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Abstract. Optical coherence tomography angiography (OCTA) provides in-vivo images of microvascular per-
fusion in high resolution. For its application to basic and clinical research, an automatic and robust quantification
of the capillary architecture is mandatory. Only this makes it possible to reliably analyze large amounts of image
data, to establish biomarkers, and to monitor disease developments. However, due to its optical properties,
OCTA images of skin often suffer from a poor signal-to-noise ratio and contain imaging artifacts. Previous
work on automatic vessel segmentation in OCTA mostly focuses on retinal and cerebral vasculature. Its appli-
cability to skin and, furthermore, its robustness against imaging artifacts had not been systematically evaluated.
We propose a segmentation method that improves the quality of vascular quantification in OCTA images even if
corrupted by imaging artifacts. Both the combination of image processing methods and the choice of their param-
eters are systematically optimized to match the manual labeling of an expert for OCTA images of skin. The
efficacy of this optimization-based vessel segmentation is further demonstrated on sample images as well
as by a reduced error of derived quantitative vascular network characteristics. © The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.4.046005]

Keywords: optical coherence tomography; functional imaging; image processing; image analysis; dermatology.

Paper 180655R received Dec. 9, 2018; accepted for publication Apr. 1, 2019; published online Apr. 30, 2019.

1 Introduction
Capillaries are embedded within organs of the human body.
As blood vessels of the smallest caliber, they are an important
supply channel for blood, nutrients, gas exchange, and waste
disposal of the cells.1 Changes in architecture of the capillary
network can be symptomatic for organ aging, inflammatory
processes, disease development, and wound healing.2

Using optical coherence tomography angiography (OCTA),
three-dimensional (3-D) maps of capillary perfusion are
obtained in vivo with high resolution. Different methods have
been developed for OCTA image reconstruction.3–9 They are
based on the movement of red blood cells within the blood
stream. These particles cause a variation in the OCT signal
intensity and a shift in frequency of the backscattered light
due to the Doppler effect.6 By contrasting the perfusion with
static tissue, a 3-D angiographic image is generated. Often, such
an angiographic volume is projected to a two-dimensional (2-D)
image to condense the angiographic image and to avoid the
appearance of image artifacts, such as projection shadows.10

Such an en face maximum-intensity projection (MIP) displays
the capillary network of a tissue slab at a glance. Color

coding can be used to additionally visualize the depth of the
vessels.

For the comparison of the capillary structures along a
cohort, such as in clinical studies or the preclinical research
environment, it is necessary to extract the quantitative charac-
teristics of the vascular network. Quantitative metrics are, for
example, the number of vessels, their diameter, and shape,
as well as the density and complexity of the vascular
network.5,11 To derive these metrics from an angiographic
image, first, a segmentation is required, which classifies each
pixel to represent either a vessel or the background. To obtain
such a segmentation map, manual labeling by an expert is
the gold standard.5,12–14 Since this is a time-consuming pro-
cedure and the outcome might vary from expert to expert, efforts
have been focused on the automatic segmentation of the vascular
structures.

In the field of computer vision, segmentation is an important
task. Often a pipeline composing different image-processing
steps is employed. Such a pipeline usually consists of a prepro-
cessing step, which aims to remove noise and to enhance the
contrast between foreground and background, a binarization
step that separates the object and background, and a post-
processing step that refines the segmented object boundaries.5,11,15

In computer vision, it is common to evaluate the results of
automatic segmentations with a manual ground-truth segmenta-
tion of experienced rater.16–18 The congruence of the ground
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truth and automatic segmentation can be described by the
amount of correctly and falsely classified pixels.5,16–18 Further,
to derive quantitative characteristics of the vascular architecture,
such as the number of vessels, their curvature, or the complexity
of the network, it is common to reduce the binary vascular map
to its skeleton,5 which substitutes each vessel with its 1-pixel
thick centerline.

Most of the published algorithms for vessel segmentation
and analysis combine these steps of image processing in various
ways. For an interested user it is hard to compare the quality of
the proposed algorithms and to estimate the segmentation error
that a specific method carries. It is also impossible to directly
compare findings of different studies based on OCTAwith auto-
matic evaluation and to critically assess published results.
Furthermore, in dermatology, OCTA imaging is progressively
applied by clinicians in office or bedside situations.19,20 In
these real-world applications, imaging artifacts may be intro-
duced due to movement of the bulk tissue, defocus21 and shad-
ing by air bubbles or lesions. Unfortunately, methods proposed
in literature to segment and analyze vascular networks have not
been evaluated for robustness against such artifacts that are
common for OCTA imaging of the skin.5,11,15,22,23 However,
with OCT as a valuable tool for clinicians and scientists, meth-
ods for an automated and robust vessel detection are demanded
for a reliable quantification.

In our case, OCTA images were obtained of in-vivo mouse
skin in order to observe the wound healing processes of capil-
laries after fractional photothermolysis.24 With this
treatment, the vascular architecture changes dramatically and
requires a segmentation method that does handle very different
appearances and quality of the OCTA images.

This work demonstrates the creation of an optimization-
based segmentation pipeline for angiographic images of
skin. It is capable of coping with imaging artifacts and espe-
cially is suitable for dermatological applications. A variety
of state-of-the-art image-processing methods for denoising,
contrast enhancement, binarization, and refinement were
systematically tested and combined to a pipeline to optimize
the quality of the segmentation and the validity of quantitative
metrics. Thanks to our optimization-based vessel segmenta-
tion (OBVS), we are now able to analyze even low-quality
data of a longitudinal mouse study, which would have
been discarded otherwise. Although this optimization was
done for OCTA images of cutaneous microvasculature, it
might be applicable to retinal and cerebral OCTA images.

2 Material and Methods
A subset of 10 different OCTAvolumes acquired during a study
for cutaneous photoaging in mice was chosen to find the
optimal pipeline for vessel segmentation (see Fig. S2 in the
Supplementary Material). This subset of OCTA volumes
contains examples of different imaging situations that occurred
during this study, such as artifact-free images under optimal
condition; slightly defocused images due to epidermal
thickening; and images corrupted by motion artifacts,
lesions, or airbubbles between skin and objective. The sample
volumes were chosen to be representative of skin studies in
rodents.

To find the optimal segmentation approach (see Sec. 3.2) the
set was split into a training group and a test group with five
images each.

2.1 Image Acquisition

OCTA imaging was performed using the commercially available
spectral-domain OCT scanner TELESTO II (Thorlabs Inc.,
Newton, New Jersey). The device operates at a central wave-
length of 1300 nm and an axial resolution of 4.2 μm in tissue.
Using a lens with a lateral resolution of 13 μm (LSM03,
Thorlabs Inc.), we acquired two times oversampled images
with a voxel size of 6.5 × 6.5 × 4.2 μm3. Field of view (FOV)
was 6 × 6 × 4.2 mm3 (length × width × depth); A-Scan rate
was 76 kHz. For further analysis with reasonable cost for
manual labeling, the angiographic volumes were cropped to
400 × 400 × 50 px, showing the capillary layer in between
∼80 and 300 μm depth in skin. After angiographic image
processing (see Sec. 2.2), the volumes were converted to 2-D
images as MIPs.

OCTA images were acquired in the dorsal region of nude
mice (Foxn1nu). The tissue was immobilized by using a
z-spacer (IMM3, Thorlabs Inc.) in front of the scanner with
glycerol as immersion fluid. During an imaging session, the
mice were anesthetized with isoflurane (3% induction, 1% to
1.5% maintenance) in 80% air and 20% oxygen. All procedures
were approved by the Institutional Animal Care and Use
Committee (IACUC) of the Massachusetts General Hospital
(Protocol No.: 2015N000170).

2.2 Angiographic Processing of the OCT Data

Angiographic images were generated using the speckle variance
method (svOCT), as proposed by Mariampillai et al.,3,4 using
the minimal amount of 2× repeated B-Scans at one location.

We evaluated numerous other angiographic algorithms
and settings, such as optical microangiography (OMAG),5,6 cor-
relation mapping (cmOCT),7 complex differential variance
(cdvOCT),8 and complex correlation (ccOCT).9 Example
images of these algorithms are given in Fig. S1 in the
Supplementary Material. The contrast and signal-to-noise ratio
(SNR) were compared among these methods using formulas
such as proposed by Zhang et al.6 and Lozzi et al.25

However, as the results of these two assessments contradicted
each other, we were unable to clearly identify the best perform-
ing method by contrast or SNR. Visually, in our case, the svOCT
method generated more detailed maps of capillary perfusion
than cmOCT, cdvOCT, and ccOCT, while it appeared less
noisy and richer in contrast to OMAG.

All computations, including the optimization of the segmen-
tation described in Sec. 3.2, were performed using MATLAB
(R2016b, MathWorks, Natick, Massachusetts) running on a
Dell Precision T1700 with an Intel Xeon(R) CPU with four
cores (eight threats) at 3.6 GHz.

2.3 Ground-Truth Segmentation

For each of the 10 images, four manual segmentations are
created by the same rater using the itkSnap tool.26 Even though
the manual segmentation is the gold standard method for
precise labeling, it is also prone to inaccuracy and variations
due to some ambiguous pixel and the subjective decision of
the rater. Using the Simultaneous Truth and Performance Level
Estimation (STAPLE) algorithm, as proposed by Warfield
et al.,13 the most likely true, common segmentation is computed
by iteratively assessing the rater’s performance and weighting
each rating session in a combined segmentation. STAPLE
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terminates with a probability map of every foreground pixel to
have been identified correctly.

To obtain a binary mask, we further considered every pixel
with probability of 75% and more to be the correct foreground
and every other pixel as background (Fig. 1). These segmenta-
tions were used as the ground truth to optimize and evaluate
the quality of the automatic segmentation algorithms.

2.4 Segmentation Quality Metrics

During the optimization process (see Sec. 3.2), the quality of a
segmentation result was evaluated by its congruence with the
ground truth.5,17,27 Each pixel of the binary map was classified
as either tp true-positive, tn true-negative, fp false-positive, or
fn false-negative. Based on the ratio of the amount of pixel
in each set, the following quality metrics are derived for a seg-
mentation:

EQ-TARGET;temp:intralink-;e001;63;346sensitivity∶ Se ¼ tp
tp þ fn

; (1)

EQ-TARGET;temp:intralink-;e002;63;291specificity∶ Sp ¼ tn
tn þ fp

: (2)

Youden’s index27:

EQ-TARGET;temp:intralink-;e003;63;257J ¼ tptn − fpfn
ðtp þ fnÞðfp þ tnÞ

; (3)

EQ-TARGET;temp:intralink-;e004;63;201 ¼ tp
tp þ fn

þ tn
fp þ tn

− 1; (4)

EQ-TARGET;temp:intralink-;e005;63;167 ¼ Seþ Sp − 1: (5)

2.5 Vascular Quantitative Metrics

Quantitative descriptive metrics of vascular networks were
obtained from the skeleton of segmentation map to characterize
its architecture and condense the information in single values.
This is especially helpful when comparing vascular network
characteristics among many angiographic images, such as in

large datasets of clinical studies. We utilized vascular quantita-
tive metrics as proposed in previous work of OCTA.5,6,15,17

The vessel length density (VLD) is given by the amount of
skeleton pixel divided by the image size and indicates the num-
ber of vessels present in the image.5,6

The fractal dimension (FD) quantifies the complexity of a
vascular network28 and is obtainable from both the binary seg-
mentation and the skeletonized map. It has been observed that it
gives more characteristic results for skeletons.5

To assess the tortuosity of the skeleton, Bullitt et al.29 pro-
posed to integrate the angular changes along the vessel segments
and normalize by their length. This sum of angles metric
(SOAM) is effective to recognize abnormalities characterized
by high-frequency, “low-amplitude” coils.

To assess these metrics, we implemented the code in
MATLAB (R2016b, MathWorks, Natick, Massachusetts). Their
provided values were further used to estimate the quality of
OBVS and other established methods, as listed in Table 1. The
methods were benchmarked against the ground-truth skeletons,
which were here obtained by morphological skeletonization18 of
the STAPLE result.

3 Results

3.1 Optimizing Parameters of Four Previously Used
Algorithms for Segmentation of Capillaries

Thus far, previous work in OCTA is mainly applied to images of
the retinal11,15,33 and cerebral vasculature. Both show vessel in
low scattering environments. The imaging and segmentation of
capillaries in skin, as shown in mouse ear by Reif et al.,5 and in
human skin by Liew et al.22 and Carter et al.,23 are more chal-
lenging, as skin is a stronger scattering imaging environment
and is more likely to cause image artifacts.

As a benchmark for OBVS, we have implemented four pre-
viously used algorithms for vessel analysis from OCTA images
and optimized the respective free parameters for best overall
congruence of the five training images with the respective
ground-truth segmentation. Table 1 outlines these algorithms
together with the parameters, which are chosen by maximizing
the Youden’s index J for the training datasets in a similar fash-
ion as described for OBVS in Sec. 3.2.

Fig. 1 Illustration of a sample image of size: (a) 400 × 400 px, (b) four manual segmentations are com-
bined using STAPLE and displayed as probability map, and (c) STAPLE result binarized with threshold
of 0.75.
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3.2 Optimization of Processing Pipeline for OVBS

The segmentation pipeline consisted of the subsequent modules
denoising, contrast enhancement, binarization, and refinement.
Within each of these stages, several methods were evaluated of
their impact on the quality of the result. As indicated in Fig. 2,
for each method the input parameter combination was optimized
with regard to the Youden’s index J, as it combined the speci-
ficity with the sensitivity metric. Parameters of rational num-
bers, such as noise level or filter strength, were optimized
using the Nelder–Mead simplex method,34 whereas integer
parameter, such as kernel size, were consecutively set and ana-
lyzed. Each optimization step was performed on the whole set of
training images.

3.2.1 Denoising

First, to reduce noise and imaging artifacts in the angiographic
images, methods of denoising were tested. We evaluated
Gaussian filter, median filter, bilateral filter,35 anisotropic diffu-
sion filter,36 nonlocal means filter,37 BM3D filter,38 and the
Hessian-based vesselness filter.31 Each of these methods was
controlled by different input parameter, e.g., kernel size, filter
strength, or search area. As indicated in Fig. 2, the optimal com-
bination of input parameter was found using the downhill sim-
plex optimization method34 and iteration for discrete parameter
to maximize the Youden’s index J. As we were only able to
compare the congruence of two binary maps, the denoised
images were provisionally binarized using the optimal global
threshold, which was determined for each image individually
by another downhill simplex optimization nested into the
parameter optimization. Each of these best possible binary
maps was then compared to the ground truth to assess the
J index.

We observed each of these denoising methods strongly
enhancing the quality of the segmentation result compared to

a segmentation without denoising. Especially the BM3D image
filter, as proposed by Dabov et al.,38 scored highest, lifting the
average J value from 0.62 without denoising to 0.74 after
BM3D filtering. Hence, the BM3D with the optimal noise
level parameter σ ¼ 14.6 was chosen as denoising method for
the following investigations.

3.2.2 Contrast enhancement

In the second stage of the segmentation pipeline, after the
denoising step with the BM3D filter, methods for contrast
enhancement were evaluated. Among methods such as histo-
gram equalization, Retinex,39 and local-phase-based filtering,40

the contrast-limited adaptive histogram equalization (CLAHE)
led to slightly superior segmentation results. The CLAHE
method performed optimally with a number of tiles ntiles ¼ 6
and the contrast enhancement factor clim ¼ 0.6 with a uniform
distribution and was chosen for the following steps.

3.2.3 Binarization

Based on the images that were denoised by the BM3D filter and
enhanced by CLAHE, different methods for binarization were
evaluated and optimized. The most intuitive approach for binar-
ization is to set a global threshold. This value can either be
chosen semiautomatically by the user15,22,23 or automatically
derived from the image by using one of the various known
methods.41 As empirical threshold, such as utilized by Liew
and Carter,22,23 we chose the average of the optimal thresholds
for each sample image. These were found with knowledge of the
ground-truth segmentation as leading to the maximal Youden’s
index J. Comparing the results of this fixed threshold with the
automatic techniques such as the Otsu’s method42 and Isodata,43

which adjusted the threshold for each image individually,
the Otsu’s method led to superior segmentation results.
Furthermore, the local adaptive threshold approach, as e.g.,

Table 1 Different vessel segmentation algorithm for evaluation of OCTA images, whose performances are compared to OBVS. Methods have
been derived from the publications shown. We have optimized the parameters for maximal Youden’s index J with respect to the corresponding
ground truth for the five training images.

Methods and parameters for segmentation Site Authors

1. Fixed threshold binarization [optimal: th = 1.066 * mean(OCTA-signal)]
skeletonization: Voronoi30

Skin Liew et al.22

Carter et al.23

2. 2.1 k-means threshold binarization Retina Khansari et al.11

2.2 Thickening

2.3 Particle filtering (delete objects < 100 px)

2.4 Dilation (disk, radius = 1 px)

2.5 Filling, skeletonization: distance transform (r v ¼ 1 px)

3. 3.1 Global threshold for noise removal Retina Chu et al.15

3.2 Vesselness31 (σ1;2 ¼ 2, 10, Δσ ¼ 2, β1;2 ¼ 0.5, 10) Reif et al.5

3.3 Local adaptive threshold (radius = 9), skeletonization: morphological

4. 4.1 Niblack binarization32 (window = 32 px, κ ¼ 0.21) Skin Lozzi et al.25

4.2 Opening (cube, radius = 8), skeletonization: morphological
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utilized by Reif and Chu,5,15 and the method by Niblack,32

as proposed for the evaluation of OCTA images by Lozzi
et al.,25 led to better results than the global approaches, when
they have been optimized for window size and noise level.
Even though for the test dataset the improvement over the global
methods was not significant (p ≈ 0.47), the local adaptive
thresholding method with an optimal kernel size of r ¼ 40
and a Gaussian statistic with σ ¼ 0.3 was chosen as the optimal

binarization method, as it was expected to be more robust
against artifacts and signal variation.

3.2.4 Refinement

As segmentation in OCTA images was prone to image artifacts,
a postprocessing step was conducted to eliminate the small
objects of misclassification and to smooth object boundaries

Fig. 2 Scheme for finding the optimal combination of methods and their parameters for capillary seg-
mentation pipeline. In each stage the best-performing method is chosen and taken as base for the
following stage. Parameter of each method is optimized using a downhill simplex34 or iteration, where
discrete parameters are required.

Journal of Biomedical Optics 046005-5 April 2019 • Vol. 24(4)

Casper et al.: Optimization-based vessel segmentation pipeline



in the binary maps. Here, as methods of refinement, kernel-
based morphological operations, such as opening and closing,
have been optimized for kernel size and evaluated.

However, in our investigations the improvement of the
segmentation result was even more prominent by the min-flow
max-cut (graph-cut) approach, such as proposed by Boykov and
Kolmogorov.44,45 This approach solved the active contour model
optimization problem, which regularized the length of the object
boundary in the binary map in balance with a low intra-object
intensity variance of the segmented image. This eventually led
to smoother object boundaries and the compensation of minor
segmentation errors. Here, the optimization of Youden’s index J
resulted in a neighborhood size of n ¼ 4 weighted by the Potts
model with a weighting of foreground and background of
λf ¼ 1 and λb ¼ 4, respectively.17

3.2.5 Skeletonization

For the analysis of the organization of the segmented vascular
network, the binary segmentation map was simplified to its skel-
eton, which was represented by a line along the center of the
vessel. Here, three different methods to obtain such a skeleton
were evaluated. The approach proposed by Haralick and
Shapiro18 provided an unregularized skeleton using morphologi-
cal operations. The resulting skeleton can be further refined by
using the distance transform giving the vessel radius at each
position on the skeleton.46 By applying a threshold for the vessel
diameter ∅v, very small structures were discarded, e.g., here
with a diameter of ∅v < 13 μm which is below the lateral
imaging resolution of the OCT setup. Moreover, the shape of

a skeleton can be even more regularized using the Voronoi
diagram.30 In our investigations, however, the morphological
skeletonization led to optimal results, as the segmentations
were smoothened already due to the refinement step and further
smoothening of the skeleton was not necessary.

3.3 Comparison of Performance

With the aim to develop a vessel segmentation method robust
against artifacts in OCTA imaging of skin, we have bench-
marked the proposed OBVS method and the established algo-
rithms listed in Table 1 against the ground truth. In Figs. 3–5,
the performance of each of the algorithms is demonstrated for
different images of the test group. Furthermore, the segmenta-
tion quality metrics of the algorithms applied to the whole group
of test images are given in Fig. 6, together with the quantitative
metrics such as VLD and FD that are derived from the seg-
mented vascular network and the ground truth.

Figure 3 shows an OCTA image of the test group contain-
ing only minor artifacts. A region of 400 × 400 px was
extracted for the evaluation of the segmentation algorithms
against the manual ground truth, which was obtained using
the STAPLE algorithm (Sec. 2.3). The performance was
shown as exemplary at a tile of 100 × 100 px. Surprisingly,
the different methods provided very different results, even
though the tile was not corrupted by imaging artifacts and
had a contrast common for OCTA images of skin. The binary
maps of both the methods, proposed by Liew et al.22 and
Lozzi et al.,25 based on global and local thresholding, respec-
tively, were affected by noise in the foreground and

Fig. 3 Performanceof the vessel analysismethodsonOCTAofmouseskin. Theoriginal image is cropped
to 400 × 400 px. For illustration, exemplary results are shown for tiles of 100 × 100 px (resolution:
6.5 μm). Results using the methods of Liew et al.,22 Khansari et al.,11 Chu et al.,15 Lozzi et al.,25 and
OBVS are shown as segmented vessels as well as skeletons in comparison to the ground truth.
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background. The method proposed by Khansari et al.,11 which
mainly consisted of morphological operations, and the
method proposed by Chu et al.,15 applying Hessian-based fil-
tering, appeared to be less sensitive against such noise corrup-
tion. However, Khansari’s method11 was developed to detect
large vessels and gives just a few vessels with an enlarged
caliper. OBVS performed superior compensating the noise
successfully, while also maintaining the integrity of vessel
diameter, boundary, and connectivity.

The skeleton generated by the method of Liew et al.22 was
obtained using Voronoi regularization30 and compensated most
of the noise successfully, whereas the skeleton method of Chu
et al.,15 which used morphological skeletonization, gave a few
vessel fragments in the background. The result of Lozzi et al.25

appeared rather toothy and angular. Only OBVS appeared to
match the ground truth well, finding the structure and smooth-
ness of the vessel in the ground truth.

This observation could be made as well in Figs. 4 and 5,
which contain artifacts. In Fig. 4, OBVS is evaluated on a blurry
image that has a poor contrast and is corrupted by sample
motion. Figure 5 shows the cutaneous capillary network one
day after the fractional photothermolysis treatment with a
CO2 laser.

24 Here, the vascular structures are distributed sparsely
with a low contrast in the upper tile and dilated surrounding
a lesion in the bottom tile, due to inflammation responses of
the skin during wound healing.

The quality of each method in terms of sensitivity, specificity,
and Youden’s index with the ground-truth segmentation is

Fig. 4 Performance of vessel segmentation methods on blur in upper and blur and low contrast in lower
tile. Slight motion artifacts are visible as vertical lines.
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averaged over all five test images and is given in Fig. 6(a).
The evaluation shown in the plot emphasizes the superiority
of OBVS, which scored the highest Youden’s index with
J ¼ 0.75� 0.01. Note, the average congruence of single
manual segmentations of the rater compared to the STAPLE
result, as described in Sec. 2.3, scored with J ¼ 0.77� 0.01.

As shown in Figs. 4 and 5, Chu’s method15 had a high sen-
sitivity but poor specificity, generating vessel more in number
and caliper than the manual expert could find.

Furthermore, for each method individually, the error of quan-
titative metrics derived from the vascular network was assessed
and given averaged over the five test images in Figs. 6(b)–6(d).

Although this analysis indicates the integrity of each segmenta-
tion method, the desired method would produce results with
the least difference to the ground truth. As shown in Figs. 6(b)
and 6(c), results of OBVS agreed almost completely in terms of
VLD, FD, and SOAM with those derived from the ground truth,
with 0.1%, 0.2%, and 0.5% errors, respectively.

4 Discussion and Conclusion
The comparison of OBVS with four published algorithms for
vessel segmentation in OCTA images demonstrated improved
quality and reliability, which was obtained using the pipeline
proposed in this work. Although the composition of this pipeline

Fig. 5 Performance of vessel segmentation methods on OCTA image of mouse skin capillaries one day
after fractional photothermolysis.24 Imaging is compromised by voids and local inflammation due to
wound healing after the laser treatment. Tiles contain sparse vessel structures with low and high contrast,
respectively.
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was specifically optimized to cope with imaging artifacts, also
for uncorrupted images, it showed results superior to the four
cited methods. The validity of quantitative metrics assessed
for vascular networks was also considerably improved.

Training and testing of OBVS are limited to OCTA images of
mouse skin, although we believe that the composition of meth-
ods in our OBVS pipeline is applicable for OCTA images of
other tissue types such as human skin. The parameters of the
methods might need to be adapted.

While creating our pipeline, we found the denoising step
to have the most critical impact on the segmentation
quality. Despite the fact that the Hessian-based vesselness filter
was specifically designed to enhance vascular structures in
angiograms,31 in our investigations it performed with surpris-
ingly poor specificity and thus scored a poor Youden’s index
J. It adopted imaging artifacts creating phantom vessels in
noisy regions (similar to the results of the method of Chu
et al. shown in Fig. 4 and upper tile of Fig. 5) and produced
overly dilated vessel. The BM3D filter, which had not been
applied to OCTA images in prior work, showed superior perfor-
mance for both sensitivity and specificity. It compensated the
noise well, while producing sharp and smooth vessel boundaries
and enhancing the contrast between vessel and background.

The procedure to find the optimal segmentation pipeline was
inspired by the machine learning algorithms. In contrast to deep-
learning-based segmentation, here, we applied not a variety
generic filters but the ideal combination of established methods
with optimal parameters. This tailoring of the pipeline enabled
us to train with a set of training data that was much smaller than

those for deep-learning approaches, while containing also
images corrupted by artifacts. For example, Prenta et al.47

used 80 normal OCTA images for a deep-learning-based seg-
mentation and scored an accuracy of 77% to 83%, whereas
OBVS scored here with an accuracy of 87.6%�
0.6% for corrupted images. Note, in comparison to deep-learn-
ing, the optimization to obtain OBVS was done subsequently
and not globally and OBVS was not evaluated on the data of
Prenta et al.

Our optimization was based on a metric for segmentation
quality and hence strongly depended on the integrity of the
ground-truth segmentation. Using the STAPLE method, we
were able to combine the votes of four manual segmentations
and find a consensus. Yet, we observed that even the single
rater was unable to identify every vessel reliably [indicated
as yellow and blue regions in Fig. 1(b)]. This might be due
to the rater guessing in areas of artifacts and low contrast of
the sample OCTA images. Note, manual labeling was performed
on the original images prior to any enhancement. Some com-
mercial OCTA devices might only provide images that already
underwent image processing and show modified vessel net-
works. Nonetheless, with J ¼ 0.75� 0.01 [Fig. 6(a)] the pro-
posed automatic method approximatively reached the average
Youden’s index J of the manual segmentations of the rater,
whose four segmentations compared to the STAPLE result
scored in average with J ¼ 0.77� 0.01.

This sample dataset consisted of images with various types of
artifacts that might not occur in different imaging situations or
different anatomical sites. For example, air bubbles were absent
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Fig. 6 Performance of the different approaches to OCTA vessel segmentation averaged over the five
test images. (a) Congruence with the ground truth (see Sec. 2.4). (b)–(d) Relative difference of quanti-
tative metrics of the vessel architecture to the ground truth (see Sec. 2.5).
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when imaging the retina in an intact eye.21 The challenge of seg-
menting the vessels in these corrupted images might have led to
J scores that were lower than those commonly demonstrated
in angiographic imaging modalities other than OCTA in
both manual and automatic segmentations. For example in
fundus photography the work of Zhao et al. scored with
J ¼ 0.68 − 0.7617 and Fraz et al. reviewed methods with scores
of J ¼ 0.63 − 0.8048 [we converted these J values from given
sensitivity and specificity using Eq. (5) in Sec. 2.4]. Those
analyses of fundus photography were benchmarked on open-
source image databases, such as STARE and DRIVE, with
high-quality manual segmentations obtained by many experts
on fundus photography images with minimal artifacts. As such
a database is not yet available for OCTA images, especially of
skin, our scores of qualitative metrics are not directly compa-
rable to work in other fields.

Yet the visual impression and the analysis of the quantitative
metrics show the advantages of our method by providing results
closer to the ground truth than other published methods, even
when optimized in the same fashion. Moreover, this study dem-
onstrates how much the quantitative vascular network character-
istics that are derived from an OCTA image vary when different
methods for vessel segmentation are applied to the same images
[Figs. 6(b)–6(d)]. Consequently, in any work on automatic
analysis of OCTA images, the error of the utilized segmentation
method should be assessed by comparison to ground truth data
and presented to the reader.

As the development and evaluation of image-processing
methods are dependent on the quality of the ground truth,
open-source databases have been created in many fields of
medical imaging. Unfortunately, in OCTA, such a resource is
not available, even though a centralized, open-source database
would enable to benchmark angiographic algorithms on raw
data (see Sec. 2.2) and image processing and quantification
on angiographies. This could lead to a common standard
methodology to obtain quantitative metrics of OCTA images.
Furthermore, open-access OCTA databases could eventually en-
able the comparison of medical findings among different pub-
lications, and researchers would not need to redo redundant
parts of studies but could derive cross-wise conclusions from
their and other’s findings. However, the image acquisition
and processing among commercial OCTA devices have not
been standardized yet, which leads to images of heterogeneous
quality.49 Hence, the assembly of such a database at this point
would be impracticable due to the variability and amount of
commercial devices and developments. Furthermore, its appli-
cability to every single device would be limited.
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