Skip to main content
. 2020 Jan 24;7:1. doi: 10.3389/fcvm.2020.00001

Table 7.

Selected studies using image-based ML analysis for diagnosis of various cardiomyopathies.

Publication Modality Biomarker ML technique Diagnostic Sample size Performance
(49) MRI Conventional BN HCM/DCM/ARV/MYO 83 AUC = 0.79
(28) MRI Radiomics RF/LR HCM 62 AUC = 0.95
(52) MRI Conventional RF MI/HCM/DCM/ARV 100 ACC = 0.86
(14) MRI Radiomics SVM MI/HCM/DCM/ARV 100 ACC = 0.92
(53) MRI Conventional RF MI/HCM/DCM/ARV 100 ACC = 0.92
(4) MRI Conventional RF MI/HCM/DCM/ARV 100 ACC = 0.96
(55) MRI Deep Learning VAE HCM 737 ACC = 1.00
(10) MRI Conventional LR MI/HCM/DCM/ARV 100 ACC = 0.94
(57) MRI Conventional LR HHD/HCM 224 ACC = 0.67
(15) MRI Radiomics SVM HHD/HCM 224 ACC = 0.86
(54) MRI Deep Learning CNN MI/HCM/DCM/ARV 100 ACC = 0.78
(9) MRI Conventional SVM/RF MI/HCM 45 ACC = 0.94
(31) MRI Conventional CL CHD 60 ACC = 0.89
(50) Echo Conventional SVM/RF/ANN HCM/ATHCM 139 ACC = 0.91
(33) Echo Radiomics ANN/GA HCM/DCM 90 ACC = 0.95
(18) Echo Deep Learning CNN HCM/DCM 927 AUC = 0.84
(56) Echo/MRI Conventional SVM DCM 69 ACC = 0.94
(26) Echo Radiomics SVM DCM/ASD 439 ACC = 0.98
(37) Echo Deep Learning CNN/GAN HCM 772 ACC = 0.92
(36) Echo Deep Learning CNN HCM/CA/PH 14,035 AUC = 0.93