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ABSTRACT Acute liver failure is a severe liver disorder that poses considerable
global challenges. Previous studies on Bifidobacterium longum R0175 have mainly fo-
cused on its psychotropic functions. The current research focused on the protective
efficacy of B. longum RO175 against acute liver failure caused by p-galactosamine (p-
GalN) in rats and further tested the hypothesis that B. longum R0175 exerted liver-
protective effects by affecting the intestinal microbiota and fecal metabolites and by
inhibiting inflammation. We found that oral gavage of B. longum R0175 markedly
reduced the severity of liver injury in p-GalN-treated rats, as evidenced by de-
creased serum levels of aspartate aminotransferase (AST) and total bile acids
(TBAs) (P < 0.05). Moreover, the plasma concentrations of proinflammatory cytokines
(interleukin 1B [IL-1B] and tumor necrosis factor-a [TNF-a]) and chemokines (granulocyte-
macrophage colony-stimulating factor [GM-CSF], macrophage chemoattractant protein 1
[MCP-1], chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-C motif] ligand 5
[CCL5], and macrophage inflammatory protein-1a [MIP-1a]) were also markedly reduced
(P < 0.05). Pretreatment with B. longum R0175 partially reversed the gut microbiota dys-
biosis in rats with liver injury by increasing the relative abundances of potentially benefi-
cial bacteria, such as Alloprevotella spp., and decreasing the relative abundances of po-
tentially harmful bacteria, such as Acetatifactor muris, Butyricimonas spp., and Oscillibacter
spp. Furthermore, B. longum R0175 administration partially improved the metabolic
function of the intestinal microbes, as indicated by the decreased level of lithocholic
acid found in the feces.

IMPORTANCE Our research investigated the protective and preventive roles of B.
longum RO175 in a rat model of acute liver failure. The results illustrated that this
probiotic strain exhibited protective effects in rats with acute liver failure. Thus, B.
longum R0175 showed clinical application prospects that required further explora-
tion.

KEYWORDS Bifidobacterium longum R0175, acute liver failure, metabolome,
microbiome, probiotic

cute liver failure is a severe liver disorder with a 30% mortality rate and presents

considerable challenges to clinical management (1). It predominantly arises from
viral infections and drug-induced liver injury and is characterized by abrupt hepatic
dysfunction, which can lead to hepatic encephalopathy and progressive multiorgan
failure (2).
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The gut microbiota is the full collection of microorganisms (including bacteria, fungi,
viruses, and other microbes) that symbiotically reside in the gastrointestinal tract. The
key functions of the microbiota include metabolism, immune regulation, and protec-
tion (3) and are closely linked to human health and diseases. Given the bidirectional
relationship between the gut and liver in the anatomical and functional context, the
gut microbiota is closely associated with different liver diseases. The research revealing
that acute exposure to alcohol induced more severe liver injury and inflammation in
germfree mice than in wild mice has shed light on the essential protective role of the
gut microbiota against liver damage (4). Acute liver failure patients exhibited marked
dysbiosis of the gut microbiota, which had a predictive value for mortality (5).

Bacteria of the genus Bifidobacterium are normal inhabitants in the gut and
represent a significant part of the healthy microbial community (6). Within the
genus Bifidobacterium, Bifidobacterium longum is the most abundant species (7). A wide
variety of beneficial attributes have been described for this organism, such as activation
of immunity (8), participation in metabolism (9), and inhibition of intestinal pathogens
(10). B. longum is commonly applied as a probiotic and has been found to hold great
promise for protection against liver injury (11-14). B. longum R0175 is a strain of B.
longum, and until now, most studies concerning this strain have focused on its
psychotropic effects (15-17). Thus, whether B. longum R0175 has favorable effects on
liver conditions remains unknown.

In the present study, we focused on the protective effects of B. longum R0175
against p-galactosamine (p-GalN)-induced acute liver failure in rats.

RESULTS

B. longum R0175 ameliorated p-GalN-induced liver injury. Compared with the
negative-control (NC; no acute liver failure) group, the positive-control (PC; with acute
liver failure) group displayed severe histological liver injury after p-GalN injection, as
presented by extensive necrosis, liver tissue destruction, and marked inflammatory cell
infiltration, which led to a significant increase in histological activity index (HAI) scores.
In comparison with that in the PC group, the p-GalN-induced liver damage in the group
orally administered B. longum R0175 was markedly alleviated, which led to decreased
HAI scores, as evidenced by reduced necrosis and structural disruption in the hepatic
lobules, reduced destruction of the hepatic cell plates, and markedly reduced necrosis
and inflammatory cell infiltration in the portal areas of the liver tissue (Fig. 1a).

The liver function test was conducted to evaluate physiological hepatic dysfunction.
p-GalN injection sharply increased the serum levels of alanine transaminase (ALT),
aspartate aminotransferase (AST), total bile acids (TBAs), gamma-glutamyltransferase
(GGT), glycylproline dipeptidyl aminopeptidase (GPDA), and total bilirubin (TBil) in the
PC group compared with the NC group. In comparison with the PC group, the B.
longum R0O175 pretreatment group (R0O175 group) had lower concentrations of AST,
TBAs, GGT, and TBil (Fig. 1b).

B. longum R0175 reduced p-GalN-induced intestinal damage. The tissue of the
terminal ileum was observed under a light microscope to evaluate the intestinal
mucosa. Compared with that in the NC group, the integrity of the mucosa in the
D-GalN-treated PC group was destroyed with significantly increased intestinal injury
scores. However, B. longum R0175 treatment alleviated the p-GalN-induced intestinal
mucosal damage. Compared to the PC group, the R0175 group had a lower intestinal
injury score, with fewer subepithelial Gruenhagen'’s spaces and more intact structures
of mucosa and villi (Fig. 2a).

The villi and microvilli of the terminal ileum were further evaluated using a scanning
electron microscope (SEM). Compared with the NC group, the PC group displayed
shorter and thicker intestinal villi, accompanied by numerous and deeper surface
furrows and larger intervillous gaps. Compared to those in the PC group, the villi were
rougher, and the spaces between villi were narrower in the R0175 group; however, the
villi in the RO175 group were shorter and thicker than those in the NC group (Fig. 2b).
Consistent with these findings, the intestinal microvilli were sparser and smoother in
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FIG 1 B. longum R0175 administration alleviated p-GalN-induced acute liver injury. (a) Left, representative images
of the hepatic histology; right, HAI scores of the liver histopathology. (b) Liver function indexes. HAI scores are
given as the median with the interquartile range, and the liver function data are given as the mean = SEM. Each
dot represents one sample (n = 6 per group). *, P < 0.05; **, P < 0.01; ***, P < 0.001; NS, no significant difference,
compared with the PC group.

the PC group than in the NC group, but pretreatment with B. longum R0175 reduced
this disruption (Fig. 2c).

B. longum R0175 relieved p-GalN-induced systemic inflammation. The levels of
most tested serum inflammatory cytokines were markedly increased in the PC group
compared with the NC group. Pretreatment with B. longum R0175 reduced the p-GalN-
induced increases in the levels of tumor necrosis factor-a (TNF-«), interleukin 13 (IL-1),
and IL-7 and in chemokines such as granulocyte-macrophage colony-stimulating factor
(GM-CSF), chemokine (C-X-C motif) ligand 1 (CXCL1), chemokine (C-C motif) ligand 5
(CCL5), macrophage inflammatory protein-1a (MIP-1a), macrophage chemoattractant
protein 1 (MCP-1), and vascular endothelial growth factor (VEGF) (Table 1).

Pretreatment with B. longum R0175 alleviated p-GalN-induced gut microbiome
dysbiosis. 16S rRNA sequencing of the fecal pellets was performed to obtain further
insights into the impact of B. longum R0175 on the structure of the intestinal micro-
biota. The « diversity, as represented by the Chao1l, Shannon, and Simpson indexes,
showed no significant differences between the three groups, indicating that the overall
microbial diversity, richness, and evenness were similar among the three groups
(Fig. 3a).

Principal-coordinate analysis (PCoA) of the unweighted UniFrac distances was per-
formed to evaluate the B diversity among the three groups. The statistical analysis
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FIG 2 Treatment with B. longum R0175 ameliorated the intestinal mucosal damage. (a) Left, representative images
of the terminal ileum histology; right, terminal ileum histopathologic scores. (b) The ultrastructure of the ileal villi
observed by SEM. (c) The ultrastructure of the ileal microvilli observed by SEM. lleum score represents the
histological score of the terminal ileum and is given as the median with the interquartile range. Each dot represents
one sample (n = 6 per group). *, P < 0.05; **, P < 0.01; ***, P < 0.001, compared with the PC group.

revealed a distinct separation of the fecal microbiota among the three groups (Fig. 3b).
Both the permutational multivariate analysis of variance (PERMANOVA) and the analysis
of similarity (ANOSIM) agreed with PCoA in that there were significant differences
between microbial communities of these three groups (PC group versus NC group
versus RO175 group, PERMANOVA, pseudo-F = 1.98, P =0.001; ANOSIM, R = 0.59,
P = 0.001). Additionally, the microbiota between the two cages in each group was
compared using PERMANOVA and ANOSIM, and the results did not show any signifi-
cant differences between cages (Table 2).

Linear discriminant analysis (LDA) effect size (LEfSe) analysis at multiple phyloge-
netic levels was performed to identify differentially microbial biomarkers. The charac-
teristic biomarkers that differed between the NC and PC groups are shown in Fig. 4a
and b. The differential microbes between the PC and R0175 groups are shown in Fig. 4c
and d. The microbiota in the PC group was enriched with Acetatifactor muris, Akker-
mansia muciniphila, Oscillibacter spp., Oscillospira spp., Butyricimonas spp., Butyricimo-
nas virosa, Butyricimonas synergistica, and Clostridium sp. strain Culture_1, whereas it
was depleted of Prevotella spp., Bacteroides spp., and Paraprevotella clara compared
with those in the NC group. Compared with the PC group, the R0175 group displayed
Oscillibacter spp., Butyricimonas spp., B. virosa, and Clostridium sp. strain Culture_1
depletion and Alloprevotella spp. and P. clara enrichment.

B. longum R0175 ameliorated fecal metabolic profile alterations induced by
p-GalN. We applied the untargeted gas chromatography-mass spectrometry (GC-MS)
analytical method to study the fecal metabolome, which partially reflects the functional
features of intestinal microorganisms. Orthogonal partial least-squares discriminant
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TABLE 1 Effects of B. longum R0175 on plasma inflammatory cytokine levels?

Cytokine concn (pg/ml) in group:

Inflammatory cytokine NC PC R0O175

TNF-« 16.00 = 0.00** 105.69 = 14.39 53.71 + 20.62*
IFN-y 843 *+ 443 34.07 = 10.70 4481 = 2441
IL-1 434 + 1.14* 19.88 = 3.23 30.15 *= 8.91
IL-18 23.19 + 16.08*** 307.29 = 50.00 60.91 = 21.95**
IL-2 8.00 = 0.00** 459.13 + 95.87 22442 + 115.60
IL-4 2.16 = 1.03* 6.76 = 1.01 12.06 = 3.58
IL-5 17.55 = 11.55** 532.78 + 300.02 106.41 £ 14.12
IL-6 15.72 + 2.72** 66.06 = 24.79 64.10 = 34.50
IL-7 20.81 *= 15.10** 293.63 *+ 62.24 50.93 * 23.26**
IL-10 5.92 + 1.92*** 33.92 + 344 28.68 + 5.69
IL-12 701 = 3.11% 22.99 + 2.27 31.32 £ 13.81
IL-13 2.00 = 0.00 1240 = 8.46 12.82 = 10.82
IL-17a 242 *+ 1.42** 9.92 = 0.77 14.12 £ 2.99
IL-18 182.13 + 82.33** 746.86 = 121.57 1158.89 = 304.78
G-CSF 1.00 = 0.00 1.07 = 0.14 1.52 = 0.35
GM-CSF 25.80 + 18.45*** 260.05 = 38.53 52.75 * 24.35**
CXCL1 10.29 = 5.10*** 77.85 * 4.66 29.80 = 6.87***
M-CSF 2.28 + 0.27** 5.17 £ 0.54 6.71 = 1.15
MCP-1 241.97 * 4542%** 1120.27 £ 72.96 659.22 * 46.04***
MIP-1« 6.27 + 2.86** 342.75 = 203.86 50.79 + 11.26™*
MIP-3« 3.08 = 0.40** 11.29 = 2.03 7.74 = 0.77
CCL5 34.67 + 2.36*** 74.14 + 3.82 59.01 + 6.04*
VEGF 18.64 *= 12.18*** 123.83 £ 7.65 51.07 = 20.87**

aData are shown as the mean = SEM; *, P < 0.05, **, P < 0.01, ***, P < 0.001 compared with the PC group.

analysis (OPLS-DA) models were established to evaluate the cluster tendencies be-
tween the NC and PC groups and between the PC and RO175 groups. Figure 5a depicts
the distinct differences in metabolites spectra between the NC and PC groups
(R?Y = 0.982, Q2 = 0.741), and Fig. 5b shows the metabolite profiling discrimination
between the PC and R0175 groups (R?Y =1, Q2 = 0.645). Twenty-eight metabolites
with variable importance in the projection (VIP) values of >1 were detected between
the NC and PC groups (Fig. 5¢), and among these 28 metabolites, campesterol,

Chao1 Shannon Simpson
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FIG 3 Pretreatment with B. longum R0175 relieved gut microbiome dysbiosis. (a) The violin figures show
a-diversity indexes (Chao1, Shannon, and Simpson) of the gut microbiota between the three groups. (b)
The PCoA plot shows the B diversity of the gut microbiota between the three groups based on the
unweighted UniFrac metric. The a-diversity indexes are given as the median with the interquartile range;
NS indicates no significant difference.
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TABLE 2 Cage effects on gut microbiota in each group

Data by comparison

PERMANOVA ANOSIM
Group pseudo-F P value R P value
NC-1 vs NC-2 1.35 0.105 0.74 0.107
PC-1 vs PC-2 1.66 0.101 0.91 0.112
R0O175-1 vs R0O175-2 1.27 0.104 0.44 0.116

pantothenic acid, 2’'-deoxyinosine, ethanolamine, p-fructose, 2-hydroxyisocaproic acid,
and maltose were depleted, whereas chenodeoxycholic acid and N-acetyl-p-gluco-
samine were enriched in the PC group compared with the NC group. Fourteen
metabolites with VIP values of >1 were detected between the PC and R0175 groups
(Fig. 5d), and among these 14 metabolites, (Z)-13-eicosenoic acid was enriched in the
R0175 group compared with the PC group.

Metabolic biomarkers were selected based on the S-plot. Seven metabolites,
campesterol, b-myo-inositol, 1-pentadecanol, lithocholic acid (LCA), cholest-7-en-3-ol,
L-(+)-rhamnopyranose, and chenodeoxycholic acid, had potential value for differenti-
ating the PC group from the NC group (Fig. 6a). These metabolites are associated with
pathways such as steroid synthesis, primary and secondary bile acid synthesis, lipid
metabolism, L-fucose and L-rhamnose utilization, galactose metabolism, and inositol
phosphate metabolism.

Four metabolites, L-methionine, LCA, L-5-oxoproline, and trisaminol, may be poten-
tial biomarkers to distinguish the PC group from the R0175 group (Fig. 6b). These four
metabolites are mainly involved in pathways such as secondary bile acid biosynthesis,
cysteine and methionine metabolism, aminoacyl-tRNA biosynthesis, glucosinolate bio-
synthesis, and glutathione metabolism.

Correlations among the differential gut microbes, characteristic metabolites,
liver injury indexes, and inflammatory cytokines. We next performed correlation
analyses of the important indexes, including representative microbes, metabolic bio-
markers, liver injury parameters, and inflammatory cytokines, among the three groups
(Fig. 7). The levels of proinflammatory cytokines (IL-18 and TNF-a) and chemokines
(GM-CSF, CXCL1, MIP-1e, CCL5, and MCP-1) were positively associated with the con-
centrations of ALT, AST, TBAs, and GGT, indicating a widespread positive association
between liver injury and systemic inflammation. Certain microbes were closely associ-
ated with inflammation and liver damage. The relative abundance of A. muris was
positively associated with the level of TNF-a. The relative abundances of Oscillibacter
spp., Butyricimonas spp., and B. virosa were positively associated with the levels of IL-1J3,
TNF-a, chemokines (GM-CSF, CXCL1, MIP-1a, CCL5, and MCP-1), and AST and with HAI
scores. Notably, the relative abundance of A. muciniphila was found to be positively
associated with the levels of IL-18, chemokines (GM-CSF, CXCL1, MIP-1¢, and MCP-1),
ALT, and AST and with HAI scores. The relative abundance of P. clara was negatively
correlated with the levels of IL-18, TNF-«, chemokines (GM-CSF, CXCL1, MIP-1«, CCL5,
and MCP-1), ALT, AST, and TBAs and with HAI scores. Changes in the relative abun-
dances of intestinal microbes were accompanied by changes in fecal metabolites. The
concentration of LCA was positively correlated with the relative abundance of B. virosa
and the levels of AST, TBAs, IL-13, GM-CSF, CXCL1, MIP-1«, and MCP-1. The concen-
tration of L-methionine was positively correlated with the relative abundance of P. clara
but negatively associated with ALT levels.

DISCUSSION

Acute liver failure is a life-threatening liver disorder (18). Hepatic failure caused by
p-GalN is similar to fulminant viral hepatitis in human (19, 20), and p-GalN-induced
acute liver failure models are well characterized and widely used. B. longum is often
found in the human gastrointestinal tract and exerts probiotic effects (10). Most studies
on B. longum R0175 have focused on its psychobiotic effects on mental illness (15-17).
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FIG 4 B. longum R0175 administration alleviated microbiome dysbiosis. (a) LEfSe cladograms representing taxa enriched in the NC and PC groups. (b)
Discriminative biomarkers with an LDA score of >2.5 or <—2.5 in the PC and NC groups. (c) LEfSe cladograms representing taxa enriched in the PC and R0175
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represent taxonomic levels from phylum to genus. The sizes of circles indicate the relative abundances of the taxa.

Hence, the current study investigated B. longum R0175-mediated protection against
p-GalN-induced acute liver failure. Our main finding showed that pretreatment with B.
longum R0175 substantially ameliorated the liver damage resulting from p-GalN injec-
tion. Additionally, several beneficial effects of B. longum R0175 were observed, includ-
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FIG 5 Oral gavage of B. longum R0175 mitigated the changes in the metabolomic profile. (a and b) OPLS-DA plot comparing the NC and PC groups (a) and
the PC and R0175 groups (b). Each dot represents one sample. (c and d) The bar charts show metabolites with a VIP value of >1 between the NC and PC groups
(c) and between the PC and R0175 groups (d). The asterisk above the bar indicates the P value, as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001. cum,
cumulative.

ing the attenuation of microbial dysbiosis, improvement of the metabolic profile, and
suppression of systemic inflammation.

Serum ALT and AST levels have been known as the major biomarkers for liver injury
(21). TBAs engage in various signal transduction pathways, and their levels were
elevated following liver injury and hepatic functional changes (22, 23). Compared with
other biochemical indicators, the concentrations of TBAs are more valuable for the
prognostic evaluation of acute hepatitis (24). In this study, B. longum R0175 treatment
distinctly decreased the levels of AST and TBAs in the R0175 group compared with the
PC group. The changes in these two functional indexes, along with the improved HAI
scores, indicated the alleviation of hepatocyte injury and predicted a better prognosis
in the RO175 group than in the PC group.

In addition to pathophysiological damage, acute liver failure was also characterized
by the release of inflammatory mediators (25). Upon recognition of a foreign substance,
liver Kupffer cells (KCs) are activated, and a wide variety of inflammatory cytokines,
including proinflammatory cytokines (e.g., TNF-¢, IL-18, and IL-6) and chemokines
(MCP-1, MIP-1e, MIP-18, and CCL5), are released (26). Importantly, the proinflammatory
cytokines TNF-a and IL-13 were considered to make crucial contributions to the
pathophysiology and clinical outcomes of severe liver injury (27). The levels of TNF-«
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FIG 6 Metabolic biomarkers selected from the S-plot. (a and b) Metabolic biomarkers between the NC
and PC groups (a) and between the PC and R0175 groups (b).

and IL-1B were increased after liver injury, and the suppression of these two key
inflammatory mediators has been shown to attenuate the liver tissue damage (28). In
this study, in the probiotic group, we observed significant reductions in circulating
levels of TNF-« and IL-18, as well as the levels of other important chemokines (GM-CSF,
CXCL1, MIP-1a, MCP-1, and CCL5) that recruit inflammatory cells to the liver and
accelerate the progression of liver disorders. Notably, we found that the levels of TNF-q,
IL-1B, and chemokines were positively associated with the levels of AST, ALT, and TBAs.
These results suggest that the inhibition of systemic inflammatory responses may be
indispensable for the improvement of liver injury. Furthermore, among the different
effects reported for B. longum R0175 is the suppression of inflammation mediated
mainly by the reductions in the levels of proinflammatory cytokines, such as TNF-« and
IL-1B (29, 30), indicating that B. longum R0175 may prevent the development of acute
liver failure by counteracting systemic inflammation.

An altered microbiota has been described in different liver conditions. Thus, we
applied fecal microbiome sequencing to identify changes in the microbiota. We found
that A. muris was enriched in acute liver failure rats, and its relative abundance
positively correlated with the level of TNF-a. Recent evidence supported an association
of the prevalence of A. muris with colitis (31) and obesity (32). We also found a
significant increase in the relative abundance of A. muciniphila in rats after p-GalN
treatment and its positive association with inflammation (IL-13) and liver damage (AST
and ALT). Recently, evidence has been reported supporting the association of enriched
A. muciniphila with diseases such as type 2 diabetes (33) and multiple sclerosis (34).
Hence, it is necessary to further investigate the role and mechanism of A. muciniphila
in liver diseases. We further found that Butyricimonas spp. and B. virosa were more
abundant in the PC group than in the NC group, and the relative abundances of
Butyricimonas spp. and B. virosa were positively correlated with the concentrations of
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ALT, AST, IL-1B, TNF-e, and chemokines. Similar results have been observed in other
studies. The relative abundance of Butyricimonas spp. was increased in hepatocellular
carcinoma (HCC) patients with cirrhosis and may be a potential biomarker for HCC (35).
Ethanol-induced liver injury increased the relative abundance of Butyricimonas spp.,
which positively correlated with the levels of liver injury parameters such as AST and
ALT (36). The species B. virosa has been reported to be associated with bacteremia
(37-39). We also found that Oscillibacter spp. were enriched in rats treated with p-GalN
and that their relative abundance was positively associated with the levels of TNF-q,
IL-1B, and AST. Various animal experiments have demonstrated that an increase in the
relative abundance of Oscillibacter spp. played a pivotal role in various chronic meta-
bolic diseases, such as obesity (40), nonalcoholic fatty liver disease (NAFLD) (41),
steatohepatitis (42), and type 2 diabetes (43). The elevated relative abundance of
Oscillibacter spp. correlated with the severity of NAFLD (41). In our study, pretreatment
with B. longum R0175 significantly reduced the enrichment of Butyricimonas spp., B.
virosa, and Oscillibacter spp., indicating that the shifts in the relative abundances of
these microbes may be implicated in the protective effects of the probiotic against
acute liver failure in rats. Additionally, we found a positive association between the
relative abundance of Oscillibacter spp. and intestinal mucosal injury scores, which was
consistent with previous studies showing that the enrichment of Oscillibacter spp.
positively correlated with intestinal mucosal barrier impairment (40, 41). We found that

January/February 2020 Volume 5 Issue 1 e00791-19

mSphere’

msphere.asm.org 10


https://msphere.asm.org

Protection of B. longum R0175 on Acute Liver Failure

the R0O175 group harbored an increased relative abundance of bacteria of the genus
Alloprevotella, which can indirectly produce short-chain fatty acids (SCFAs). It has been
widely known that SCFAs are a major contributor to the maintenance of gut and
immune homeostasis (44). The relative abundance of Alloprevotella spp. has been
reported to be negatively associated with inflammation, insulin resistance, and obesity
(45), although we did not find any correlation between the relative abundance of
Alloprevotella spp., systemic inflammation, and liver injury. Thus, gut microbiota dys-
biosis was closely associated with the pathogenesis of p-GalN-induced acute liver
failure, and B. longum R0175 supplementation helped relieve the gut dysbiosis and
shifted the microbiota to a beneficial profile.

The gut microbiome has previously been described as a virtual metabolic organ (46).
Compared to that in the NC group, the fecal metabolic profile in the p-GalN-treated PC
group was altered with an increase in the LCA concentration. LCA is exclusively
produced by 7-hydroxylation reactions of bacteria in the large intestine, and this
conversion is usually performed by a restricted group of bacteria of the order Clostridi-
ales (47). The intestinal bile acid profile has been found to be associated with liver injury
in animal models (48), and an increase in LCA concentration has been observed in
patients with NAFLD (49). Intriguingly, the increase in LCA caused by p-GalN treatment
was reduced by B. longum R0175 supplementation. In addition, L-5-oxoproline, which
distinguished the PC group from the R0175 group, is an intermediate of the gamma-
glutamyl cycle of glutathione synthesis and degradation (50). Previous studies have
shown that following the administration of hepatotoxic substances, such as acetamin-
ophen (51) and bromobenzene (52), the L-5-oxoproline concentration increased in
different kinds of body fluid or tissue. L-5-Oxoproline has been proposed to be a new
and valuable biological marker for the diagnosis of nonalcoholic steatohepatitis (NASH)
(53). Notably, our results further showed a negative correlation between the enrich-
ment of fecal L-methionine and liver injury indexes. Methionine is an essential amino
acid that participates in the synthesis of protein. Its active form, S-adenosyl-L-
methionine (SAM), is involved in the proliferation, differentiation, and death of liver
cells (54). Reduction in SAM levels was related to progressive liver injury induced by
excessive alcohol consumption (55). Given the importance of methionine and its active
form (SAM) in the physiology and pathology of the liver, fecal methionine requires
further investigation.

As a universal probiotic, B. longum R0175 possesses many beneficial properties and
has been widely used in the clinic. This study explored its application in liver diseases
and surprisingly found that B. longum R0175 supplementation had a protective effect
against acute liver failure in rats. These findings indicated that in addition to its
psychotropic prospects, B. longum R0175 has other clinical application prospects that
should be explored. However, this study still had many limitations. First, the sample size
was not large enough to enable generalization to be made; second, although B. longum
R0175 was effective, many preliminary studies are needed to further investigate the
functions of this strain.

In summary, B. longum R0175 helped to improve liver injury and to ameliorate the
accompanying inflammatory changes in rats with acute liver failure. B. longum R0175
may exert these protective effects by modifying the gut microbiota dysbiosis and the
functional profiles.

MATERIALS AND METHODS

Strain and culture conditions. B. longum R0175 was purchased from Lallemand, Inc. (France). The
bacteria were cultured on Trypticase-phytone-yeast broth medium (RiShui, Ltd., Qingdao, China) in an
anaerobic environment (37°C) for 24 h. The bacteria were harvested by centrifugation (4,000 rpm for 10
min at 4°C) and resuspended at a final concentration of 3 X 102 CFU/ml for further use.

Experimental procedure. Male Sprague-Dawley (SD) rats (250 to 350 g) were purchased from
Shanghai SLAC Laboratory Animal, Co., Ltd. The rats were raised at room temperature (approximately
25°C) under a 12:12-h light-dark regime with free access to food and water. After a week of acclimati-
zation, the rats were randomly divided into the NC, PC, and R0O175 groups (n = 6 per group). Every group
has two cages (NC-1 and NC-2, PC-1 and PC-2, and R0175-1 and R0175-2), each cage housed three rats
together, and the groups were separated by the treatment. The rats in the R0175 group were orally
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administered 1 ml of B. longum R0175 solution (3 X 10° CFU/ml) per day, while the rats in the PC and NC
groups were administered an equal amount (1 ml) of sterile normal saline (NS) for 7 days. On the 8th day,
a 1.1-g/kg (of body weight) dose of p-GalN (G0500; Sigma, St. Louis, MO, USA) was injected intraperi-
toneally to induce acute liver failure in the rats in the PC and R0175 groups, whereas the rats in the NC
group received an equivalent dose of NS. The animals were sacrificed after 24 h. Rat feces were collected
before sacrifice, and inferior venous blood and tissues (the liver and ileum) were collected for further
experiments.

Liver function tests. Blood samples from the inferior vena cava were centrifuged (3,000 X g for 10
min at 4°C) to segregate the serum or plasma. The serum or plasma was stored at —40°C for further
analysis. The concentrations of ALT, AST, GGT, TBAs, TBil, and GPDA in the serum were determined using
a 7600 analyzer (Hitachi High-Technologies Corporation, Tokyo, Japan).

Plasma cytokine analysis. Plasma cytokine levels were quantified with a Bio-Plex rat cytokine
23-plex assay (Bio-Rad, CA, USA), in accordance with the manufacturer’s protocols. The cytokines that can
be evaluated by this kit include TNF-«, gamma interferon (IFN-v), granulocyte colony-stimulating factor
(G-CSF), GM-CSF, CXCL1, CCL5, macrophage colony-stimulating factor (M-CSF), MCP-1, MIPs (MIP-1« and
MIP-3a), VEGF, and ILs (IL-1¢, IL-1B, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12 p70, IL-13, IL-17«, and IL-18).

Histopathological examination. The tissues of liver and terminal ileum were collected, soaked in 4%
paraformaldehyde solution for fixation, and embedded in paraffin. The paraffin-embedded samples were
cut into 2-um sections, stained with hematoxylin and eosin (H&E), and finally observed under a light
microscope. Pathological hepatic tissue damage was evaluated by HAI scoring (56), and pathological
changes in intestinal mucosa were assessed as described previously (57).

SEM. Terminal ileum specimens were fixed in 2.5% glutaraldehyde (4°C) overnight and then
postfixed with 1% OsO, for 1 to 2 h. Then, the samples were dehydrated with a gradient of ethanol
solutions (30%, 50%, 70%, 80%, 90%, and 95%) for 15 min each, followed by two cycles of 100% ethanol
for 20 min each and dried in a Hitachi model HCP-2 critical point dryer. The dehydrated samples were
eventually coated with gold-palladium in a Hitachi model E-1010 ion sputter coater for 4 to 5 min. The
coated specimens were observed under a Hitachi model SU-8010 SEM for the structural analysis of
intestinal mucosal villi and microvilli.

Fecal microbiome sequencing. Fecal bacterial genomic DNA was extracted using a QlAamp fast
DNA stool minikit (Qiagen, Hilden, Germany) in accordance with the kit instructions. The total DNA was
eluted in 50 ul of nuclease-free water and stored at —80°C until further analysis. Specifically, barcoded
universal PCR primers targeting the V3-V4 region of the 16S rRNA gene were used for amplification (338F
5'-ACTCCTACGGGAGGCAGCAG-3" and 806R 5'-GGACTACHVGGGTWTCTAAT-3’). Following amplification,
the products were processed on a MiSeq platform based on the manufacturer's recommendations
(Ilumina, San Diego, CA). The raw tags were filtered in the specific filtration context to obtain high-
quality clean tags using fqtrim (v0.94). Sequences with =97% similarity were assigned to the same
operational taxonomic units (OTUs) using Vsearch (v2.3.4). Representative sequences were selected from
each OTU, and each representative sequence was given its taxonomic information using the Ribosomal
Database Project (RDP) Classifier. Multiple-sequence alignments were conducted to identify the differ-
ences in the dominant species in the different groups using the MAFFT software (v7.310) to describe the
phylogenetic relationships of the different OTUs. Since the quantity of the fewest sequences of our
sample was 63,480 after being filtered, the rarefied OTU data were generated from 1 sequence to 63,480
sequences per sample in steps of 20 by the step size of 3,341 sequences. The « diversity based on
normalized OTU data was used to analyze the complexity of the species diversity for the groups. The
indexes, including the Chao1, Shannon, and Simpson indexes, were used to represent the f
diversity. The rarefaction curves and these indexes were calculated using the software QIIME (v1.9.1).
Differences in the species complexities of the samples were evaluated by B-diversity analysis, which
was calculated with PCoA and cluster analysis produced by the QIIME software (v1.9.1).

Fecal metabolomics profiling. The fecal metabolomics analysis was carried out as described in a
previous study (58).

Fifteen milligrams of each fecal sample was mixed thoroughly with 800 ul of methanol (Sigma-
Aldrich, St. Louis, MO, USA) and then centrifuged and filtered through a 0.22-um filter (Millipore,
Billerica, MA, USA). The supernatant was transferred to a 1.5-ml tube containing 20 ul of 1 mg/ml
heptadecanoic acid (Sigma-Aldrich), which served as the internal standard. The mixture was dried
and concentrated with nitrogen (Aosheng, Hangzhou, China). The residue was resuspended in 15 ul
of 15 mg/ml methoxyamine pyridine solution (Sigma-Aldrich) and incubated for 24 h (37°C). Then,
50 ul of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS;
Sigma-Aldrich) was added, and the solution was incubated again for 2 h (70°C) for derivatization. The
products were subjected to metabolomics analysis using GC-MS on a 7890A GC system coupled to
a 5975C inert mass selective detector (MSD) system (Agilent Technologies, Santa Clara, CA, USA).

The data were analyzed using Qualitative Analysis B.07.00 (Agilent, Santa Clara, CA, USA). Metabolites
were identified using the NIST 17 database. The metabolic clustering between groups was evaluated by
OPLS-DA. A VIP value in the OPLS-DA model of >1 was taken as the standard criterion to measure the
influence of metabolites for sample classification. Metabolic biomarkers between groups were chosen
according to the S-plot of the OPLS-DA based on |P(1)| of >0.2 and |P(corr)| of >0.5. The KEGG database
and the Human Metabolome Database (HMDB) were used to search for metabolic pathways associated
with the characteristic metabolites.

Ethics statement. All procedures were performed according to the 2011 National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use
Committee of the First Affiliated Hospital, School of Medicine, Zhejiang University.
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Statistics. Whether the data satisfied the normal distribution criteria was determined by the
Kolmogorov-Smirnov test. If satisfied, ANOVA followed by post hoc least significant difference (LSD)
testing was used to analyze the significant differences between groups, and if not, a nonparametric
test (Wilcoxon rank sum test) was applied to analyze the significant differences between groups.
PERMANOVA and ANOSIM based on the unweighted UniFrac distance metrics were applied to
determine the clustering of the microbial communities. LEfSe (http://huttenhower.sph.harvard.edu/
galaxy/) was used to identify the taxa that explain the differences in microbial communities between the
NC and PC groups and between the PC and R0175 groups (59). Taxa with an LDA score of >2.5 or <—2.5
and a P value of <0.05 were considered to be significant in our study. Correlations between metabolites,
bacteria, immune function markers, and liver function indexes were calculated using Spearman'’s rho. If
the data satisfied the normal distribution criteria, they were presented as the mean = standard error of
the mean (SEM); if not, they were shown as median with interquartile ranges. The P value was adjusted
using the Benjamini-Hochberg method, and the criterion for a significant difference was set to <0.05.
SPSS version 20.0 was used for data analyses (SPSS, Inc., Chicago, IL, USA).

Data availability. All data generated or analyzed during this study are included in this published
article. The data sets generated during the current study are available in the GenBank Sequence Read
Archive repository under BioProject number PRINA575606.
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