3-
hydroxybutyric acid, aminomalonic acid, 2-hydroxybutyric 
acid. Conversely, eleven amino derivatives were found 
less abundant in patient samples compared with controls: 
3-amino-1,2-propanediol, methionine, iminodiacetic acid, 
valine, leucine, lysine, tyrosine, proline, phenylalanine, 
isoleucine, serotonin. Interestingly, the abundance of 
methionine was found significantly lower in patients died 
after 3, 4, and 26 months from surgery. Specifically, the 
mean value of methionine abundance in died patients 

http://chemdata.nist.gov/mass-spc/amdis
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was 19,502 (standard deviation 8,437, median 16,155) 
while that of the survivors was 29,387 (standard deviation 
10,447, median 29,921). MSEA analysis revealed that the 
most significantly altered metabolic pathways in CRC 
patients are those involving catabolism and metabolism 
of monosaccharides (primarily the catabolic pathway of 
fructose and D-mannose), and amino acids (primarily 
methionine, valine, leucine, and isoleucine), as reported in 
Figure 3. 

Discussion 

Recent studies identified at least six hallmarks of tumor-
associated metabolic reprogramming of cancer cells (21); 
among these, the deregulated uptake of glucose and amino 
acids induced by aberrantly activated oncogenes and loss 
of tumor suppressors is of considerable importance for 
tumor progression. Thus, our findings on the abundance 
of D-mannose and fructose in CRC patients deserve an in-
deep reflection to add a further brick to an existing amount 
of controversial results on monosaccharides in CRC. 
An early study demonstrated that elevated D-mannose 

oligosaccharides are more predominant on tumor cell 
surfaces compared with non-cancer cell surfaces (22); further 
studies found high levels of D-mannose in various localized 
and metastatic cancers (23,24). Moreover, the content in 
D-mannose of N-linked glycans positively correlates with 
cancer progression and staging in breast, ovarian, and 
colorectal cancers (25-27). In most of the metabolomic 
studies on human CRC, D-mannose and fructose were not 
included into the list of significant differential metabolites 
between CRC and non-CRC biological matrices (serum, 
plasma, urine, stool) and tissues (28-41). A very significant 
abundance of D-mannose was previously observed in the 
serum of 30 patients with colorectal adenoma polyps and 30 
with CRC (32). Conversely, in a study comparing 15 CRC  
tissues and 15 matched adjacent non-tumor tissues, 
D-mannose was found decreased in CRC samples (33). 
Moreover, a low level of sorbitol in 17 CRC patient tissues 
and stools was considered representative of significant 
perturbations of fructose, mannose and galactose metabolic 
pathways; curiously, none of these monosaccharides was 
included in the list of the significantly different metabolites 
between CRC and controls (34). Beyond variables inducing 
discrepancies among studies, such as tumor heterogeneity, 
biological matrix, patient’s lifestyle, analytical method, and 
gut microbial colonization through the colon, emerging 
knowledge should be considered to interpret our results. 
As observed long time ago, cancer cells generate their 
energy via aerobic glycolysis (35), even though they 
generate much more lactate and much less adenosine 
triphosphate (ATP) than those produced in healthy cells 
by a complete tricarboxylic acid (TCA) cycle coupled to 
oxidative phosphorylation. Very recently, an experimental 
study demonstrated that D-mannose interferes with 
glucose metabolism (glycolysis and other glucose-based 
pathways) by accumulating intracellularly as mannose-6-
phosphate and thus impairing the growth of cancer cells (36). 
Notably, the study showed that phosphomannose isomerase 
(PMI), the enzyme converting mannose-6-phosphate to 
fructose-6-phosphate, was deficient in colon cancer tissue 
microarray as opposed to other cancer tissues (36). Cell 
lines with high levels of PMI are resistant to the effect of 
D-mannose because of the broad availability of fructose-
6-phosphate, which can enter the glycolysis pathway. On 
the basis of these experimental findings, we can argue that 
in our patients population the abundance of D-mannose 
might not be dissociated from the high rate of survivors 
observed in this study (80%); notably, each survivor showed 
improved health-related quality of life after 39.5 months 

Figure 1 2D scores plot showing PLS-DA discrimination between 
plasma samples of CRC patients (T, green) and controls (C, red). 
The shaded areas indicate the 95% confidence regions. PLS-DA, 
partial least square-discriminant analysis; CRC, colorectal cancer.
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(median value) from the date of surgical intervention. 
The abundance of fructose in CRC patient group may be 
consistent either with a low fructose consumption rate 
within cancer cells or with a high fructose intake with diet. 
The former is coherent with low consumption of fructose by 
aerobic glycolysis within cancer cells; conversely, the latter 
implies a high bioavailability of fructose and thus providing 
fuel for major pathways of central carbon metabolism 
during tumor cell proliferation. Notably, among survivors, 
metastases were observed neither during surgery nor during 
follow-up, suggesting a reduced metabolic activity of cancer 
cells.

Amino acids play crucial physiological roles either 
as essential metabolites or metabolic modulators. Early 
and recent studies have found various amino acids, 
such as beta-alanine, glutamate, aspartate, ornithine, 
S-adenosylmethionine (SAM) up-regulated in CRC tissue 
compared to normal mucosa (29,37-40); these findings 
were interpreted as reflecting cancer cell needs for a higher 
turnover of structural proteins. Conversely, most of the 

metabolomic studies on CRC have found a significant 
decrease of various amino acids, such as intermediates in the 
urea cycle and amino acids related to glutamine and proline 
metabolism, compared with healthy controls (15,41-43). 
The decrease of various amino acids in CRC plasma samples 
may confirm the higher absorption of amino acids by 
tumor cells to sustain their rapid proliferation, as suggested 
elsewhere (42). In our study, methionine, valine, leucine, and 
proline were found significantly decreased in CRC plasma 
samples compared with healthy controls. Methionine, 
an essential amino acid in protein synthesis, is inversely 
associated with CRC risk, both by reducing inflammation-
induced colon cancer and by inhibiting key pathways 
in colon carcinogenesis (44). Extraordinary evidence of 
this assumption emerges from our results, showing a 
statistically significant difference in methionine abundance 
between patients survived more than 2.5 years from 
surgery, and patients died. Notably, the lower abundance 
of methionine in died patents (mean value 19,502) was 
found before surgery, suggesting a potential predictive 

Figure 2 Summary plot showing the most important metabolites ranked based on the variable importance in projection (VIP) score. The 
mini heatmap on the right indicates metabolites changes within group C (controls) and group T (CRC patients). CRC, colorectal cancer.
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value of patient’s outcome for this metabolite. On the other 
hand, methionine is the precursor of SAM, a substrate for 
methyltransferases, which methylate metabolites, nucleic 
acids, lipids, and proteins. After the release of the activated 
methyl group in methylation reaction, SAM is transformed 

into S-adenosyl-L-homocysteine (SAH) that is finally 
hydrolyzed to homocysteine (45). The decrease of SAM 
induces an aberrant DNA methylation, leading in turn to an 
early CRC development (46). In our CRC patient samples, 
we observed high levels of α-hydroxybutyrate (α-HB), an 

Figure 3 Graphic synopsis of Metabolite Sets Enrichment Analysis (MSEA). Results are expressed by a horizontal bar graph showing the 
most significant metabolites sets identified during analysis. Bars color is based on P values (lower P values correspond to a darker red) while 
bars length is based on the fold enrichment.
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organic acid derived from α-ketobutyrate (α-KB), which in 
turn is the final product of the threonine and methionine 
catabolic pathways. This finding is consistent with results 
previously published elsewhere (47) and may considerably 
contribute to the reduction in methionine concentration. 
However, the mechanism by which α-HB is up-regulated 
by colorectal tumor cells has not been yet elucidated. Our 
results confirm previous results on the decrease of valine 
and leucine in CRC patient samples (41,47). A plausible 
explanation may be the pivotal role of valine, and that 
more relevant of leucine, as “nutrients signals” regulating 
the mammalian target of rapamycin (mTOR) pathway, a 
critical regulator of cellular function forming two distinct 
protein complexes, mTORC1, and mTORC2 (48). In 
particular, leucine is an essential amino acid required for the 
activation of mTORC1. In CRC, mTOR plays a strategic 
role for the association between energy balance and 
cancer development; the observed depletion in valine and 
leucine plasma levels, associated with their upregulation in 
carcinoma tissue (37), may confirm the increased adsorption 
of these amino acids by tumor cells, supporting their rapid 
proliferation (42). Finally, proline decrease may originate 
either from the overexpression of the proline-rich 15 (Prr15) 
gene encoding proline-rich proteins in sporadic CRC or 
from the up-regulation of the proline dehydrogenase/
oxidase (PRODH/POX) enzyme. Indeed, the latter 
catalyzes the transformation of proline into D1-pyrroline-
5-carboxylate (P5C), which considerably contributes to the 
ATP synthesis by tumor cells for their survival in hypoxia 
and glucose deprivation conditions. Our study is affected 
by several limitations. Firstly, this is a cross-sectional study 
preventing to investigate to which extent metabolites 
are causally related to cancer changes and the patient’s 
outcome. The number of patients and controls is small 
and, more important, a single blood sample cannot permit 
to assess variations in metabolites plasma concentration 
over time. Furthermore, our study did not include a 
metagenomic analysis of gut microbiota in order to 
establish any contribute of microbiota-derived metabolites 
to plasma metabolome. However, the study contains several 
strengths: our results are in line with previous published 
metabolomic studies on CRC, confirming the key role of 
such metabolites (e.g., mannose, amino acids). Notably, 
very recent experimental researches allow us to interpret 
our results better, elucidating mechanisms, and pathways 
involved in the relative abundance or shortage of such 
metabolites in CRC. The most relevant strength of this 
study consists of our original data on methionine not only 

as a potential prognostic biomarker but even as a target for 
therapeutic interventions.

Conclusions

In conclusion, our results confirm the role of metabolomics 
for the identification of biomarkers for early diagnosis, 
assessing the risk and prognosis of CRC as well as for 
targeting novel drugs. D-Mannose and methionine should 
be investigated in further larger sample size and long-
time longitudinal studies in order to validate their role as 
candidate biomarkers for CRC prognosis in conjunction 
with the investigation of environmental and bacterial-
derived substances. Combining all this information, it will 
be possible to define the metabolome configuration and its 
changes over time in patients with CRC.
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