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Abstract

Influenza A virus in swine (IAV-S) is an important pathogen in pigs in the United States, in 

addition to posing a potential risk to humans through zoonotic events. Intervention strategies 

continue to be explored to better control virus circulation. Improved surveillance efforts has led to 

significantly increased sequence data available on circulating strains, vastly improving our 

understanding of the genetic and antigenic diversity of IAV-S. IAV-S in North America is 

characterized by repeated spillover events of human viruses into pigs followed by genetic and 

antigenic diversification. An important gap that needs to be addressed is our understanding of the 

role that various vaccine platforms have on efficacy against antigenically heterologous challenge. 

Currently licensed vaccines often update their components to adapt to a dynamic antigenic 

landscape and newly developed technologies are continue to be approved. Hence, it remains 

critical to test the performance of vaccines against challenge with antigenically distinct viruses. 

We tested the level of protection conferred by an alphavirus-vectored hemagglutinin (HA) subunit 

vaccine, delivered as a monovalent or bivalent formulation, against challenge with IAV-S. 

Monovalent alphavirus-vectored HA vaccines provided efficient protection against challenge with 

viruses with matched and mismatched HA, although in one mismatched HA challenge group there 

was a trend for reduced protection. A bivalent vaccine, in which two HA’s were simultaneously 

delivered, was effective in producing antibody response against both antigens and provided 
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protection against challenge. The alphavirus platform is a promising new technology available to 

swine producers to help reduce the burden of disease caused by IAV-S.
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1. Introduction

Influenza A virus (IAV) is an important pathogen that causes disease in humans, livestock 

and poultry, posing a risk to public health as well as being a burden to the agricultural 

economy. There are two biological features of IAV that make it challenging to develop 

efficacious vaccines: the first, a polymerase complex with a high rate of mutation facilitates 

the emergence of antigenically distinct hemagglutinin (HA) that can evade antibodies in a 

process called antigenic drift [1]. The second, co-infection of a single cell by two distinct 

viruses can result in progeny virions that carry novel gene constellations through gene 

reassortment in a process called antigenic shift [2]. The HA is a glycoprotein on the surface 

of the virion that mediates virus entry into susceptible cells [3]. HA is a main target for 

antibody responses in vaccine efforts to induce antibodies that can block receptor-binding 

interactions and therefore neutralize virus infection. Amino acid positions in the head of the 

HA (HA1) have been associated with monoclonal antibody escape [4, 5], and some positions 

have been associated with antigenic evolution of human, avian and swine IAV [6-10]. 

Despite these advances in understanding the molecular determinants of the antigenicity of 

IAV, viruses continue to persist and efforts to prevent sustained circulation are performed in 

hindsight of the emergence of antigenically distinct viruses. In the biological arms race to 

better control the burden of disease caused by IAV, it has become evident that improved 

intervention strategies are required [11].

Several strategies have been proposed to improve vaccines including but not limited to: 

targeting conserved epitopes in the HA stalk region, targeting non-HA proteins that are more 

conserved (matrix protein, nucleoprotein), sequential prime-boost regimens altering vaccine 

components or platform, and use of vaccine platforms that elicit an innate immune response 

in addition to an adaptive response [12, 13]. Among the vaccine platforms that elicit an 

innate immune response are subunit vaccines that are delivered with an alphavirus vector 

[14]. One alphavirus-vectored vaccine uses Venezuelan equine encephalitis (VEE) virus 

where the genome is genetically modified so that viral structural genes are replaced by the 

transgene of choice, rendering them defective in producing infectious virus unless grown in 

a cell line that provides the structural genes in trans [15, 16]. An important biological feature 

of the system is that the RNA is self-replicating and therefore transgenes are expressed to 

high levels [16, 17]. The vaccine platform, when generated in a helper cell line that provides 

the structural proteins, consists of a propagation-defective replicon particle (RP) that can 

undergo a single-cycle of replication that does not require an adjuvant to induce a robust 

antibody response.
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The alphavirus-vectored platform has been explored for use in humans as a vaccine to 

prevent influenza infection [18, 19], but there is yet to be a commercially available 

alphavirus-based vaccine for IAV in humans. In swine, an alphavirus-vectored RP influenza 

vaccine has been developed [20-23] and is licensed for use in the United States [24]. Use of 

the RP vaccine in swine has been shown to reduce viral replication and lung lesions against 

challenge with a virus encoding a homologous HA for both H1 and H3 subtype viruses, 

although the platform was not able to overcome maternally derived antibodies [20-22]. The 

RP platform is flexible and allows for introduction of any of the viral genes, and an RP 

expressing the nucleoprotein (NP) as a vaccine has been previously tested in pigs and 

significantly reduced levels of viral titers in the upper and lower respiratory tract when 

challenged with a virus encoding a genetically distinct NP [22]. While both the HA and NP 

have been used as antigens in the RP platform, a bivalent vaccine that employs co-

administration of two RP vaccines expressing distinct viral proteins has not been reported. In 

this study, we tested vaccine efficacy of monovalent and bivalent RP vaccines against 

matched and mismatched HA challenge strains.

2. Materials and methods

2.1. Viruses and vaccines

The two challenge viruses used in the study were wild-type A/swine/Iowa/A01480656/2014 

H3N2 (IA/14; GenBank accession KJ635928 for HA gene) and wild-type A/swine/New 

York/A01104005/2011 H3N2 (NY/11; GenBank accession JN940422 for HA gene). 

Challenge viruses were chosen from the previously described phylogenetic clade IV-A to 

represent distinct antigenic clusters termed red and green [6, 8]. All viruses were propagated 

in Madin-Darby Canine Kidney (MDCK) cells. Commercial RP vaccines (Harrisvaccines, 

IA, USA) [20-22, 25] were obtained based on the IA/14 and NY/11 sequences requested. 

RP-GFP expressed green fluorescent protein, and was used as a control; RP-red expressed 

an HA protein with high homology to the NY/11 (differed in the HA1 at amino acid position 

273; H3 numbering); and RP-green expressed the IA/14 HA protein.

2.2. Virus antigenic characterization

Hemagglutination inhibition (HI) assays were performed with a subset of a previously 

described reference antisera panel [8]. Prior to HI testing, sera were treated with receptor-

destroying enzyme (Sigma-Aldrich, MO, USA), heat inactivated at 56°C for 30 min, and 

adsorbed with 50% turkey red blood cells (RBC) to remove nonspecific inhibitors of 

hemagglutination. Serial 2-fold dilutions starting at 1:10 were tested for the ability to inhibit 

the agglutination of 0.5% turkey RBC with 8 HAU of IA/14 and NY/11.

2.3. Animal study design

All pigs were cared for in compliance with the Institutional Animal Care and Use 

Committee of the National Animal Disease Center. Pigs were treated with ceftiofur 

crystalline free acid and tulathromycin (Zoetis Animal Health, Florham Park, NJ) and were 

shown to be seronegative to IAV antibodies by a commercial ELISA kit (Swine Influenza 

Virus Ab Test, IDEXX, Westbrook, ME) prior to the start of the study. The various vaccine 

challenge groups are outlined in Table 1.
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Eighty-one 5 week-old pigs were vaccinated with 2 ml of RP delivered intramuscularly on 

the right side of the neck (1 × 108 alphavirus replicon particles). Three weeks post 

vaccination a booster dose was administered (2 ml intramuscularly, 1 × 108 alphavirus 

particles). Pigs were challenged three weeks post booster dose at 11 weeks of age (6 weeks 

after the first dose of vaccine was delivered).

The challenge virus was delivered to pigs intratracheally (2 ml) and intranasally (1 ml) with 

1 × 105 TCID50/ml under anesthesia, using an intramuscular injection of a cocktail of 

ketamine (8 mg/kg of body weight; Phoenix, St. Joseph, MO), xylazine (4 mg/kg; Lloyd 

Inc., Shenandoah, IA), and Telazol (6 mg/kg; Zoetis Animal Health, Florham Park, NJ). Pigs 

were humanely euthanized with a lethal dose of pentobarbital (Fatal Plus, Vortech 

Pharmaceuticals, Dearborn, MI) at 5 dpi, when lungs were evaluated and bronchoalveolar 

lavage fluid (BALF), trachea and right cardiac or affected lung lobe were collected.

2.4. Serology

HI assays were performed with 0.5% turkey RBCs according to standard techniques as 

described above in section 2.2. [26]. Results were reported as geometric mean antibody 

titers.

Isotype specific (IgA and IgG) enzyme-linked immunosorbent assays (ELISA) were 

performed with using IA/14 and NY/11 as antigens after BALF samples were treated with 

10mM Dithiothreitol (DTT; Sigma-Aldrich, St. Louis, MO) and diluted to 1:4, as previously 

described [27]. Results were reported as average optical density (O.D.) levels of duplicate 

wells for each sample.

2.5. Pathological examination and virus detection

At necropsy, the percent of lung surface affected with pneumonia was calculated as 

previously described [28, 29]. Formalin-fixed trachea and lung tissue samples were routinely 

processed and stained with hematoxylin and eosin. Lung and trachea microscopic lesions 

were scored according to previously described parameters [30] and individual composite 

scores for each pig were computed.

Nasal swabs (NS; Fisherbrand Dacron swabs, Fisher Scientific, Pittsburg, PA) were 

collected on 0, 3, and 5 dpi to be used for virus isolation as previously described [27]. Virus 

isolation-positive NS and BALF were titrated in MDCK cells as previously described [27, 

31] and TCID50/ml virus titers were calculated for each sample by the Reed and Muench 

method [32].

2.6. Statistical analysis

Results were analyzed by analysis of variance (ANOVA), with P≤0.05 considered significant 

(Prism software; GraphPad, La Jolla, CA) and variables with significant effects by treatment 

group were subjected to pairwise mean comparisons using the Tukey-Kramer test.
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3. Results

3.1. Antibody response to alphavirus-vectored HA subunit vaccine and mucosal 
response after infection

In the HA1, NY/11 (red) and IA/14 (green) only differed at two amino acid positions (145 

and 289), yet exhibit significantly reduced cross-HI activity when using monovalent whole-

inactivated virus antisera (Table 2). Pigs vaccinated with RP-red HA demonstrated an HI-

specific antibody response against NY/11 and a comparable response against IA/14 (Fig. 

1A). In contrast, while pigs vaccinated with RP-green HA generated an HI-antibody 

response against IA/14 there was a titer reduction greater than 2-fold in cross-HI antibodies 

against NY/11. Pigs that were administered two doses of the bivalent RP-red and the RP-

green HA subunit vaccine had a comparable HI response against NY/11 and IA/14 when 

compared to the monovalent vaccine, suggesting that there was no antigen competition 

between the two HA antigens. No significant changes in HI titer were observed after 

challenge at 5 dpi, regardless of whether the challenge virus encoded a matched or 

mismatched HA.

A potential advantage of using the alphavirus-vectored platform is that despite delivery by 

the parenteral route, there is an induction of a mucosal response to produce IgA antibodies 

[33, 34]. To assess this, we analyzed the presence of IgA and IgG-specific antibodies in 

BALF at 5 dpi that reacted with whole-virus antigen (Fig. 1B). Despite low levels, there 

were detectable IgA and IgG antibodies in the lungs of all vaccinated groups.

3.2. RP HA vaccine provides protection against antigenically HA-matched virus

Mock-vaccinated pigs (RP-GFP) challenged with NY/11 and IA/14 exhibited mild 

macroscopic and microscopic lung lesions, high viral titers in BALF and infectious virus 

was isolated from nasal swab samples at 3 and 5 dpi (Figure 2A-D). The kinetics of virus 

shedding in the upper respiratory tract in pigs challenged with IA/14 was delayed, in which 

minimal virus shedding was observed at 3 dpi although robust virus titers were detected at 5 

dpi (Fig. 2D). RP-red HA vaccinated pigs challenged with NY/11 demonstrated negligible 

macroscopic lung lesions, significantly reduced viral titers in BALF and in nasal swabs at 5 

dpi. Similarly, RP-green HA vaccinated pigs challenged with IA/14 had reduced 

macroscopic lung lesions, no detectable virus in BALF and significantly reduced titers in 

nasal swab samples.

3.3. Monovalent and bivalent RP HA vaccine provides broad protection against 
antigenically HA-mismatched viruses

In the HA-mismatched groups there was evidence of protection although there was a trend 

for greater protection in the RP-red HA vaccinated pigs challenged with IA/14 (Fig. 2E-H). 

In the RP-green HA vaccinated pigs challenged with NY/11 there were significantly reduced 

lung lesions, viral titers in the lung and viral titers in nasal swabs at 3 dpi, but no statistical 

difference in viral titers in nasal swabs at 5 dpi in comparison to GFP-vaccinated pigs (Fig. 

2H). In the RP-red HA vaccinated pigs challenged with IA/14 there was minimal lung 

lesions detected and significantly reduced viral titers in the lung and in nasal swab samples 

on both days. Pigs that received the bivalent vaccine, a simultaneous dose of the RP-green 
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and a dose of the RP-red, demonstrated minimal lung lesions, low to no detectable infectious 

virus in the lungs and nasal swab samples in both challenge groups.

4. Discussion

The level of antigenic diversity of IAV-S co-circulating in the United States continues to 

increase and this poses problems to effectively reduce the burden of disease through 

vaccines. Antigenic studies of contemporary H3 IAV-S revealed at least three major 

antigenic clusters co-circulate in the United States [8, 35]. In the face of such large antigenic 

diversity, there is a need for more broadly protective vaccines that can be flexible to the 

dynamic antigenic evolution of IAV-S.

In the present study we examined the efficacy of a recently licensed vaccine platform, 

alphavirus-vectored HA subunit vaccine. While products based on traditional vaccine 

platforms such as whole-inactivated virus and live-attenuated influenza virus are still 

produced and used, several virus vectors have been explored as delivery agents for vaccine 

purposes to protect against influenza infection [14]. Alphavirus vectors have been designed 

for potential use in humans with Semliki Forest virus, Sindbis virus and Venezuelan equine 

encephalitis virus as vectors [16, 36, 37]. Although, there is no commercially available 

alphavirus-based influenza vaccine for use in humans despite several existing candidates 

[38]. The same alphavirus-based influenza vaccine tested here has also been approved for 

use in avian species and an H5 HA vaccine has been stockpiled as a preventative measure for 

future highly-pathogenic avian influenza virus outbreaks [39].

We found that the RP vaccine produced robust HI titers in pigs, when delivered both as a 

monovalent and bivalent vaccine. In pigs challenged with an HA-matched virus, effective 

protection was observed with minimal lung lesions and no or minimal infectious virus 

detected in upper and lower respiratory tract. In pigs vaccinated with a monovalent vaccine 

and challenged with an HA-mismatched virus, there was significant protection for RP-red 

vaccinated pigs challenged with IA/14, but less so with the RP-green. In particular there was 

no significant difference between mean viral titers in the nasal swab samples at 5 dpi 

between the negative control pigs (RP-GFP) and the RP-green vaccinated pigs challenged 

with NY/11. Importantly, neither of the mismatched RP monovalent vaccines was associated 

with vaccine-associated enhanced respiratory disease (VAERD) that has been reported with 

adjuvanted whole inactivated influenza vaccines in similar experimental models [27, 30, 40, 

41]. Additional studies with different permutations of vaccination timing and IAV strains are 

needed to confirm the absence of VAERD. The best level of protection, regardless of the 

challenge strain, was observed when the RP-green and RP-red were delivered together as a 

bivalent vaccine. Importantly, NY/11 and IA/14 only differed at two amino acid positions in 

the HA1 sequence, and given the observed efficacy of the bivalent vaccine, multivalent 

vaccines that include HA’s representative of the endemic antigenic diversity may be a more 

effective strategy.

One of the advantages of the alphavirus-based technology licensed for use in swine is that 

HA sequences can be readily replaced. This allows customers to either obtain an off the 

shelf, previously made RP vaccine or request a new RP vaccine to better match the HA of 
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interest. Furthermore, as presented here, there is the potential to vaccinate with more than 

one RP particle and therefor deliver a multivalent vaccine that could be comprised of not 

only multiple HA’s but also a combination of HA with other viral proteins such as the NA or 

NP. There has been an increased interest and evidence to support the importance of anti-NA 

antibodies to reduce morbidity [42, 43], which makes it a strong candidate to provide NA in 

addition to the HA antigen to broaden efficacy.

In addition to implementing a multivalent vaccine, various prime-boost strategies can be 

explored to enhance duration and increase breadth of protection. In both cases, exploring 

distinct prime-boost strategies may improve vaccine protection. A recent paper has reported 

that priming with an RP vaccine followed by a whole-inactivated virus vaccine in turkeys 

conferred the best long-term protection [44]. Due to the genetic diversity of avian species, 

responses to vaccines can vary by host and caution should be used when extrapolating 

findings [45, 46]. Nevertheless, further experiments are warranted to examine the duration of 

protection in pigs vaccinated with RP’s. Furthermore, implementing a heterologous prime-

boost could be explored as well to broaden protection as there is evidence that this strategy 

is effective at broadening protective antibodies when using whole-inactivated virus [47].

Swine producers now have various vaccine platforms at their disposal to better combat the 

burden of disease caused by IAV-S. One area where our understanding is lacking is how to 

best implement vaccine use to protect against a virus landscape that we know continues to 

diversify genetically and antigenically. Better vaccines, or improved prime-boost strategies, 

that broaden protection can help reduce the burden of disease caused by IAV-S on swine 

production systems. Further, improved vaccines may reduce the chances of inter-species 

transmission from swine to humans. Our findings indicate that multivalent RP’s may be one 

approach that can provide broader protection, although factors such as duration of protection 

and different prime-boost regimens should be explored to identify additional effective 

approaches.
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Highlights

• Monovalent alphavirus-vectored HA vaccines provided efficient protection 

against challenge with viruses with matched HA

• Monovalent alphavirus-vectored HA vaccines provided partial protection 

against challenge with viruses with mismatched HA.

• A bivalent alphavirus-vectored HA vaccine was effective in producing 

antibody response against both antigens and provided protection against 

challenge.
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Fig. 1. Antibody responses in pigs against NY/11 and IA/14 induced by monovalent and bivalent 
RP vaccines pre- and post-infection.
(A) Serum hemagglutination inhibition (HI) geometric mean titers against IA/14 and NY/11 

at 0 and 5 dpi from all vaccinated groups and the sham vaccinated pigs (RP-GFP). (B) 

Whole virus IgA and IgG ELISA’s were performed using BALF from 5 dpi with IA/14 and 

NY/11 as antigens. Groups of pigs are labeled according to vaccine use. HI titers that 

differed by more than two serial dilutions within 0 or 5 dpi are marked with an asterisk (A). 

Data presented as mean optical density (O.D.) or geometric mean titers ± standard error of 

the mean. Cut-off values (dotted line) for ELISA data was calculated as the mean of blank 

wells plus three times the standard deviation. A black line within each graph separates 

groups according to challenge strain (NY/11 on the left, IA/14 on the right).
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Fig. 2. Protection in pigs vaccinated with monovalent or bivalent RP vaccine.
Results from monovalent HA-matched (A-D) and HA-mismatched or bivalent groups (E-H). 

The percentage of macroscopic (A/E) and microscopic (B/F) lung lesions was evaluated at 5 

dpi, and viral titers were measured in bronchoalveolar lavage fluid (BALF) at 5 dpi (C/G) 

and in nasal swabs at 3 and 5 dpi (D/H). Groups of pigs are labeled with the vaccine used 

followed by the challenge strain. NC, not challenged. Data presented as mean ± standard 

error of the mean. The number of pigs with a positive virus titer/total number of pigs are 

indicated above the bars (C-D, G-H). Treatment group means with statistically significant 

differences (P ≤ 0.05) are identified by different lowercase letters. A black line within each 

graph separates groups according to challenge strain (NY/11 on the left, IA/14 on the right). 
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A dotted line separates nasal swab titers at 3 (black bars) and 5 dpi (white bars) within 

challenged groups.
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Table 1.

Animal study design.

Groups Vaccine Challenge virus
(antigenic cluster)

Number of pigs
per group

 RP-GFP->NC RP-GFP No challenge 5

 RP-GFP->NY/11 RP-GFP NY/11 (red) 10

 RP-red->NY/11 RP-red NY/11 (red) 10

 RP-green->NY/11 RP-green NY/11 (red) 9

 RP-red+RP-green->NY/11 RP-red + RP-green NY/11 (red) 10

 RP-GFP->IA/14 RP-GFP IA/14 (green) 10

 RP-red->IA/14 RP-red IA/14 (green) 10

 RP-green->IA/14 RP-green IA/14 (green) 8

 RP-red+RP-green->IA/14 RP-red + RP-green IA/14 (green) 9

NC, non-challenged.
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Table 2.

Cross-HI titers reported as geometrical mean reciprocal titers.

Anti-IA/14
a

Anti-NY/11
a

IA/14 (green) 1810 320

NY/11 (red) 160 1280

a
Paired anti-sera generated in swine by delivering two doses of whole-inactivated virus.
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