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Abstract

Obtaining one or more low scores, or scores indicative of impairment, is common in 

neuropsychological batteries that include several measures even among cognitively normal 

individuals. However, the expected number of low scores in batteries with differing number of 

tests is unknown. Using 10 neuropsychological measures from the National Alzheimer’s 

Coordinating Center database, 1,023 permutations were calculated from a sample of 5,046 

cognitively normal individuals. The number of low scores (i.e., z-score≤1.5) varied for the same 

number of measures and among different number of measures, and did not increase linearly as the 

number of measures increased. According to the number of low scores shown by fewer than 10% 

of the sample, cognitive impairment should be suspected for one or more, two or more, and three 

or more in batteries with up to two measures, 3–9 measures, and 10 measures respectively. These 

results may increase the identification of mild cognitive impairment.
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Neuropsychological assessment is essential to determine cognitive functioning both in 

healthy individuals and in individuals with different neurological diseases (Looi & Sachdev, 

1999; McKhann et al., 2011). Clinicians routinely administer a number of 

neuropsychological tests to assess several cognitive domains, and cognitive impairment is 

suspected when any individual score in the battery is lower than a predefined cut-off point 

(e.g., z-score≤1.5, z-score≤2). However, in some neurological diseases with cognitive 

impairments such as Mild Cognitive Impairment (MCI), the utility of this approach has been 

debated (Albert et al., 2011; Winblad et al., 2004) due to the probability of obtaining one or 

more low scores when a battery of tests is administered. A recent meta-analysis reported that 

studies analyzing the risk of progression from MCI to Alzheimer’s disease (AD) included on 

average 9.94 tests (Oltra-Cucarella, Ferrer-Cascales, et al., 2018). Because the likelihood of 
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obtaining one or more low scores increases as the number of measures in the battery 

increase (Binder, Iverson, & Brooks, 2009; Brooks, Iverson, & White, 2007), the use of a 

single low score may increase the number of false positive MCI diagnoses (Bondi et al., 

2014; Edmonds et al., 2015; Jak et al., 2009; Oltra-Cucarella, Sánchez-SanSegundo, et al., 

2018).

One of the main limitations of using multiple neuropsychological measures in the 

assessment of individuals with neurological diseases is related to the concept of 

independence of these measures (Crawford, Garthwaite, & Gault, 2007). For instance, if the 

Trail Making Test (A and B), a test of processing speed and divided attention (Reitan, 1958; 

Strauss, Sherman, & Spreen, 2006), is administered in isolation, a normal distribution of 

scores could be expected for each variable in the absence of ceiling or floor effects. The 

standard procedure, however, is to administer part B after part A (Strauss et al., 2006), and 

thus independence of performance on part B cannot be assumed. Yet, normative data do not 

calculate transformed scores on part B taking account of performance on part A. 

Performance on parts A and B are treated as independent when, in fact, a moderate 

correlation (r = .31−.6) between these measures has been reported (Strauss et al., 2006, p. 

668).

A second concern, related to independence, is the number of low scores in the battery 

associated with normal cognitive variability. It has been reported that the number of healthy 

individuals obtaining one or more low scores is expected to increase as the number of 

measures in the battery increases, and the cut-off defining low scores increases. Previous 

research showed a number of low scores in batteries used to obtain normative data (Brooks 

et al., 2007), in healthy children and adolescents (Brooks, Iverson, Sherman, & Holdnack, 

2009; Brooks, Sherman, & Iverson, 2010), in healthy older adults (Palmer, 1998), and 

through Monte Carlo simulation (Crawford et al., 2007). For instance, Palmer et al. (1998) 

examined 132 neurologically and psychiatrically healthy older adults using a battery of 10 

measures from 5 memory tests, and found that nearly 40% had one or more low scores and 

nearly 17% had two or more low scores (i.e., ≥1.28 SD below the mean). Brooks et al. 

(2007) analyzed performance of 742 healthy community-dwelling adults from the 

Neuropsychological Assessment Battery standardization sample. When the Memory module 

including ten measures from four tests was analyzed, the base rate of low scores 

approximated the expected values based on the normal distribution. Again, the percentage of 

individuals obtaining one or more low scores increased considerably for all the cut-off points 

used to define abnormality, a finding that was replicated in different age groups.

To analyze the influence that the correlation among measures in a battery may have on the 

base rate of low scores, Crawford et al. (2007) programmed a Monte Carlo simulation and 

used four different correlations among ten measures. They found mixed results. The 

probability of obtaining one or more low scores (i.e., z-score≤−1.64) decreased as the 

correlation among measures increased. Thus, for a battery with 10 measures, 40.10% would 

obtain one or more low scores for r=0, whereas 18.55% would obtain one or more low 

scores for r=0.7. However, for two or more low scores the direction of this effect reversed. 

The probability of obtaining two or more low scores were 1.40%, 3.29% and 8.64% for 

batteries including 4, 6 and 10 measures respectively for r=0, and raised to 11% for batteries 
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including ten measures for r>0. These results clearly show that the correlations between tests 

are one of the factors that need to be taken into account when considering the base rate of 

low scores.

For these reasons, the use of a single low score to identify cognitive impairment may 

increase the number of misdiagnoses. Thus, knowing the base rate of one or more low scores 

when several measures are administered would help to identify cognitive functioning in a 

more realistic manner. To allow for normal variability in cognitive testing, several 

approaches have analyzed the inclusion of more than one low score to define abnormality in 

neuropsychological assessment (Bondi et al., 2014; Jak et al., 2009; Oltra-Cucarella, 

Sánchez-SanSegundo, et al., 2018). Bondi et al. (2014) analyzed three cognitive domains 

using 6 measures, Jak et al. (2009) analyzed five cognitive domains using 24 measures, and 

Oltra-Cucarella et al. (2018) analyzed the number of low scores shown by the worst 

performing 10% of the sample. Another major difference between these procedures is the 

cut-off point used to define low scores, which varied from 1SD below the mean in Jak et al. 

(2009) and Bondi et al. (2014) to 1.5SD below the mean in Oltra-Cucarella et al. (2018).

The approaches by Jak/Bondi and by Oltra-Cucarella et al. have shown how the use of 

standard criteria may incorrectly classify a proportion of cognitively normal individuals as 

cognitively impaired, and have proven to be more effective to identify those who progress 

from MCI to AD. However, some questions remain unanswered:

1. Does the number of low scores differ with differing number of measures in the 

battery?

2. Does the number of low scores increase linearly as the number of measures 

increase?

3. Does the number of low scores relate to the correlation among measures?

The answer to these questions will likely help to interpret performance on measures within a 

cognitive battery, in order to identify an abnormal cognitive functioning based on a number 

of low scores above what should be expected according to normal variability. Therefore, the 

aim of this study is to analyze the expected number of low scores for comprehensive 

batteries with different numbers of measures in order to help clinicians identify an unusual 

performance on cognitive tests.

METHODS

Sample

Data from the National Alzheimer’s Coordinating Center Uniform Data Set (NACC UDS) 

(Morris et al., 2006; Weintraub et al., 2009) recruited at 35 Alzheimer’s Disease Centers 

(ADC) from June 2005 to October 2017 were analyzed. Individuals were 65 years-old or 

older and had been categorized as cognitively normal after meeting all of the following 

criteria: they had a Mini-Mental State Examination score >23, a Clinical Dementia Rating 

scale (CDR)=0, no previous history of psychiatric or neurologic disorders (e.g., depression, 

Parkinson’s disease, traumatic brain injury, stroke), with English as primary language. 

Individuals were excluded if they required some assistance in basic activities of daily living 
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or were completely dependent, and if they had missing data for any of the variables used in 

the analyses.

Details of recruitment procedures at the participating ADC can be found in Weintraub et al. 

(2009). Participants were volunteers referred by a relative or a friend, by clinicians or 

memory clinics, by ADC solicitation, by non-ADC media appeal or by other unknown 

sources. Per protocol, all participants were accompanied by an informant to corroborate 

information about functioning in daily living activities. Both participants and informants 

signed informed consent at each participating ADC.

Instruments

The NACC UDS database includes ten measures from six neuropsychological tests: Logical 

Memory immediate and delayed recall scores (LM-imm, LM-del) from the Wechsler 

Memory Scale-Revised, Digit Span Forward (DSF) and Backward (DSB), semantic fluency 

(animals and vegetables), the Boston Naming Test 30-item (BNT-30), the Trail Making Test 

parts A (TMT-A) and B (TMT-B), and the Digit Symbol (DS) Coding subtest from the 

Wechsler Adult Intelligence Scale-Revised (Shirk et al., 2011). Although three different 

versions of the neuropsychological battery were used in the NACC UDS, only Versions 1 

and 2 were analyzed because Version 3 included a different set of neuropsychological tests 

(Weintraub et al., 2018).

The NACC UDS database was deemed appropriate to analyze the number of low tests 

because of the distribution of the data, and also because it includes a number of measures 

close to the average number of measures used in research on MCI (Oltra-Cucarella, Ferrer-

Cascales, et al., 2018). As reported by Weintraub et al. (2009) and Shirk et al. (2011), 

normative data were calculated from a sample of n=3,268 participants using multiple linear 

regressions controlling for sex, age and years of education. Such a large dataset ensures that 

the standardized residuals approximate the normal distribution, which is required for 

regression coefficients to be unbiased, consistent, efficient and with trustworthy confidence 

intervals (Williams, Gómez Grajales, & Kurkiewicz, 2013).

Statistical analysis

The following procedure was used to calculate the number of low scores:

1. Raw scores on each measure for each individual were converted to corrected z-

scores using the web-based calculator reported by Shirk et al. (2011). Corrected 

z-scores ≤−1.5 were considered indicative of low performance, as commonly 

used for the diagnosis of MCI.

2. The ten measures included in the neuropsychological battery were permuted 

without replacement with the formula n!
k! n − k ! , where n is the number of 

measures and k is the number of measures combined (Levine, 1981). Thus, for 

example, the number of combinations without replacement of six measures in a 

battery with 10 measures is 210. The percentage of individuals obtaining j low 

scores for each combination of k measures was averaged across permutations of 

the same number of k measures.
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3. For each combination of k measures (k=2,k=3,...,k=i), Pearson’s bivariate 

correlations among the k measures were averaged. For example, the correlation 

of the combination with tests 1, 5 and 8 was calculated by averaging r15, r18, and 

r58. Next, a bivariate correlation was calculated between the probability of 

obtaining j or more low scores and the average correlation among the measures. 

Following Crawford et al. (2007), the probability of obtaining j or more low 

scores should increase as the correlation among the measures increases when 

j≥2.

4. The number of low scores shown by fewer than 10% of the sample of cognitively 

healthy individuals was used to define an unusual number of low scores (Binder 

et al., 2009; Mistridis et al., 2015; Oltra-Cucarella, Sánchez-SanSegundo, et al., 

2018). Thus, if less than 10% of the sample obtain 3 or more low tests in a 

battery with up to 9 tests, normal variability is interpreted as having low scores in 

up to two tests (Oltra-Cucarella, Sánchez-SanSegundo, et al., 2018). The 

selection of a cut-off point to define an unusual number of low scores is not 

straightforward. Binder et al. (2009) considered as uncommon a number of low 

scores shown by less than 20% of the sample, and as unusual a number of low 

scores shown by less than 10% of the sample. When analyzing a sample of 

children, however, Brooks et al. (2010) considered as uncommon a number of 

low scores shown by less than 10% of the sample. Although this cut-off can be 

regarded as arbitrary, it is in line with the cumulative percentages used to define 

abnormality of any individual test score in MCI (i.e., less than or equal to 7% for 

−1.5SD), and have been used to define probable memory impairment when 8 

measures from the Wechsler Memory Scale-III were analyzed simultaneously 

(Brooks, Iverson, Feldman, & Holdnack, 2009).

5. A linear regression was used to analyze the association between the number of 

low scores with age, sex (male=0, female=1), years of education, and MMSE 

scores. All possible permutations and statistical analyses were done with IBM 

Statistical Package for Social Sciences (SPSS) v23. A syntax file for 

permutations is available at request.

RESULTS

Data from 12,260 healthy individuals aged 65 or older at baseline were used. Of these, 7,214 

were excluded (61 because of need for some assistance in basic activities of daily living, 37 

with MMSE<24, 393 with CDR>0, 14 with unknown years of education, 2,850 with a 

history of psychiatric or neurological disorders, 102 who had a primary language other than 

English, and 3,757 with missing data for any of the neuropsychological measures analyzed). 

The final sample included 5,046 individuals (65.7% females) aged 75.45 (SD=7.05) and 

with 15.61 (SD=2.92) years of education. Means and SDs for each of the ten measures are 

shown in table 1.

The average proportion of individuals obtaining one low score (i.e., z-score ≤−1.5) when 

analyzing each of the ten measures separately was 4.64% (SD=3.46), slightly lower than 

expected according to the normal distribution, with values ranging from 0.46% in the TMT-
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B to 10.94% in the BNT. The great majority (68.41%) of individuals had no low scores. The 

percentages of individuals showing only 1, only 2, and three or more low scores were 

21.01%, 7.67% and 2.91% respectively.

The average proportions of j low scores for different combinations of k measures are shown 

in supplementary material. Figure 1 shows the average probability of obtaining j or more 

low scores in batteries with k number of measures. Using the average number of low scores 

shown by fewer than 10% of the sample, the unusual number of low scores would be 

identified by one or more low scores in batteries with up to two measures, by two or more 

low scores in batteries with 3–9 measures, and by three or more low scores in batteries with 

10 measures.

Table 2 shows the correlations between the probability of obtaining j or more low scores and 

the correlation among measures. Thus, for example, in a battery with 3 measures, the 

correlation between the probability of obtaining one or more low scores and the average 

correlation of the three measures (i.e., r12, r13, r23) is 0.384. It can be seen from table 2 that 

the probability of obtaining j or more low scores increases as the average correlation among 

k measures increases.

The number of low scores increased with increasing years of education. They decreased for 

females and for increasing MMSE scores (table 3). There was no statistically significant 

association between the number of low scores and age. The model with age, sex and years of 

education explained an additional 0.07% of the variance in the number of low scores 

compared to the model including MMSE scores in isolation.

DISCUSION

The aim of present study was to analyze the unusual number of low scores in batteries with 

one to 10 measures. It was found that 31.59% of healthy older adults showed one or more 

low scores (i.e., z-score≤−1.5), and 10.58% had two or more. In addition, it was found that 

the number of low scores increased with increasing numbers of measures and was related to 

the correlation among the measures in the battery.

The results of the present study show that obtaining one or more low scores in batteries 

including several measures is common, and must be taken into consideration when assessing 

cognitive functioning in healthy individuals or in individuals with neurological diseases. The 

percentages of individuals obtaining one or more low scores in the present study are close to, 

although slightly lower than, the ones reported by Palmer et al. (1998) when low scores were 

defined as 1.28SD below the mean. Also, the results reported here are in line with Crawford 

et al. (2007), and show that around 90% of cognitively normal individuals are expected to 

obtain up to two z-scores≤−1.5 when ten measures are administered, with 31.6% obtaining 

at least one low score. Contrary to Crawford et al. (2007), it was found that the probability 

of obtaining j or more low scores increased as the correlation among measures increased 

even for one or more low scores. However, the main results of the present study are in 

agreement with the results reported by Crawford et al. (2007): the number of low scores 

shown by fewer than 10% of the sample in batteries with ten measures is 3 or more. This 
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agreement is probably due to the very similar cut-off point used in the present study (i.e., z-

score≤−1.5) and in the study by Crawford et al. (i.e., z-score≤−1.64).

When using tests in neuropsychological assessment, clinical neuropsychologists must take 

into account that the dependence between measures might be a limitation for the 

interpretation of low scores in cognitive performance. Davis and Wall (2014) analyzed the 

performance of 76 individuals with brain injury (e.g., traumatic brain injury, cerebrovascular 

compromise, encephalopathy) on the California Verbal Learning Test, and reported a 

correlation of 0.91 between short-delay and long-delay free recall measures. Thus, 

individuals obtaining low scores on the short-delay measure are likely to obtain low scores 

on the long-delay measure as well. The results reported here suggest that the probability of 

obtaining one or more low scores may be common (e.g., 19.76%) when highly correlated 

measures are used, and that this probability may turn uncommon (e.g., 2.08%) if the 

correlation between measures is low. Taken together, these results support that the use of 

only one low score may increase the probability of erroneously identifying cognitive 

impairment. More importantly, relying on two low scores obtained on highly correlated 

measures could also be problematic. As the results obtained on these two measures are not 

truly independent of one another, low scores on both measures may also be erroneously 

indicating cognitive impairment. McGrath (2008) showed that adding variables might not 

increase the sensitivity of the statistical model over using only one predictor when highly 

correlated variables are used to predict a dichotomous outcome (e.g., being cognitively 

impaired).

In the present study, the number of low scores was inversely related to MMSE scores, which 

could reflect a higher general cognitive functioning. Conversely, the association with age, 

sex and education was very small (i.e., an additional 0.07% of the variance explained). The 

surprising results of very low coefficients (e.g., years of education) being statistically 

significant seem to be accounted for by a high power due to the large sample size. One may 

expect to find a negative association between the number of low scores and the years of 

education, as previously reported (Binder et al., 2009). However, z-scores in the present 

study were calculated using residuals of a multivariate linear regression including age, sex, 

and years of education, and thus the effects of education are controlled for in the normative 

data. In line with this, when analyzing the number of low scores on a memory index 

including 9 measures, Brooks et al. (2007) found that the base rate of low scores did not vary 

by age or education, a finding that was associated with the use of corrected normative 

scores.

Large-scale studies have found controversial results regarding the association of formal 

education and socioeconomic status with cognitive functioning and cognitive decline. 

Zahodne, Stern and Manly (2015) found a slower cognitive decline in individuals with high 

education, whereas Wilson et al. (2009) found no association between level of education and 

rate of cognitive decline. When controlling for childhood socioeconomic conditions, Aartsen 

et al. (2019) found a faster rate of decline in individuals with more advantaged 

socioeconomic conditions even after controlling for adulthood socioeconomic conditions, 

levels of physical activity, depressive symptoms and partner status. These controversial 

findings suggest potential value in including measures of cultural capital, social capital, and 
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socioeconomic status other than educational level when interpreting performance on 

cognitive tests in order to better assess cognitive functioning during aging.

The main implication of our results is their potential use in both clinical and research 

settings to define normal cognitive variability, and hence cognitive impairment. As shown in 

figure 1, clinicians can expect a different number of low scores in batteries including 5 

measures in comparison with batteries including 10 measures. These results partially agree 

with previous works that included several low scores to define objective cognitive 

impairment. Oltra-Cucarella et al. (2018) reported that less than 10% of the sample in a 

battery with 9 measures obtained three or more scores at or below −1.5SD, which is in line 

with the results reported in this study and support their use for defining abnormal 

performance in cognitive tests. In line with their findings of a more accurate identification of 

progressors to AD using three or more test to define objective cognitive impairment in 

comparison with standard criteria, the results of this study suggest that the base rate of low 

scores approach should be replicated in studies with a higher number of measures in the 

battery.

Another implication of these results is the need to analyze the base rate of low scores 

associated with different cut-off points for the identification of individuals at the greatest 

risk of AD. Other researchers have used a different approach to define cognitive impairment 

based on several low scores, although the range and type of tests, as well as the number of 

cognitive domains, differed among studies (Bondi et al., 2014; Clark et al., 2013; Jak et al., 

2009, 2016). Taking the verbal memory domain as an example, it has not been empirically 

established the probability of obtaining two measures at 1SD or higher below the mean for a 

battery with four measures (Clark et al., 2013) compared to a battery including two 

measures (Jak et al., 2016). Also, it must be established whether the probability of obtaining 

two low scores differ for batteries including a delayed recall and recognition subtests from a 

story recall test compared to a list-learning test (Bondi et al., 2014; Jak et al., 2016).

One limitation of the present study is the use of permutations to obtain the expected number 

of low scores for batteries with different number of measures. Ideally, a number of batteries 

with different number of measures would have allowed analyzing real rather than simulated 

data. However, each study would have contributed a sample with different demographic 

characteristics and different measures (and different correlations among measures). Related 

to this, the variables used in permutations may not follow a normal distribution, as is the 

case for some neuropsychological variables (Crawford et al., 2007). For example, most 

individuals succeed in the majority of items of several cognitive tests (Strauss et al., 2006), 

making the distribution of scores negatively skewed. In this case, the percentile ranks might 

not follow a normal distribution. However, a recent work by Piovesana and Senior (2018) 

found that samples greater than 85 provided stable means and standard deviations regardless 

of the level of skewness. Thus, future studies will have to analyze the probability of 

obtaining j or more low scores on batteries with different k number of measures including 

several skewed measures.

Although with these limitations, this work has important strengths, as it replicates the 

procedure commonly used in neuropsychological assessment, that is, to treat normative data 

Oltra-Cucarella et al. Page 8

Assessment. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for performance on each cognitive test as independent of the performance on other tests. For 

example, although it must be assumed that performance on the Rey-Osterrieth Complex 

figure (ROCF) delayed recall task will be affected by the ROCF copy task (Strauss et al., 

2006), normative data for the ROCF delayed recall task from which percentiles are obtained 

are generally calculated without including the ROCF copy scores, treating copy and delayed 

recall scores as independent. An average score on the delayed recall task might be frequent 

for individuals obtaining average scores on the copy tasks, but not for individuals obtaining 

high or very high scores on the copy task. However, the same score on the delayed recall 

task (e.g., x=15) will be transformed to the same percentile (e.g., Pc=45) for an individual 

scoring at the 90th percentile and for another individual scoring at the 30th percentile in the 

copy task.

Our simulation is probably closer than previous works to the procedures used in 

neuropsychological assessments and to the distribution of low scores, especially for a high 

number of tests in a battery. A possible way to improve the expected number of low scores 

in a battery with several measures could be mixing the methodology used by Crawford et al. 

(2007) and Jak/Bondi (Bondi et al., 2014; Jak et al., 2009). The probability of obtaining one 

or more scores within a domain, or one low score per domain, could be calculated for 

different number of domains and different number of tests within domains by varying the 

correlation among measures. However, the earlier step should be to empirically state that 

measures correlate within domains and not across domains, to eliminate potential statistical 

artifacts. This sort of factorial analysis would, however, limit its applicability to batteries of 

tests that correlate within domains but no across domains, which is uncommon in 

neuropsychological assessment where tests measuring attention or executive functioning 

correlate with tests measuring verbal memory and other domains (Strauss et al., 2006).

In conclusion, using several measures is the rule and not the exception in batteries used to 

analyze the full range of cognitive abilities in neuropsychological assessment. The results of 

the present study add to the existing literature by providing the expected number of low 

scores (i.e., z≤−1.5) for different numbers of measures in the battery. Unusual performance 

should be suspected for one or more low scores in batteries with up to two measures, two or 

more low scores in batteries with 3 to 9 measures, and three or more low scores in batteries 

with 10 measures. In these cases, neuropsychologists should perform a much more careful 

evaluation in order to confirm or rule out the presence of cognitive deficits in their clients. 

The results reported here are expected to improve the identification of true cognitive 

impairment by reducing the number of false positive diagnoses, which will likely increase 

the precision of the estimates of progression of cognitive deficits in a variety of neurological 

diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Number of low scores according to the number of measures.
k = number of measures. j = number of low scores or more
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Table 1.

Descriptive statistics for the neuropsychological measures (n = 5,046)

Mean SD Min Max

MMSE 28.86 1.32 24 30

LM-immediate 13.21 3.86 0 25

LM-delayed 11.94 4.15 0 24

Digits Forward 6.69 1.07 1 8

Digits Backward 4.83 1.22 0 7

Animals 19.54 5.48 1 49

Vegetables 14.45 4.11 2 32

TMT-A 36.07 15.38 12 150

TMT-B 96.25 51.83 12 300

Digit Symbol 47.07 14.16 2 97

BNT-30 26.90 3.36 0 30

MMSE: Mini-Mental State Examination. LM: Logical Memory test. Digits: longest series. TMT: Trail Making Test. BNT: Boston Naming Test – 
30 items.
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Table 3.

Linear regression models predicting the number of low scores

Variable b b Std. error R R Std. error

Model 1 MMSE −0.16 .008 0.264 .78

Model 2 MMSE −0.17 .009 0.277 .78

Education 0.02 .004

Age 0.00 .002

Sex −0.05 .024

MMSE: Mini-Mental State Examination. Std. error: standard error.
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