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Abstract

The ocean is thought to be the terminal sink for poly- and perfluoroalkyl substances (PFAS) that 

have been produced and released in large quantities for more than 60 years. Regulatory actions 

have curbed production of legacy compounds such as perfluorooctane sulfonate (PFOS) and 

perfluorooctanoic acid (PFOA) but impacts of regulations on PFAS releases to the marine 

environment are poorly understood. Here we report new data for 21 targeted PFAS in seawater and 

plankton from the coast, shelf and slope of the Northwestern Atlantic Ocean. We find strong 

inverse correlations between salinity and concentrations of most PFAS, indicating ongoing 

continental discharges are the major source to the marine environment. For legacy PFAS such as 

PFOS and PFOA, a comparison of inland and offshore measurements from the same year (2014) 

suggests there are ongoing releases to the marine environment from sources such as submarine 

groundwater discharges. Vertical transport of most PFAS associated with settling particles from 

the surface 10 m to deeper waters is small compared to advective transport except for 

perfluorodecanoic acid: PFDA (35% of vertical flux) and precursor compounds to PFOS (up to 

86%). We find higher than expected bioaccumulation factors (BAFs = Cplankton/Cwater) for 

perfluorinated carboxylic acids (PFCAs) with five and six carbons (log BAFs = 2.9-3.4) and linear 

PFOS (log BAF = 2.6-4.3) in marine plankton compared to PFCAs with 7-11 carbons. We 

postulate that this reflects additional contributions from precursor compounds. Known precursor 

compounds detected in this study have among the highest BAFs (log BAFs > 3.0) for all PFAS in 

this study, suggesting additional research on the bioaccumulation potential of unknown 

organofluorine compounds is urgently needed.
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Introduction

Poly- and perfluoroalkyl substances (PFAS) are a class of more than 4700 anthropogenic 

chemicals that have been widely produced since the 1950s for diverse commercial and 

industrial applications.1-3 Human exposures to PFAS have been associated with adverse 

health effects such as immune suppression and metabolic disruption.4 Seafood consumption 

is a major pathway for PFAS exposure, accounting for 86% of mean chronic adult exposure 

to perfluorooctane sulfonate (PFOS) according to the 2018 review by the European Food 

Safety Authority.5,6 PFAS concentrations in seawater and marine plankton drive 

accumulation in marine food webs.7,8 Prior work has examined the distribution and 

composition of PFAS in seawater from different regions.8-16 However, there is still limited 

understanding of the how temporal shifts in sources and biogeochemical processes affect 

uptake and accumulation of PFAS at the base of marine food webs.8,17

Regulatory actions targeting legacy PFAS such as PFOS have led to shifts chemical 

production toward PFAS with shorter carbon chains and polyfluoroalkyl compounds.18 

PFOS and its precursors were voluntarily phased out by the main global manufacturer 

between 2000-200219 and the stewardship program by the US Environmental Protection 

Agency (US EPA) for perfluorooctanoic acid (PFOA) has been very successful at reducing 

chemical production and environmental releases.20 However, many PFAS are not known to 

degrade21 and the ocean is thought to be the terminal sink following riverine transport 

through terrestrial ecosystems.22-24 Understanding the persistence of historical PFAS 

releases to the marine environment is thus important for characterizing exposure risks for 

wildlife and seafood consumers.

Prior modeling work1,23,25 has aimed to better understand PFAS transport and accumulation 

over large spatial and temporal scales. Given a lack of observational constraints, most 

modeling simulations have assumed transport of PFAS from terrestrial ecosystems to the 

ocean generally occurs within a year (Table S5)23 or that mixing with seawater occurs 

instantaneously following continental releases.26,27 This assumption limits the potential lag 

time between phase out of contamination sources and changes in inputs to marine regions. 

However, ongoing releases from historical stockpiles and PFAS contaminated groundwater, 

widely discussed in the context of drinking water, may result in delayed transport to ocean 
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margins through rivers and submarine groundwater discharges.28,29 Atmospheric transport 

of precursor compounds that degrade into more stable end products is thought to be an 

important transport mechanism for some coastal regions.12,30,31 Contemporary 

measurements of PFOS concentrations and composition in coastal and offshore regions are 

needed to provide insight into such sources.

Most traditional persistent organic pollutants (POPs) are hydrophobic and partition readily 

to suspended particles in aquatic ecosystems. Settling and burial of these particles provides 

an efficient removal mechanism for such compounds.32-34 By contrast, many PFAS are 

ionized in the aqueous environment and thus more hydrophilic and not volatile.35 Prior work 

has suggested that settling particles may still provide a significant removal pathway for 

PFAS in marine ecosystems.8 By contrast, the modeling work of Zhang et al.23 suggests 

vertical advection is the predominant pathway for PFOS to reach the deep North Atlantic 

Ocean and particle settling accounts for less than 1% of the PFOS removal from the surface 

ocean. Additional data on concentrations of long and short chain PFAS in marine plankton 

are needed to support such inferences.

The main objective of this work is to better understand factors affecting the distribution and 

abundance of PFAS in seawater and marine plankton from the ocean margin. We present 

new data on a suite of PFAS measured in samples collected from coastal/shelf and slope 

regions of the Northwestern Atlantic Ocean. We use these data to better understand: (1) the 

significance of continental discharges of freshwater as an ongoing source of legacy and new 

PFAS to the marine environment, (2) processes affecting the vertical distribution of PFAS in 

the marine water column, and (3) accumulation of PFAS at the base of the marine food web.

Methods

Sample collection

We collected surface (1-5 m depth) and subsurface (6-250 m) seawater samples from 21 

coastal/shelf and slope stations using a CTD-Niskin bottle rosette array (SBE 911+, Sea-

Bird Electronics) on board the R/V Endeavor between August 23-28, 2014. Sites occupied 

were located in the Northwestern Atlantic Ocean between Rhode Island Sound and the 

Eastern Shore of Virginia (41.43°N, 71.42°W – 36.55°N, 75.85°W, Figure 1, Table S1). This 

region is part of the Mid-Atlantic Basin and receives freshwater inputs from four major river 

systems (Hudson, Delaware, Susquehanna and Potomac, Figure 1). More than 60 million 

people reside within the watersheds of these rivers (approximately 20% of the US 

population). Sampling depths were selected based on in situ CTD measurements of the 

vertical profiles of temperature, salinity and Chl-a. Generally, we obtained one sample 2 m 

above the seafloor and one sample at the depth where temperature, salinity and/or Chl-a 

showed substantial variation.

Sample bottles (1L high-density polyethylene) were rinsed three times with methanol, air 

dried in a clean laboratory, and rinsed three times with seawater in the field before sampling. 

Salinity, temperature and chlorophyll a were also measured at each station using a CTD 

device on board (Table S1). Plankton were collected at selected stations by dragging a net (1 

m2 opening, 335 μm mesh) at 1 m below the ocean surface for approximately 5 minutes 
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(stations 1, 6, 7, 10, 11, 14, and 15 on Figure 1). Samples were washed off the net with 

seawater into an HDPE jar (1 L). All samples were stored at −20°C onboard and in the 

laboratory before analysis in 2016.

PFAS Extraction and Analysis

Seawater samples were extracted following the method by Taniyasu et. al.36 Before 

extraction, each sample was thawed to room temperature, spiked with 50 uL of 0.02 ng μL−1 

mass labeled PFAS mixture (Wellington; Guelph, Canada) as internal standards and 

equilibrated overnight. Weak ion exchange SPE cartridges (Waters Oasis Wax, 6 mL, 150 

mg sorbent) conditioned by sequentially eluting with 5 mL, 0.1% NH4OH in methanol, 5 

mL methanol, and 5 mL milli-Q water were used to extract and concentrate PFAS in 1-litre 

bulk seawater. Samples were shaken vigorously for homogenization and loaded onto the 

SPE cartridges with a flow rate of 2 drops per second. After sample loading, each bottle was 

rinsed with 20 mL milli-Q water and loaded to the SPE cartridge. The SPE cartridges were 

then washed with 5 mL 25 mM sodium acetate buffer before being eluted with 5 mL 

methanol and 5 mL of 0.1% NH4OH in methanol to a 15 mL polypropylene centrifuge tube 

(Corning). The extracts were concentrated to 0.5 mL using a ZIPVAP nitrogen evaporator, 

transferred to 1.5 mL polypropylene autosampler vials, and mixed with 0.5 mL milli-Q 

water before instrumental analysis.

Plankton samples were first separated from the liquid phase via centrifugation. Each 

unfiltered sample was transferred to a 50 mL polypropylene centrifuge tube and centrifuged 

at 6000 rpm for 10 min. The supernatant liquid was removed and the procedure repeated 

until all plankton were separated. Wet weights (ww) and dry weights after freeze drying 

overnight were recorded. For each plankton sample, approximately 2 g ww equivalent was 

placed in a 15 polypropylene centrifuge tube and spiked with 50 μL of 0.02 ng μL−1 mass 

labeled PFAS mixture as internal standards (Wellington; Guelph, Canada, Table S2). Each 

sample was extracted twice by mixing with 4 mL 0.25 M sodium carbonate, 0.5 mL 0.5 M 

tetra-bultyl ammonium solution (pH =10) and 5 mL methyl-tert-butly ether (MBTE) on a 

horizontal mixer at 250 rpm for 30 min. The MBTE supernatants (10 mL) from the two 

extractions were combined and the solvent was further reduced to 0.5 mL methanol using a 

ZIPVAP nitrogen evaporator. The extract was transferred to a 1.5 mL polypropylene 

autosampler vial and mixed with 0.5 mL milli-Q water before instrumental analysis.

Sample extracts were analyzed for 21 PFAS (Table S2 provides their full names and 

abbreviations) using an Agilent 6460 LC-MS/MS system equipped with an Agilent 1290 

Infinity Flex Cube online-SPE. Each 300 μL extract was loaded into an Agilent Zorbax SB-

Aq (4.6×12.5mm; 5μm) online SPE column and eluted with 0.85 mL 0.1% (v:v) formic acid 

at a flow rate of 1 mL min−1. Analytes from the SPE column were loaded to an Agilent 

Poroshell 120 EC-C18 (3.0×50mm; 2.7μm) reverse phase HPLC column using ammonium 

acetate (2 mM) in methanol and water as the mobile phase. At a flow rate of 0.5 mL min−1, 

the elution gradient was linearly increased from 3% methanol to 60% for 7 minutes, held for 

1 minute, then linearly increased to 100% methanol for 3 min, which was maintained until 

the end of the sample run (14 min).

Zhang et al. Page 4

Environ Sci Technol. Author manuscript; available in PMC 2020 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



At the LC-MS interface, the capillary voltage was set at −3.8 kV and nitrogen nebulizer gas 

was set at 45 psi and 13 L min−1. Analytes were introduced to the tandem mass spectrometer 

after being ionized with an electrospray ionization source operated in negative ion mode at 

300 °C. The dynamic multiple reaction monitoring mode (5.0 grade N2 as the collision gas) 

was used for data acquisition. To eliminate any potential carry-over, methanol was injected 

and passed through the system after every sample (or calibration standard).

Branched isomers for PFOA and PFOS were quantified using calibration standards for the 

linear isomers, assuming the same instrumental response factor. For PFAS with detection 

frequencies of greater than 70% (Table S3), we include non-detects in statistical analyses 

using the Robust Regression on Order Statistics approach for censored log-normally 

distributed environmental data, as described by Helsel.37 Individual sample concentrations 

reported here represent direct measurements. Other PFAS with lower than 70% detection 

frequencies were not considered in statistical data interpretations.

Quality Assurance

To minimize blank concentrations during instrumental analysis, we replaced all Teflon 

tubing with stainless steel, as described in previous work.22,29 A guard column was installed 

between the mobile phases and online SPE column to removal potential contamination in the 

solvent. At least one negative control (field or procedural blank) and one positive control 

(spiked with 2 ng of the 21 PFAS in 500 mL water) were included in each extraction batch. 

Whole method recoveries tested using the positive controls were 62-117%, which is 

comparable to recoveries reported by previous studies.36,38,39 Potential analyte loss during 

sample preparation was corrected using internal standards spiked prior to sample extraction. 

The limit of detection (LOD, Figure 2) was defined as equivalent to the blank plus the 

concentration corresponding to a signal-to-noise ratio of three. Duplicate samples were 

taken at sites 3 (20 m), 4 (21 m), 7 (2 m), 13 (3 m), and 21(43 m) and the relative difference 

between duplicates was 20±15%. Stations with duplicate samples are reported as averaged 

values. Five field blanks (1L HPLC grade water added to the CTD tube and then transferred 

to the sampling bottle), prepared following the same sample preparation procedures as 

described above, were all below instrument detection limits.

Results and Discussion

PFAS detection, and concentrations in seawater

Eight of the targeted 21 PFAS (PFBS, PFHxS, PFOS, PFHxA, PFHpA, PFOA, PFNA and 

PFDA) were detected in over 70% of the surface seawater samples (Table S3). The 

remaining 13 PFAS were detected in less than 40% of all the samples. Summed 

concentrations of the eight frequently detected PFAS (Σ8PFAS) were <660-4070 pg L−1 in 

surface seawater samples and <470-3970 pg L−1 in subsurface samples. The most abundant 

PFAS in surface and subsurface seawater were PFOS (linear + branched: <110-910 pg L−1), 

PFHxA (<155-1000 pg L−1) and PFOA (linear + branched: <93-900 pg L−1) (Figure 2, 

Table S3). In all the 20 surface seawater samples collected in this study, PFOS (linear + 

branched) exceeded the European environmental quality standard (130 pg L−1, based on 

annual average exposure).40
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The highest concentration of Σ8PFAS in both surface and subsurface seawater was found at 

Station 11 near Delaware Bay (Figure 1). Surface seawater from Station 11 had the highest 

concentrations of PFOS (830 pg L−1), and PFCAs (PFHxA: 1000, PFHpA: 330, PFOA: 940, 

PFNA: 550, PFDA: 120 pg L−1). The highest surface seawater concentrations of PFBS (180 

pg L−1) and PFHxS (240 pg L−1) were found Station 7, near New Jersey (Figure 1). Both of 

the high concentration sites are adjacent to highly populated coastal watersheds that host 

diverse consumer and industrial PFAS uses.23

Coastal/shelf stations (1-15) had significantly higher (p<0.05) PFAS concentrations than 

slope stations (16-21) based on a one-tailed t-test for log-transformed concentrations of each 

detected PFAS in surface and subsurface seawater (Figure 2, Table S4). At the coastal/shelf 

stations, surface concentrations of PFBS (geometric mean: 45 pg L−1), PFHxS (130 pg L−1), 

and PFOA (370 pg L−1) were significantly higher than subsurface samples (PFBS: 35, 

PFHxS: 95, PFOA: 180 pg L−1, Figure 2). For slope stations, surface samples (1-5 m) were 

significantly higher than subsurface samples (10-240 m) for PFHxS (65 vs. 34 pg L−1), 

PFOS (190 vs. 110 pg L−1), PFHxA (200 vs. 120 pg L−1), PFHpA (44 vs. 19 pg L−1), PFOA 

(120 vs. 54 pg L−1), and PFNA (45 vs. 17 pg L−1). Differences between surface and 

subsurface samples for a greater number of PFAS at the slope compared to the coast likely 

reflects the deeper sampling depths at slope stations and less turbulent mixing of PFAS from 

surface water to depth compared to shallower waters.

Continental discharges are the main source of PFAS to the marine environment

Figure 3A shows the results of principal components analysis (PCA) on log-transformed and 

unit variance scaled concentrations of the eight frequently detected PFAS. The first two 

principal components (PC1 and PC2) account for 83.2% and 4.8% of the data variance. The 

coastal/shelf sites have higher scores for PC1 than the slope sites. PC1 has positive loadings 

for all the PFAS (Figure 3B) and is highly correlated with salinities of the seawater samples 

(Figure 3C). PFBS, PFHxS and PFDA have positive loadings for PC2. Results of the PCA 

suggest rivers are the dominant source of all PFAS detected in seawater. We hypothesize that 

PFAS with elevated loadings of PC2 also have additional input sources, such as atmospheric 

deposition and degradation of precursor compounds (Figure 3B).1,41,42

Consistent with results from the PCA, there was a strong inverse linear relationship between 

declining seawater salinity and concentrations of all eight frequently detected PFAS among 

coastal/shelf stations (1-15, rs =−0.6 to −0.8, p <0.001, Figure 3, Figure S1, Table S5). 

Significantly lower salinity at the surface of coastal/shelf stations (paired t-test, p <0.001) 

reinforces that this enrichment reflects ongoing inputs from rivers. The intercepts of the 

regressions between individual PFAS in coastal/shelf seawater and salinity (Table S5) 

provide an indication of PFAS concentrations in continental releases entering the marine 

environment via riverine discharge. These values ranged from 510 pg L−1 for PFDA to 6750 

pg L−1 for PFOS and fall within the range of PFAS concentrations we measured in inland 

and estuarine surface water from the same region in the same year (Table S5).22

The ratios between the regression intercepts and median inland surface water concentrations 

should be close to one if all PFAS in nearshore seawater originated from continental 

discharges. We find the ratios for PFOS (8.9) and PFNA (6.7) are much higher than the 
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range 2.0-3.0 for most PFAS (Table S5). This suggests seawater concentrations of PFOS and 

PFNA reflect a combination of ongoing inputs from rivers and legacy accumulation from 

historic discharges. Submarine groundwater discharge is an important hydrological process 

for the coastal and shelf region of this study.43 In groundwater, PFAS have much longer 

transport times from sources to marine ecosystems than surface water.28,29

For PFBS, only 25% of the variability in measured concentrations can be explained by 

salinity (Figure 3F) and loadings of PC2 are high (Figure 3B). PFBS and its precursors such 

as methyl perfluorobutane sulfonamide (MeFBSA) and sulfonamidoethanol (MeFBSE) are 

being produced as a replacement for PFOS and transformation of volatile precursors can 

result in. deposition of PFBS to the surface ocean.1,44,45 Highest concentrations of PFBS 

were detected next to coastal regions with large population centers such as the mouth of the 

Hudson River basin (Station 7) and the Connecticut River (Station 3) (Table S3). The 

watersheds of these rivers are known to contain many industries that use and release PFAS.3 

PC2 loadings in the PCA (Figure 3B) and the relatively weak relationship between PFBS 

and salinity are suggestive of other source contributions such as atmospheric deposition.
1,44,45

Evidence for ongoing sources of legacy PFAS to the marine environment

Figure S2(A) shows a linear correlation between PFOS and PFOA across all stations (R2 = 

0.65, p<0.05). The slope of the regression relationship is close to one (0.89±0.09, Figure 

S2). This is consistent with primary inputs from aquatic discharges (rivers or groundwater) 

because high atmospheric inputs from precursor degradation are generally reflected by 

relative enrichment in PFOA.1,25,46,47

Figure S2(B) shows a linear relationship (R2 = 0.90, p<0.05) between PFOA and PFNA, 

suggesting that PFNA inputs have been changing concurrently with PFOA and PFOS. 

Stations with the highest concentrations of PFNA (near Delaware Bay: 10, 11 and 

Chesapeake Bay: 14, 15) are outliers to this relationship. This may reflect continued inputs 

of PFNA adjacent to highly populated watersheds. PFNA in seawater for other regions 

sampled appears to be dominated by historical inputs, as supported by the comparison with 

inland measurements from the same year.22

Figure S3 compares seawater PFAS concentrations measured in this study (August 2014) to 

those measured in four samples surface seawater of the same region in July 2009.46 

Maximum concentrations of PFOS in 2014 were one third of peak values measured in 2009 

but average PFOS concentrations were not significantly different between 2009 and 2014. 

For PFOA, maximum concentrations concentration were 20% lower in 2014 but not 

statistically different than average concentrations reported in 2009. These statistical 

comparisons are limited by scarce sample numbers, reinforcing the need for additional 

seawater monitoring data to infer temporal trends in response to regulatory measures.

New data collected in this study suggest rivers are still a source of inputs of legacy PFAS 

(PFOS, PFOA, PFNA) and that concentrations in the marine environment reflect a 

combination of new and historic inputs. While there is some evidence for a decline in peak 

concentrations, data are currently insufficient to interpret temporal trends. Prior emission 
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inventories1,2 and modeling studies1,23 have assumed that environmental releases of legacy 

PFAS such as PFOS would end in less than a decade. These estimates were based on shifts 

in chemical production, the expected lifetimes of products containing these chemicals, and 

assumed declines in inputs to the marine environment and concentrations in rivers that 

parallel production trends. Such assumptions imply that concentrations in U.S. rivers 

entering the marine environment should be below detection by 2014 for legacy compounds 

like PFOS and PFOA that have been largely phased out of production. However, coastal/

shelf measurements together with our previously reported inland surface water data22 

suggest ongoing releases both within the watershed and to the marine environment. This 

observed lag time between source regulation and loadings to ocean margins may be 

explained by the significance of groundwater contamination with legacy PFAS in the 

Northeastern U.S.,29,48 and groundwater-surface water exchanges. Groundwater requires 

much longer to be transported to the marine environment (decades to centuries)49 compared 

to surface water inputs.23

Detection and accumulation of PFAS in plankton

Tables S5 and S6 show concentrations of PFAS measured in marine plankton and their 

bioaccumulation factors (BAF = Cplankton/Cwater). BAFs for marine plankton (<334 μm) 

were highest for PFPeA and PFHxA (log BAF = 2.9-3.4) and linear PFOS (log BAF = 

2.6-4.3) and lowest for PFOA (log BAF = 1.7-2.6) and branched PFOS (log BAF = 1.7-2.8) 

(Figure 4). Lower BAFs for branched compounds may reflect steric effects that inhibit 

uptake and accumulation.8,50 Previous studies of marine and freshwater plankton have 

reported ranges for PFOS (log BAF = 2.6-4.3) and PFOA (log BAF = 1.7-2.6) that agree 

well with our study.8,51-55

We found that BAFs for C7-C11 PFCAs increased linearly with carbon chain length but 

were higher than expected for the C5 and C6 carboxylates (Figure 4A-B). Station 1 

consistently had the highest BAFs for all compounds and the lowest values were observed at 

Station 6. The differences in BAF between Station 1 and 6 can be attributed to variability in 

dominant plankton communities. Different size distributions and over two orders of 

magnitude spatial variability in the abundance of different types of plankton species within 

the region have been shown by previous studies.56-59 Slopes of the increase in BAF between 

C7 and C11 PFCAs were not significantly different across sampling locations (Tukey 

multiple comparison, p > 0.371), suggesting similar processes governing food web uptake 

across these compounds (Figure 4B). The average increase in BAF per CF2 group increase 

was 0.76 ± 0.06 log units. Based on the systematic variability across stations, we 

hypothesize that this reflects differences in plankton community composition56-59 that affect 

uptake of PFAS such as cell surface area available for sorption. The similarity in slopes for 

BAF increases from C7-11 PFCAs across sites suggests hydrophobic interactions introduced 

by the CF moiety rather than the charged polar carboxylate group drive interactions between 

PFAS and plankton.

We found higher concentrations of the C-5 (PFPeA) and C-6 (PFHxA) carboxylates in 

plankton than expected based on simple partitioning (Figure 4, log BAF = 2.9-3.4). We 

hypothesize that this may reflect additional uptake of precursors from seawater such as 6:2 
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FtS that are subsequently transformed in C-5 and C-6 carboxylates.60-62 Casal et al.8 also 

frequently detected PFPeA in marine plankton but did not report a BAF because 

concentrations in seawater were below their limit of quantification (LOQ). Using their LOQ 

of 0.6 pg L−1 PFPeA in seawater as the maximum possible concentrations, we estimate log 

BAFs between 2.1 to >3.3,8 which is similar to results reported here.

Similar to our results for plankton, Joerss et al.63 found C4-C6 PFCAs had higher than 

expected sediment-organic carbon partition coefficients (Koc) based on the relationship with 

carbon chain length generally observed for other PFCAs. BAFs for plankton are generally 

1-2 orders of magnitude higher than sediment/water partition coefficients (Kd) reported in 

the literature.64-66 This may reflect higher affinity of living cells for PFAS uptake into 

structurally similar phospholipid bilayers compared to organic matter complexation.67

We consistently detected several precursor compounds such as 6:2 fluorotelomer sulfonate 

(6:2FtS), perfluorooctane sulfonamide (FOSA) and N-ethyl perfluorooctane sulfonamide 

acetic acid (EtFOSAA) in plankton samples collected in this study (Table S6). Seawater 

concentrations were frequently below detection so we estimated the lower bound for BAFs 

using the LOD for seawater (Table S7). We estimate based on this calculation that log BAFs 

must be greater than 3.7 for FOSA, greater than 3.1 for EtFOSAA, and greater than 3.0 for 

6:2 FtS. At Station 15, we estimated the log BAF for 6:2 FtS was greater than 1.7, which is 

likely an outlier. Together, these results suggest commonly detected precursor compounds in 

the marine environment have similar or higher BAFs than most legacy PFAS. Higher BAF 

values for linear PFOS than expected based on carbon chain length thus also likely reflects 

additional inputs to plankton from precursors such as FOSA and EtFOSAA that degrade into 

PFOS. We previously documented the significance of precursors for bioaccumulation of 

PFAS in a North Atlantic pilot whale food web, where FOSA represented the major fraction 

of the exposure of pilot whales prior to the phase out in production of the parent chemical 

between 2000-2002.68

Limited vertical transport of PFAS associated with particles in the marine water column

Vertical settling of marine particles (the biological pump) is an important contributor to the 

removal of many persistent organic pollutants (POPs) such as polychlorinated biphenyls 

(PCBs) from ocean surface waters.33,34,69 Many PFAS exist as stable ions in solution and 

thus have less propensity for particle-associated transport than hydrophobic POPs like PCBs. 

However, several studies have suggested the biological pump is an important mechanism for 

vertical PFAS transport in the water column.8,70

In this study, the vertical distribution of PFAS measured in unfiltered seawater was not 

correlated with primary productivity, as indicated by Chl a concentrations (Figure 5, Figure 

S4). This is not surprising based on the estimated fraction of PFAS associated with the 

particle phase across sampling stations. For the C4 and C6-PFSAs (perfluoroalkanesulfonic 

acids) and C5-C9 PFCAs, solids accounted for less than 5% of the PFAS mass in the water 

column (Table S8). The linear isomer of PFOS has greater affinity for plankton than the 

shorter chain PFSAs and PFCAs, as reflected by the higher BAF (Figure 4). Across 

sampling locations, 1.5-26% of linear PFOS, <0.8-5.2% of branched PFOS and <4.9-15.8% 

of total PFOS was bound to plankton in surface seawater (Table S8).
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We compared the estimated magnitudes of vertical PFAS fluxes due to particle sinking and 

advective transport in seawater using vertical transport fields for the study region (42°N, 

71°W – 36°N, 76°W) from the Estimating Circulation and Climate of the Ocean (ECCO-

GODAE) data product71,72 (Tables S9-S10, Equations S1-S5 and related text in the SI). For 

most compounds, the vertical flux out of the surface (0-10 m) associated with settling 

particles was smaller than that associated with advective transport (Table S11). For example, 

we estimate that fluxes below 10 m depth associated with settling particles account for up to 

18% of the vertical PFOS, less than 7% of the C5-C9 PFCAs, and up to 31% of PFDA. 

Exceptions to this pattern occur at coastal sites with relatively high productivity and high 

concentrations of PFOS precursors (e.g., site 10, Chl a = 1.7 mg m−3 EtFOSAA: 19 ng g−1 

ww) where the settling particles can account for up to 86% of the EtFOSAA vertical 

transport below 10 m depth. Overall, these results suggest particle associated transport does 

not strongly affect the vertical distribution of PFCAs and PFSAs with less than 8 carbons but 

can be important for long-chain PFCAs and some PFAS precursors.

In summary, this study indicates biological uptake of PFCA and PFSA precursors such as 

6:2 FtS and EtFOSAA are important for observed concentrations of PFAS in marine food 

webs, suggesting additional research is warranted. In addition to the precursor compounds 

measured in this study, total organofluorine mass budgets73 suggest there are many potential 

unknown precursors to PFCAs and PFSAs that may also be important for bioaccumulation 

of PFAS and assessment of risks to human and ecological health. Our findings suggest 

contributions from precursors to bioaccumulation of degradation products such as the C-5 

and C-6 PFCAs and PFOS should be considered in regulatory evaluations of risks associated 

with source releases. Data presented here indicate inventories that only account for direct 

releases of PFCAs and PFSAs may underestimate bioaccumulation in marine food webs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Locations of sampling stations for seawater and plankton (denoted by *) for analysis of 

poly- and perfluoroalkyl substances (PFAS). Stations were occupied as part of the ENV545 

cruise on the R/V Endeavor between August 23-28, 2014. Blue arrows indicate predominant 

directions of ocean currents in the region.

Zhang et al. Page 15

Environ Sci Technol. Author manuscript; available in PMC 2020 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Concentrations of the eight frequently detected PFAS in seawater from the Northwestern 

Atlantic Ocean margin. Panel (A) shows coastal/shelf sites and Panel (B) shows slope sites. 

The Limit of Detection (LOD, Table S3) for each PFAS is indicated by the dotted line. 

Surface samples are denoted by light green/orange colors and subsurface samples are 

colored dark green/orange. Significantly different concentrations based on paired one-tailed 

t-tests for log-transformed concentrations at p < 0.05 is denoted by * and by ** for p-values 

<0.01.
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Figure 3. 
Relationship between concentrations of PFAS in seawater and salinity. Numbers on the plot 

correspond to sampling stations shown in Figure 1. Surface and subsurface sites are 

indicated by light and dark colors. Coastal/shelf stations are green and slope stations are 

orange. Panels (A) and (B) show scores and loadings of principal component analysis (PCA) 

on log-transformed and unit variance scaled PFAS concentrations. Panel (C) shows the 

correlation between PC1 scores and salinity (rs = 0.88, p<0.001). Panels (D-F) show linear 

relationships between PFOS, PFOA and PFBS in seawater from coastal/shelf stations. 

Figure S1 and Table S5 show relationships for other PFAS.
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Figure 4. 
Empirically derived bioaccumulation factors (BAFs) for marine plankton (L kg−1 wet 

weight) for linear perfluorocarboxylic acids (PFCAs, panel A and B) and linear (n-) and 

branched (br-) perfluorooctane sulfonate (PFOS, panel C) as a function of their carbon chain 

lengths. The regression line based on all data for the C7 to C11 PFCAs is shown by the 

black line of panel (B) and the grey shaded region represents the 95% confidence interval of 

predictions. Colored lines in panel (B) indicate regressions across individual sampling 

stations. Symbols indicate individual measurements.
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Figure 5. 
Vertical profiles of PFAS, chlorophyll a (mg L−1, green dot line), salinity (PSU, purple dash-

dot line) and temperature (°C, orange dash line). Concentrations of PFOS and PFOA include 

both linear and branched isomers. Data for all the other sites are presented in Figure S4.
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