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ABSTRACT: The delivery of drugs is a topic of intense research activity in
both academia and industry with potential for positive economic, health, and
societal impacts. The selection of the appropriate formulation (carrier and
drug) with optimal delivery is a challenge investigated by researchers in
academia and industry, in which millions of dollars are invested annually.
Experiments involving different carriers and determination of their capacity
for drug loading are very time-consuming and therefore expensive;
consequently, approaches that employ computational/theoretical chemistry
to speed have the potential to make hugely beneficial economic,
environmental, and health impacts through savings in costs associated
with chemicals (and their safe disposal) and time. Here, we report the use of
computational tools (data mining of the available literature, principal
component analysis, hierarchical clustering analysis, partial least squares
regression, autocovariance calculations, molecular dynamics simulations, and
molecular docking) to successfully predict drug loading into model drug delivery systems (gelatin nanospheres). We believe that this
methodology has the potential to lead to significant change in drug formulation studies across the world.

1. INTRODUCTION

The global market for drug delivery systems is a multibillion-
dollar industry, demand for which is growing in both
developed and emerging economies (in part, driven by aging
societies and rapid urbanization).1−9 Drug delivery systems
deliver drugs at rates controlled by specific features of the
systems, particularly their chemical composition (e.g.,
inorganic/organic components, molecular weights of their
constituents, cross-linking density of polymers, etc.).10−12

The selection of the appropriate system (carrier and drug)
to obtain optimal delivery is a challenge investigated by
researchers in academia and industry, in which millions of
dollars are invested annually.13 Experiments involving different
carriers and determination of their capacity for drug loading
are very time-consuming and therefore expensive. Conse-
quently, approaches that exploit multivariate statistical
methods, molecular simulations, docking methods, and mining
the data in the literature14−19 have the potential to make
hugely beneficial economic, environmental, and health impacts
through savings in costs associated with chemicals (and their
safe disposal) and time.
Computational/theoretical chemists/biochemists, biomedi-

cal/chemical engineers, and pharmacists have developed a
variety of methodologies that can be applied to understand
drug formulations. Principal component analysis (PCA) and
hierarchical clustering analysis (HCA) are considered explor-
atory data analysis and unsupervised machine learning

methods, where these techniques extract patterns from the
independent factors (x-variables) only and irrelevant to the y-
outcomes. Partial least squares (PLS) is a supervised pattern
recognition method correlating the inputs with outputs and
subsequently leads to the generation of a model.20 This data
mining approach (through a retrospective analysis) combined
with computer-aided analysis and simulation extracts knowl-
edge from complex variables and responses obtained from
historical records. The significant advantage of this approach is
the possibility of uncovering interactions and linear relation-
ships that might not be easily detectable with conventional
experimental designs.21 Although not yet fully explored in drug
formulation/delivery, multivariate statistical methods such as
PCA and agglomerative HCA were previously used to develop
drug delivery formulations. For example, PCA was utilized to
generate a quantitative composition−permeability relationship
for microemulsion formulations used to deliver testosterone
transdermally, with a linear relationship between the lower-
dimensionality data generated from the main principal
component and the permeability coefficients of the different
formulations.22 PCA and HCA were used to extract stable
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SMEDDS (self-microemulsifying drug delivery systems) and
SNEDDS (self-nanoemulsifying drug delivery systems) for-
mulations of lovastatin and glibenclamide, respectively,23,24

and PCA and PLS analysis were used to assess the qualitative
and quantitative effects of different variables such as lipid/
surfactant type and their concentrations on parameters related
to storage stability.25 Furthermore, PLS was successfully
employed to predict the sizes and polydispersity index (PDI)
for lipid nanocapsules based on the quantitative mixture
composition.26

Here, we extend these exciting studies by combining PCA,
HCA, and PLS with molecular dynamics and docking
analysis27 to give valuable insight into drug loading in a
polymer matrix. As a model polymer matrix, we use protein-
based nanoparticulate drug delivery systems (i.e., nanospheres
composed of collagen-derived gelatin). Gelatin is an abundant
and inexpensive protein,28 which is amphiphilic in nature due
to its amino acid contents (ca. 12% anionic glutamic and
aspartic acid, ca. 13% cationic lysine and arginine amino acids,
and ca. 11% hydrophobic leucine, isoleucine, methionine, and
valine),29 and gelatin-based matrices can in principle be used
to deliver both small molecules and macromolecules.30−36 In
this study, we focus on a selection of low-molecular-weight
drugs used in the clinic, as depicted in Figure 1.

2. MATERIALS AND METHODS

2.1. Data Set. The data set contained four input variables
(descriptors) and one output response (mass of drug loaded
per 100 mg gelatin nanospheres determined experimentally)
for different drugs. Data mining was performed through
different databases such as PubMed and Web of Science to
obtain the output response for 10 drugs: acyclovir,37

amphotericin B,38 cryptolepine,39 doxorubicin,40 5-fluorouracil
(5FU),41 isoniazid,42 resveratrol,43 curcumin,17 paclitaxel,44

and indomethacin.45

2.2. Calculation of Molecular Descriptors. The drugs
were analyzed using Bioclipse version 2.6 (Bioclipse project,
Uppsala University, Sweden).39 The four descriptors chosen
were constitutional (molecular weight), electronic (number of
hydrogen bond donors and number of hydrogen bond
acceptors), and physicochemical (xLogP).

2.3. Hierarchical Clustering Analysis (HCA). The
molecular descriptors generated using Bioclipse version 2.6
were subjected to hierarchical clustering analysis using JMP 7.0
(SAS, Cary, NC, USA). Ward’s minimum variance method was
adopted to join the clusters and generate a dendrogram.
Ward’s method is considered an agglomerative hierarchical
technique where the merging in the dendrogram starts at the
final clusters (leaves) and merging occurs stepwise until it
reaches the trunk. Ward’s minimum variance criterion
minimizes the total within-cluster variance. At each step, the
pair of clusters possessing the minimum between-cluster
distance is merged (i.e., the pair of clusters that leads to the
minimum increase in the total within-cluster variance after
merging is selected).45

2.4. Principal Component Analysis (PCA). PCA was
used to extract patterns using an exploratory data analysis
method that deals with the variances in sample observations.
PCA was performed using JMP 7.0. Four principal
components were calculated by taking a linear combination
of an eigenvector of the correlation matrix built up from
standardized original variables. The dimensionality of the data
was reduced by extracting two main principal components
possessing the two highest eigenvalues and plotting the data
with respect to these two new orthogonal axes.

2.5. Partial Least Squares Analysis (PLS) for Model
Generation and Validation of the Model. PLS was used to
study correlations between the molecular descriptors and the
output response. PLS was performed using JMP 7.0 using four
latent vectors. The PLS generated model was validated by

Figure 1. Chemical structures of the substances studied herein: (A) acyclovir, (B) cryptolepine, (C) amphotericin B, (D) doxorubicin, (E) 5-
fluorouracil (5FU), (F) isoniazid, (G) resveratrol, (H) paclitaxel, (I) indomethacin, and (J) curcumin.
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checking the differences between the mean actual and
predicted response values using t-test statistical analysis at P
< 0.05 using GraphPad Prism v.5.0 (GraphPad software Inc.,
San Diego, CA, USA) and by performing a k-fold (5-fold)
cross-validation (leave-two-out) to check the predictability of
the model and its ability to navigate the experimental space.
The value of Q2 (predicted R-squared) was calculated as
follows

=Q
PRESS

ISS
2

where PRESS represents the predicted residual error sum of
squares, while ISS stands for the total initial sum of squares.
Moreover, a predicted versus actual correlation was obtained.
2.6. Molecular Dynamics Simulations (MDS) of the

Gelatin Matrix.Molecular dynamics simulations (MDS) were
carried out using the GROMACS46 v. 4.6.5 freeware (http://
www.gromacs.org/). To prepare the gelatin system, 48 peptide
molecules were constructed, with 18 amino acids in each
molecule. The primary sequence of the peptides was
AGPRGQ(Hyp)GPAGPDGQ(Hyp)GP. Six hypothetical
probe molecules (with a calculated molecular weight of
767.13) were added at random positions to the system. The
force-field parameters were obtained from CgenFF47 (https://
cgenff.paramchem.org/). The system was energy minimized by
the steepest descent method. Molecular dynamics was
subsequently carried out, with a time step of 2 fs, full periodic
boundary conditions, and a cutoff distance of 1.2 nm for van
der Waals and electrostatic interactions.48 PME was chosen to
handle long-range electrostatic interactions. All bonds were
constrained by the LINCS algorithm. The MDS were carried
out for 3 ns at 373 K and 1 bar using a v-rescale thermostat and
a Berendsen barostat, respectively.49

2.7. Drug Docking in Simulated Gelatin Nano-
spheres. The chemical structures of the studied drugs were
drawn using ChemDraw Ultra version 10 (Cambridgesoft,
Waltham, MA, USA). The corresponding “.mol2” files needed
for docking experiments were obtained using Chem3D Ultra
version 10 (Cambridgesoft, Waltham, MA, USA) after energy
minimization using the MM2 force field of the same program.
Docking analysis was generated by Argus Lab version 4.0.1
(Mark Thompson and Planaria Software LLC, Seattle, WA,
USA). The hypothetical probe molecules were utilized to
construct corresponding binding sites on the carrier (gelatin-
probe), and the AScore was utilized for calculating the scoring
function. The size of the display box in the x, y, and z
dimensions were 15 × 15 × 15 Å as these dimensions were

suitable to the size of the docked molecules and ensured a
central position for them inside the gelatin matrix. Addition-
ally, the genetic algorithm was used as the docking engine with
150 maximum poses. The type of calculation and ligand (as
chosen using the software options) were Dock and Flexible,
respectively, and the binding energies (ΔG, kcal/mol)
reflecting the docking efficiencies were calculated.

3. RESULTS
Table 1 reports the molecular descriptors (number of
hydrogen bond donors, number of hydrogen bond acceptors,
xLogP, and molecular weight) for the investigated drugs. The
dendrogram classifying these drugs according to HCA using
Ward’s minimum variance method (an agglomerative type of
analysis) is displayed in Figure 2. Isoniazid and 5FU were

clustered together according to their four descriptors,
Resveratrol and cryptolepine clustered together, whereas
doxorubicin, acyclovir, and amphotericin B constituted
separate clusters. Importantly, the loading pattern followed
this classification (see Table 1) where 5FU and isoniazid
scored the highest loading masses followed by acyclovir, which
is closest to the aforementioned drugs in the dendrogram.
Cryptolepine and resveratrol were very close, with doxorubicin
near to them. Amphotericin B had the lowest mass loaded into
the nanospheres, which was clear from its separate branch
(furthest distance) in the dendrogram.

Table 1. Descriptors of the Drugs, Amounts of Loaded Drug, and the Obtained Binding Energies from Docking of the Drugs
on a Simulated Gelatin Matrix

drug xLogP
no. H-bond
donors

no. H-bond
acceptors

molecular weight
(g/mol)

actual amount of drug loaded
(mg/100 mg gelatin)

Lamarckian genetic algorithm ΔG
(kcal/mol)

acyclovir −1.650 3 8 225.21 8.74 −3.94
amphotericin B 2.068 12 18 923.49 1.16 144.4
cryptolepine 2.180 0 2 233.30 2.00 −3.81
doxorubicin −1.900 6 9 543.52 2.10 58.29
5-fluorouracil −0.760 2 4 130.00 25.07 −4.19
isoniazid −0.683 3 4 137.14 22.00 −4.16
resveratrol 2.050 3 3 228.24 1.96 −3.74
curcumin 1.95 2 6 368.13 3.50 −2.59
paclitaxel 6.15 4 14 853.33 0.52 173.5
indomethacin 3.78 1 4 338.14 1.91 −1.99

Figure 2. Hierarchical clustering analysis (HCA) of the investigated
drugs with respect to four constitutional, electronic, and phys-
icochemical descriptors: number of hydrogen bond donors, number
of hydrogen bond acceptors, xLogP, and molecular weight.
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A score plot of the drugs with respect to their descriptors
after projecting the data into two main principal components is
displayed in Figure 3, where principal component 1 and

principal component 2 reflect 69.72 and 26.95% of the data
variation, respectively (corresponding to 96.68% of total
variance; Figure 3, top right panel), and 5FU and isoniazid
are clustered together with acyclovir having the nearest score,
and amphotericin B the furthest score. Figure 4 depicts the

loading plots of the two main principal components. It is
obvious that principal component 1 is mainly composed of the
descriptors: the molecular weight, the number of the H-bond
donors, and the number of the number of H-bond acceptors,
while principal component 2 mainly depends on the remaining
descriptor, xLogP. These results confirm the presentation of

the four investigated variables in the two generated principal
components.
The relationship between the obtained combined x-scores

(combining the contribution from the four x-variables viz.
descriptors) and y-scores is displayed in Figure 5, and the

screen plot (Figure 5, bottom right) depicts the contribution of
each individual latent factor to the combined x-scores with the
first two factors accounting for 96.64% of the obtained scores.
It is noteworthy that the generated x- and y-scores represent

the distances of the points in space of all the dimensions to the
main vector summarizing the final dimension (in the current
case, there is a principal component or vector for the x-
dimension comprising all the descriptors and another for the y-
dimension representing the loaded mass). Therefore, the
aforementioned scores can be negative numbers. Conse-
quently, a generated model was developed, where

= + × +

×

+ ×

− ×

Y (mass of drug loaded per 100 mg gelatin nanoparticles)

13.175 0.115 xLogP 0.001

number of hydrogen bond donors

2.346 number of hydrogen acceptors

0.059 molecular weight (1)

The values and the signs of the coefficients of the x-factors in
the equation were indicative of the importance of increasing
the number H-bond acceptors in the drug chemical structure
in the presence of a balanced xLogP and low molecular weight
to increase the loading of the drug. The model was validated
by performing t-test statistical analysis between the actual
experimental results for drug loading and the predicted drug
loading using the model where no significant difference was
obtained between the means at P < 0.05. The calculated Q2 or
the predicted R-squared after 5-fold cross-validation scored a
value of 0.721 (a highly acceptable value).50 Figure 6 further

Figure 3. Principal component analysis (PCA) score plot of the
investigated drugs with respect to four constitutional, electronic, and
physicochemical descriptors: number of hydrogen bond donors,
number of hydrogen bond acceptors, xLogP, and molecular weight,
displaying only two main combined components. The upper panel
depicts the scree plot revealing the percentage variation of each
extracted component (combined from the four descriptors).

Figure 4. Principal component analysis (PCA) loading plot of the two
main principal components.

Figure 5. Partial least squares regression analysis (PLS) of the
investigated drugs with four constitutional, electronic, and phys-
icochemical descriptors: number of hydrogen bond donors, number
of hydrogen bond acceptors, xLogP, and molecular weight as the x-
factors and the mass of loaded drug per 100 mg gelatin nanoparticles
as the y-factor. The lower panel depicts the contribution of each latent
x-factor (combined factor) to the x-scores representing the combined
x-dimension.
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demonstrates the predicted versus actual relationship, where it
is observed that most of the points are scattered around the
45° line. Proximity of the points to this line usually indicates
the favorable similarity of the results. Accordingly, the
developed model can be exploited in predicting the loaded
mass of any new physically loaded or entrapped investigated
drug molecule in a gelatin matrix after projecting its structure
to the aforementioned four descriptors (Table 1).

4. DISCUSSION
In the HCA utilized and studied method (Ward’s method), the
distance between two clusters is the ANOVA sum of squares
between the two clusters added up over all the variables. At
each generation, the within-cluster sum of squares is minimized
over all partitions obtainable by merging two clusters from the
previous generation. The sums of squares are usually easily
interpreted when they are divided by the total sum of squares
to give the proportions of variance (squared semipartial
correlations). Ward’s method works under the assumptions of
spherical covariance matrices and the condition of equal
sampling probabilities. Distances between clusters in Ward’s
method are calculated according to the squared Euclidean
distance. It is considered very useful in joining clusters with a
small number of observations and is very accurate though
sensitive to outliers.46

PCA was used to confirm the hierarchical clustering analysis
results. This type of multivariate analysis deals with the x-
factors (descriptors) to reduce their dimensionality by
projecting the data into new orthogonal axes that display the
directions (vectors) of the highest variation. These results
confirmed the HCA results and correlate the x-factors (drug
descriptors) with the y-outputs (mass of drug loaded per 100
mg gelatin), where clustered points (especially in the same
quadrants) represents high similarity between them regarding
their projected descriptors.19

Accordingly, a supervised learning tool (PLS) was used to
generate an accurate and sensitive model that would correlate
the x-factors with the y-outputs quantitatively. The techniques
implemented in the PLS platform work by extracting
successive linear combinations of the predictors, called factors
(also called components or latent vectors), which optimally
address the combined goals of explaining both response and
predictor variation. In particular, the method of PLS balances
the two objectives and maximizes their correlation.20

The obtained results can be explained by the fact that gelatin
is a protein carrier with a relatively balanced hydrophilic/
hydrophobic character displaying several hydrogen bond donor
and acceptor groups with a repetitive sequence of amino acids
-Ala-Gly-Pro-Arg-Gly-Glu-4Hyp-Gly-Pro- along its back-

bone.51 This structure can be transformed to some numerical
values that are generated of each amino acid. Among which are
the highly condensed variables “z-scale descriptors”52 that are
derived from PCA analysis of several experimental and
physicochemical properties of the 20 natural amino acids: z1,
z2, and z3, which represent the amino acids hydrophobicity,
steric properties, and polarity, respectively. Additionally, they
are useful in QSAR analysis of peptides where they have
proven effective in predicting different physiological activ-
ities.53−55 Herein, we used an extended scale (including 67
more artificial and derivatized amino acids)56 due to the
presence of 4-hydroxyproline in the gelatin structure.
In this study, we expand the use of the first descriptor (z1)

to predict the drug loading properties of nanoparticles. The
first scale (z1) was chosen as it represents a lipophilicity scale
that encompasses several variables (amino acid descriptors)
such as the thin layer chromatography (TLC) variables, log P,
nonpolar surface area (Snp), and polar surface area (Spol) in
combination with the number of proton-accepting electrons in
the side chain (HACCR).57 In this scale, a large negative value
of z1 corresponds to a lipophilic amino acid, while a large
positive z1 value corresponds to a polar, hydrophilic amino
acid. Therefore, the gelatin typical structure amino acids (-Ala-
Gly-Pro-Arg-Gly-Glu-4Hyp-Gly-Pro-) can be represented by
their z1 values as follows: (0.24), (2.05), (−1.66), (3.52),
(2.05), (3.11), (−0.24), (2.05), and (−1.66). Furthermore, an
overall topological description of the repetitive sequence was
accounted for by encoding the z1 descriptors of each amino
acid into one auto covariance variable47 that was first
introduced by Wold et al.58 The autocovariance value (AC)
was calculated as follows

∑=
−=

−
× +

V

N
AC

lagz
i

N
z i V

.lag
1

lag
. z i, lag

(2)

where AC represents autocovariances of the same property (z-
scale), i = 1, 2, 3,..., N is the number of amino acids, lag = 1, 2,
3, ... L (where L is the maximum lag, which is the longest
sequence used) and V is the scale value.
Therefore, the AC value for the gelatin typical structure

sequence was calculated with lag 1 scoring a value approaching
zero (0.028), indicating a balanced hydrophobicity/hydro-
philicity structure. In light of the above, the high loading of
5FU and isoniazid can be ascribed to their amphiphilic nature
with LogP values approaching 0 and to the presence of several
hydrogen bond donors and acceptors groups relative to their
low molecular weight that is favorable in both diffusion
through and entrapment in a protein matrix like that of gelatin
nanospheres. Since there was a recorded deviation between the
actual and the predicted values regarding isoniazid and 5FU
(may be attributed to their small molecular weight that helps
their nonstoichiometric physical entrapment in the gelatin
matrix), therefore, the results were further confirmed by
molecular dynamics and docking experiments, where the drugs
were docked on the gelatin matrix simulated structure. Figure 7
shows the molecular simulation of the gelatin nanosphere
matrix. Interestingly, the best binding energy values ΔG
(−4.19 and −4.16 kcal/mol) corresponded to the highest
loaded drugs 5FU and isoniazid, respectively, followed by
acyclovir (see Figure 8). In the same context, amphotericin B
scored a highly positive ΔG value, which explains its low
loading values. The confirmation of the docking results with
their experimental counterparts can be attributed to the

Figure 6. Predicted versus actual drug loading in gelatin nanospheres.
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inclusive scoring function of the Arguslab software. This
scoring function is based on the XScore calculated according to
the following equation59

Δ = Δ + Δ + Δ

+ Δ + Δ + Δ

−

−

G G G G

G G G

bind vdw hydrophobic H bond

H bond (chg) deformation 0 (3)

where ΔGbind is the total calculated binding energy, ΔGvdw is
the binding energy due to van der Waals forces, ΔGhydrophobic is
the binding energy due to hydrophobic forces, ΔGH‑bond is the
binding energy due to H-bonding, ΔGH‑bond (chg) is the binding
energy due to H-bonding due to charged molecules,
ΔGdeformation is the energy due to rotational bonds and atoms
involved in torsions (rotors) that were frozen due to binding,
and finally, ΔG0 represents the regression-obtained binding
energy. As can be inferred, the equation terms encompass
nearly all the possible interactions that can occur between the
drug and its carrier that may lead to drug entrapment, which
explains the high correlation obtained between the real
experimental values and the docking results.
An exponential model was generated correlating the actual

experimental molar masses of the loaded drugs and their
corresponding docking binding energies. This model was
highly fitting with an obtained R-squared value of 0.95. This
relationship can highly estimate the molar masses of physically
loaded drugs through docking the investigated molecule on the
simulated gelatin matrix. The only limitation of the model was
the number of the experimental studies that are involved in it
(10 studies), which we recommend to increase in further
similar studies.

5. CONCLUSIONS
The current study introduces new approaches of interpreting
and predicting drugs loading on protein carriers, such as gelatin
nanospheres. These approaches comprise multivariate stat-
istical methods such as hierarchical clustering analysis,
principal component analysis, partial least squares regression,
molecular dynamics, and docking. Moreover, the utilization of
the amino acids z-scales descriptors represents a new and
important asset in interpreting drug loading in protein-based
carriers. We believe that this methodology has the potential to
lead to significant change in drug formulation studies across
the world.
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