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SUMMARY

Distinguishing individuals from brain connectivity, and studying the genetic influences on that identi-

fication across different ages, improves our basic understanding of functional brain network organi-

zation. We applied support vector machine classifiers to two datasets of twins (adult, pediatric) and

two datasets of repeat-scan individuals (adult, pediatric). Classifiers were trained on resting state

functional connectivity magnetic resonance imaging (rs-fcMRI) data and used to predict individuals

and co-twin pairs from independent data. The classifiers successfully identified individuals from a pre-

vious scanwith 100% accuracy, evenwhen scans were separated bymonths. In twin samples, classifier

accuracy decreased as genetic similarity decreased. Our results demonstrate that classification is sta-

ble within individuals, similar within families, and contains similar representations of functional con-

nections over a few decades of life. Moreover, the degree to which these patterns of connections pre-

dict siblings’ data varied by genetic relatedness, suggesting that genetic influences on rs-fcMRI

connectivity are established early in life.
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INTRODUCTION

One anticipated use of functional magnetic resonance imaging (fMRI) data is to identify reliable and clin-

ically viable biomarkers for disease states. However, a more precise understanding of healthy functional

brain network organization is necessary to achieve this goal. Resting state functional connectivity (rs-fcMRI)

holds promise as a noninvasive method of reaching this goal, owing to its low behavioral demand, consis-

tency within individuals, and stability over time (Poldrack et al., 2015). Furthermore, rs-fcMRI reveals

inherent functional brain networks absent of a specific task state. These averaged networks are reliably

observed across adult samples (Cohen et al., 2008; Power et al., 2011), and early functional network orga-

nization is readily identified early in life. By 6 months of age, early organizational patterns of common adult

resting state networks such as the default mode network (DMN), somatosensory motor (SSM) network,

and visual (VIS) network are identified (Mitra et al., 2017) and appear to become more adult-like in their

organization and interaction during development (Gao et al., 2013; Lin et al., 2008).

Given the goal of identifying distinct biomarkers of disease, combined with the stability of rs-fcMRI

brain networks, it is not surprising that a growing body of neuroimaging research has focused on defining

functional ‘‘connectomes’’ or ‘‘fingerprints’’ of individuals based on their fMRI data (Byrge and Kennedy,

2019; Finn et al., 2015; Horien et al., 2019; Miranda-Dominguez et al., 2018, 2014; Xu et al., 2016). A greater

understanding of how functional connections become organized into reliable, functional fingerprints of

an individual could give researchers and clinicians alike a quantifiable measure of individual change over

time. In addition, a more precise understanding of the genetic influence on normative network organiza-

tion throughout development may help pave the way for a more precise measure of the impact of environ-

mental and disease variables on brain network organization. Extant research consistently reveals the

presence of a functional fingerprint in rs-fcMRI data across multiple methodologies (Balsters et al., 2018;

Finn et al., 2015; Haak et al., 2018; Kaufmann et al., 2017; Miranda-Dominguez et al., 2014). However, far

less is known about the specific pattern of discrete functional connections that distinguish individuals

from one another, specifically, whether these patterns differ at different ages or stages of development.

Studies using rs-fcMRI to identify individuals via functional fingerprint implicate the DMN and its connec-

tivity to putative control networks, such as the cingulo-opercular (CO), dorsal attention, fronto-parietal (FP),
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and ventral attention networks, as the most highly distinctive between individuals (Finn et al., 2015; Horien

et al., 2019; Miranda-Dominguez et al., 2018). Given previous evidence that the FP network coordinates

other networks for task performance (Cole et al., 2013; Dixon et al., 2018; Marek and Dosenbach, 2018;

Marek et al., 2015; Power et al., 2013; Zanto and Gazzaley, 2013), specific patterns of connectivity between

the FP and other networks could be highly individualized during rest (Gordon et al., 2018), and the degree

of network integration may be reflected in functional fingerprints. The network-integrating role of the FP

network and the DMN’s role in internal, self-focused mentation and mind-wandering (Buckner et al.,

2008; Mason et al., 2007; Raichle, 2015) are presumably highly individualized and may explain their impor-

tance in the functional fingerprint, but this connection has not yet been explored directly. Despite the

growing understanding of the functional networks involved in the makeup of a functional fingerprint, a

consensus of specific functional connections that yield the most accurate identification of individuals has

not yet been established.

Crucial to establishing a functional fingerprint is a better examination of the impact of individual variance in

relation to expected functional network organization and the influence of heritable factors on rs-fcMRI.

Gratton et al. (2018) recently revealed that averaged group differences in functional network organization

are driven more by individual variability and common participant features, with only a modest influence of

cognitive or task demands. This suggests that group-level results that do not explicitly account for individ-

ual differences in functional network organization may misattribute person-specific effects to group-level

task performance. Similarly, evidence of distinct organizational variations from the expected group-level

resting state functional network topography was found in a subset of the adult population (Gordon

et al., 2017). Given that individual differences in functional network organization can be buried in group-

averaged analyses, an individual variance framework is vital for accurately characterizing functional network

organization across multiple samples.

Another factor to consider in characterizing a functional fingerprint is the genetic impact on rs-fcMRI

network organization. Fu et al. (2015) observed a significant genetic influence on resting state organization

across sensory, but not cognition-related, networks in a pediatric sample of twins (aged 12–19 years). The

authors posited that the age of their sample and the protracted development of cognitive functions that

require coordination across many networks might be why cognition-related networks showed a weaker

genetic influence. Indeed, in genetic studies of adult twins, within-network connectivity of the DMN is

found to be the most heritable (Glahn et al., 2010; Xu et al., 2017). Recent work has found evidence

that an individual’s functional fingerprint, calculated via a model-based approach to identifying a func-

tional fingerprint called ‘‘connectotyping,’’ also shows a pattern of genetic influence in adults (Miranda-

Dominguez et al., 2018). In this study, identification accuracy was highest in identical (monozygotic) twins,

followed by fraternal (dizygotic) twins, with non-twin siblings showing the lowest accuracy. However, ana-

lyses that include larger and more age-diverse twin samples are necessary to identify specific patterns and

developmental trajectories of highly heritable and individually unique functional connections within resting

state data. The inclusion of genetically informative, age-varying neuroimaging datasets is important to gain

a complete understanding of the genetic influence on individually unique rs-fcMRI connections.

Based on mounting evidence from functional fingerprint research, we hypothesized that adapting resting

state time courses to use ANOVA feature selection would benefit our analyses. Current resting state

approaches often use all available features from a chosen region of interest (ROI) set, thus providing too

many features that can overpower the signal with noise, or apply feature reduction methods that may be

more appropriate for group membership classification (Dosenbach et al., 2010; Greene et al., 2016). This

shift in resting state feature selection could provide a clean and straightforward method of isolating a

core set of unique functional connections for each individual, which then contributes to the group feature

set. In addition, tracking these specific sets of connections across developmentally diverse samples and

testing the degree of similarity within monozygotic (MZ) and dizygotic (DZ) twin pairs may advance our un-

derstanding of the influence of genetic similarity on the functional fingerprint and its stability into adult-

hood. The current work uses three in-house pediatric datasets and two publicly available adult datasets

(see Table 1 for detailed subgroup demographics) to identify individuals and twin pairs via support vector

machine (SVM) classifiers (De Martino et al., 2008; LaConte et al., 2005) applied to rs-fcMRI data. Starting

from a common pre-defined ROI set (Power et al., 2011), we isolated subsets of functional connections via

ANOVA feature selection that best discriminated between individuals within each group. Next, we identi-

fied individuals and twin pairs by training and testing fMRI pattern classifiers using those connections
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UT Repeat MSC Repeat UT MZ HCP MZ UT DZ HCP DZ UT SS

Scan Count 30 20 30 50 38 50 34

"Pairs" (# Female) 15 (9) 10 (5) 15 (24) 25 (26) 19 (16) 25 (26) 17 (12)

Age Range 9.8–18.3 24–34 8.9–13.2 26–34 9.1–13.9 22–35 8.8–18.6

Age (M G SD) 12.9 G 2.6 29.1 G 3.3 10.8 G 1.3 29.8 G 2.2 11.3 G 1.3 29.2 G 3.5 12.2 G 2.7

IQ/PMAT (M G SD) 102.3 G 14.1 128.8 G 6.6 106.3 G 17.2 17.2 G 4.3 105.2 G 11.7 18.3 G 4.0 108.3 G 13.0

Mean FD (M G SD) 0.10 G 0.02 0.13 G 0.02 0.10 G 0.03 0.12 G 0.02 0.10 G 0.02 0.12 G 0.02 0.10 G 0.02

Table 1. Group Characteristics

We included two scans for each participant in the repeat scan groups. All other groups consist of one scan per individual. HCP participants’ intelligence score was

calculated from the Raven’s Progressive Matrices (PMAT); all other groups are intelligence quotient (IQ) scores. Framewise displacement (FD) means and stan-

dard deviations (in millimeters) are post-motion scrubbing. Age is reported in years.

UT, Developmental participants collected at The University of Texas at Austin; MSC, Midnight Scan Club adult participants; MZ, monozygotic twin pairs; DZ,

dizygotic twin pairs; HCP, Human Connectome Project adult participants; SS, Developmental same-sex pairs (includes DZ twins and non-twin sibling pairs of

the same sex).
identified during feature selection. Groups of repeat scan individuals had one scan from that individual in

the training set and a different scan of the same individual in the testing set. For twin groups, one twin’s

scan was in the training set and their co-twin’s scan was in the testing set (see Transparent Methods in

the Supplemental Information and Figure S1 for detailed information on feature selection and classifica-

tion). We thenmapped those functional connections consistently chosen as features to identify a functional

fingerprint for each group. Finally, we tested the generalizability of commonly selected connections across

our two age groups, by first defining an age-specific feature set for each age group and then applying pe-

diatric features on adult groups during classification, and vice versa. The aim of this work was to extend the

current body of emerging research by providing a better understanding of the impact of development and

genetic similarity on the resting state functional fingerprint. Our research suggests the following: (1) indi-

vidually unique patterns of functional connectivity are similar among family members and vary with genetic

similarity and (2) the general pattern of resting state functional connections that are highly predictive of an

individual translates across different ages and groups and appears stable within individuals during devel-

opment and into adulthood.
RESULTS

SVM Classifiers Predict Individuals and Co-twin Pairs

We applied ANOVA feature selection on segmented resting state time courses to identify features that

best discriminated between individuals (see Transparent Methods for detailed description). We then

applied the resulting feature mask on all full 5-min resting state time courses used for SVM classification

(Figure 1). For all groups, the SVM classifier accurately predicted matched scans (individual repeat scans,

co-twins, or same-sex siblings) at levels significantly above chance (Figure 2A). This set of accurate classi-

fications was observed when the classifier was run with a single leave-one-group-out cross-validation

(2-fold) scheme, as well as with our permutation average accuracy (Figure 2B), but only the permutation ac-

curacies are reported (Table 2). The classifier accuracies for all groups are as follows: (1) Developmental

Participants Collected at The University of Texas at Austin (UT) Repeats: accuracy = 1.0, chance = 0.06,

p < .001; (2) Midnight Scan Club Adult Participants (MSC) Repeats: accuracy = 1.0, chance = 0.1, p <

.001; (3) UT MZ Twins: accuracy = 0.52, chance = 0.06, p < .001; (4), Human Connectome Project Adult Par-

ticipants (HCP) MZ Twins: accuracy = 0.56, chance = 0.04, p < .001; (5) UT DZ Twins: accuracy = 0.24,

chance = 0.05, p < .001; (6) HCP DZ Twins: accuracy = 0.22, chance = 0.04, p < .001; (7) UT Same-Sex Sibling

Pairs: accuracy = 0.35, chance = 0.06, p < .001.
Functional Fingerprints Are Similar across Age Groups

The summed fold-rank matrices for the pediatric (Figure S2) and adult (Figure S3) groups were examined to

explore which functional connections were repeatedly chosen as features across subgroups. The data indi-

cated that connections carrying the most consistently useful identifiers of an individual belonged to the FP

network and the DMN (Figure 3A). Of the total 32,385 possible unique functional connections, our fold-rank

matrix thresholding revealed 87 connections in the pediatric group and 110 in the adult group that were the
iScience 23, 100801, January 24, 2020 3



Figure 1. ANOVA Feature Selection and SVM Classification

(A) Individuals within the training set (twin A for twin groups or scan 1 for repeat-scan individuals) provided 5-min resting

state time courses, extracted from each of the 255 ROIs.

(B) Time courses were then split into 20-s segments, and a correlation matrix was created for each segment. All correlation

matrices were then converted into vectors of unique, off-diagonal correlation values.

(C) These vectors were then used for ANOVA feature selection to create the feature mask used by the classifier.

(D) The resulting feature mask is then applied to each full 5-min resting state time course, and the SVM classifier is trained

on the same training set used for feature selection and tested on the held-out testing set (either the individual’s second

scan or co-twin data).
most consistently representative of an individual in the SVM classifier. Both the pediatric and adult

groups revealed a functional fingerprint mask dominated by longer, ipsilateral connections in the FP

and DMN and short-range contralateral connections in the posterior DMN and VIS networks. Of the total

197 post-threshold features within both age groups, 13 features (6.59%) were identical across the pediatric

and adult groups.

We then examined the functional network affiliation of the ROIs chosen as features in the pediatric and

adult group. Post-threshold features were labeled by their functional network affiliation and ordered by

frequency. This revealed a similar pattern of network representation between the two age groups (Fig-

ure 3B): The largest percentage of network representation was (1) within the DMN network (DMN to

DMN) (Adults = 29 [26.3%]; Pediatric = 21 [24.1%]), followed by (2) between the DMN and FP network

(Adults = 18 [16.3%]; Pediatric = 12 [13.7%]), and (3) within the FP network (FP to FP; Adults = 16 [14.5%];

Pediatric = 12 [13.7%]). After the top �50% connections, chosen features did not show any discernable

pattern between the two groups and involved networks that often consisted of only a few connections.

To test the impact of the number of ROIs within each network on the observed patterns of network repre-

sentation for each group, we simulated 10,000 feature sets for each group. Each simulated feature set con-

sisted of the same number of features as our group fold-rank matrices (Adult = 110; Pediatric = 87), with all

connections chosen at random (without replacement) from the list of all possible connection types. We

then averaged how often the main connection types found in our group matrices were included in the

10,000 simulations and calculated the proportion of the feature set each accounted for. The average

network representation in our simulated feature sets were (1) within DMN network (Adults = 5.4 [4.95%];

Pediatric = 4.3 [4.92%]), (2) between the DMN and FP network (Adults = 4.8 [4.40%]; Pediatric = 3.8

[4.38%]), and (3) within FP network (Adults = 1.0 [0.90%]; Pediatric = 0.8 [0.91%]).
4 iScience 23, 100801, January 24, 2020



Figure 2. SVM Classifiers Predict Individuals and Co-twin Pairs

(A) Mean SVM classifier accuracies, per group. Error bars are 95% confidence intervals. Both repeat visit subgroup accuracy scores were 1.0. Monozygotic

(MZ) twins in both subgroups outperformed dizygotic (DZ) twins. Hatched box plots indicate when the opposite age group’s feature mask was used for

classification. All group accuracies are reduced when using the opposite mask, except for the Adult MZ twins. All groups’ prediction scores were significantly

better than chance, except the Adult DZ group when tested using the pediatric feature mask.

(B) Left: Distributions of accuracy scores in the twin groups, across age sets, show a similar distribution and mean accuracy score. Pediatric group

distributions are outlined in black and the darker shade indicates overlap in age-grouped distributions. The spread of distributions reinforces the decision to

shuffle twin labels to ensure that accidental group assignment bias does not influence group accuracy. Right: The pediatric same-sex sibling pair group

outperformed pediatric DZ twins, suggesting an influence of sex on functional network organization.

(C) The area under the curve (AUC) values represent classifier sensitivity for each related scan pair. Repeat visit individuals are not plotted, as AUC values

were 1.0 for all. A lower group average and larger distribution of AUC values in both DZ groups suggests that differences in DZ twin pairs’ functional

fingerprint resulted in more false-positives when classifying DZ twins than MZ twins. This is amplified in the adult DZ twins, compared with their pediatric

counterparts.
Next, we examined the common set rank matrix (all connections chosen for at least one fold across all

pediatric and adult subgroups) using the same steps outlined above. The data revealed a nearly identical

representation of network assignment across the functional connections (Figure 3B). Of a total 90 connec-

tions in the common set rank matrix, 19 (21%) represented between FP and DMN network connections, 18

(20%) represented within DMN connections, 9 (10%) represented within FP connections, and 8 (9%) repre-

sented connections between the DMN and salience (SAL) networks. The same 10,000 simulated feature

sets were created with 90 connections to compare with this common set rank matrix. The simulated sets

showed an average of 3.9 (4.36%) between FP and DMN, 4.4 (4.92%) within DMN, 0.8 (0.09%) within FP,

and 2.8 (3.16%) between DMN and SAL connections.
Common Feature Sets Have Classification Utility for Opposite Age Group

In an effort to quantify the similarity of pediatric-and adult-specific connections chosen as features, we

used the summed fold-rank matrices as feature masks on the original timeseries and re-ran the SVM

classifier permutation analysis. All connections with a value of five or six, after thresholding, were used
iScience 23, 100801, January 24, 2020 5



Group

Chance

Mean Accuracy Lower 95% CI Upper 95% CI Mean Accuracy

(Opposite Age Mask)

Lower 95% CI Upper 95% CI

UT Repeat 0.063 1.00a – – 0.92a 0.919 0.922

MSC Repeat 0.100 1.00a – – 1.00a – –

UT MZ Twins 0.066 0.52a 0.518 0.525 0.32a 0.322 0.327

HCP MZ Twins 0.041 0.57a 0.565 0.571 0.35a 0.353 0.359

UT DZ Twins 0.053 0.24a 0.242 0.247 0.24a 0.243 0.248

HCP DZ Twins 0.039 0.22a 0.218 0.222 0.11 0.108 0.112

UT SS Siblings 0.057 0.35a 0.349 0.354 0.23b 0.232 0.236

Table 2. Mean Classifier Accuracies, per Group

Group chance values are empirical chance and are calculated by running the classifier after randomly shuffling scan pair labels (scan pairs were no longer correctly

labeled with their matching scan). The left side of the table is running the classifiers normally, and the right side is running the classifier with the opposite age

group’s feature mask. (P values indicate classifier performance versus chance.).
ap < 0.001.
bp < 0.05.
as features. The pediatric groups were run with the adult feature mask (110 features), and the adult groups

were run with the pediatric feature mask (87 features). There were 13 identical features that overlapped the

pediatric and adult feature sets. Using the opposite age group’s top-ranking features mask resulted in sig-

nificant, although reduced, classifier accuracy for all groups except the MSC Repeats and resulted in non-

significant accuracy for the HCP DZ twin subgroup (Figure 2A).

When the adult subgroups were trained using the pediatric-specific feature mask (Table 2), classifier accu-

racies were as follows: MSC Repeats (accuracy = 1.0, chance = 0.1, p < .001); HCP MZ Twins (accuracy =

0.35, chance = 0.04, p < .001); HCP DZ Twins (accuracy = 0.11, chance = 0.04, p = .065). When the pediatric

subgroups were trained using the adult-specific feature mask, classifier accuracies were as follows: UT

Repeats (accuracy = 0.92, chance = 0.06, p < .001); UT MZ Twins (accuracy = 0.32, chance = 0.06, p <

.001); UT DZ Twins (accuracy = 0.24, chance = 0.05, p < .001); UT Same-sex Sibling Pairs: (accuracy =

0.23, chance = 0.06, p = .015).
DISCUSSION

In the current work, we address the stability and similarity of the functional fingerprint within pediatric

and adult samples. Furthermore, we directly tested the ability of a functional fingerprint identified in our

developmental sample to successfully identify adults, and vice versa. These results provide initial evidence

that the functional fingerprint found in pediatric samples is remarkably similar to the functional fingerprint

found in adulthood and contributes to a better understanding of the stability of the brain’s functional

fingerprints over age.

First, we identified the specific functional connections that were most consistently representative of an

individual across multiple subgroup comparisons and tested their utility to predict individuals in the oppo-

site-age datasets with substantial success. We then used SVM classifiers to identify an individual based on a

previous scan or the scan of a genetic relative, across multiple pediatric and adult neuroimaging datasets.

We also provided evidence that segmentation of resting state time courses is a viable means to provide

multiple samples for ANOVA feature selection. We believe that this type of feature selection can identify

highly individualized functional connections within a ‘‘functional fingerprint’’ of an individual. This process

results in a more accurate characterization of functional connectivity within an individual’s resting state

signal and can identify a more discriminating set of functional connections than averaging the full time

course during feature selection.

Our results also replicate and extend the generalizability of previous work that assessed fMRI-based functional

fingerprints in adults, by highlighting the role of genetic similarity on functional fingerprinting. MZ twins in

both the pediatric and adult subgroups exhibited similar and higher classifier accuracy of rs-fcMRI data

than DZ twins. Including only same-sex siblings in our pediatric subgroup significantly improved classifier
6 iScience 23, 100801, January 24, 2020



Figure 3. Chosen Features of the Functional Fingerprint

(A) Pediatric and adult functional fingerprint mask connections that were selected across at least 5 of 6 possible folds are

displayed on glass brains (viewed from above) to visualize anatomical location, and on circle graphs to visualize functional

network involvement. Of a possible 32,385 unique functional connections, 87 pediatric and 110 connections survived at

this threshold.Within the circle graphs, yellow lines represent presence of that connection across 5 testing folds and white

lines represent presence in all 6 testing folds. A common set mask was created that represented connections that were

chosen at least once within all six subgroups in the pediatric and adult groups; 90 functional connections survived this

threshold in the common mask (white lines in common graph). See also Figures S2–S4.

(B) Ranking connections in each mask based on their network representation revealed that the largest percentage of

connections were within the default mode (DMN) network, followed by connections between the DMN and fronto-

parietal (FP) network, and those within the FP network. The common set mask revealed connections representing

between FP and DMN, within DMN, within FP, and between the DMN and salience (SAL) network connections.
accuracy of �50% genetically similar individuals, but the classifier still did not reach the level of MZ classifica-

tion accuracy. This suggests an influence of biological sex on functional fingerprint similarity.
SVM Classifier Accuracy Reveals a Genetic Impact on Functional Fingerprint

We observed higher classification accuracy for MZ co-twins than DZ co-twins in both the pediatric (MZ =

0.52; DZ = 0.24) and adult (MZ = 0.57; DZ = 0.22) subgroups. These results provide evidence of a genetic

influence on the organization of highly individualized resting state functional connections. SVM classifier

accuracy scores supported our prediction that classifier performance would be highest in subgroups

with greater genetic similarity. It is notable that classifier accuracy was greater for repeat scans than for

MZ twin subgroups, given that both groups include scans that share 100% genetic similarity. One possible

explanation for reduced classifier accuracy (compared with repeat scan individuals) in both MZ twin

subgroups is an increase of individual differences in network organization emerging with age (Freund

et al., 2013). However, neither environmental influence nor age could be directly and accurately tested

in the current dataset. The observed decrease in classifier accuracy from MZ to DZ twins also aligns with

previous work that used the model-based connectotyping method (Miranda-Dominguez et al., 2018).
iScience 23, 100801, January 24, 2020 7



Although the connectotyping method differs from our approach, our results provide corroborating

evidence from a different methodology that a functional fingerprint in resting state network organization

is, in fact, affected by genetic similarity. Furthermore, the current work emphasizes that this genetic impact

is found in direct measures of resting state functional connectivity in both pediatric and adult participants.

This similarity across age groups provides initial evidence that the pattern of organization within a

functional fingerprint may be established early in life and is similar to that found in adulthood.

We expected the pediatric groups to exhibit overall lower classifier prediction accuracy due to ongoing

organization of resting state functional networks throughout adolescence (Cai et al., 2018; Fair et al.,

2007; Grayson and Fair, 2017; Power et al., 2010; Satterthwaite et al., 2013). Somewhat surprisingly, adult

and pediatric twin groups showed similar prediction accuracy on the basis of zygosity. During develop-

ment, individuals may share a level of common developmental change as a result of age-related stages

of network organization, regardless of genetic similarity. One possible reflection of this common change

can be seen in distribution of classifier sensitivity scores (Figure 2C).

Sensitivity scores were derived using area under the receiver operating characteristic curve (AUC), which

were calculated from each scan pair’s true-positive and false-positive classifications. Both adult twin groups

showed higher average group accuracy scores than the pediatric twin groups, whereas the adult MZ twins

showed significantly higher AUC scores than the adult DZ twins (p < 0.0001). However, the pediatric MZ

twins did not show significantly different AUC scores than the pediatric DZ twins. Qualitatively, the larger

spread of AUC scores within both DZ groups is more pronounced in the adult DZ group and highlights a

higher rate of classifier confusion for adult DZ twin pairs. This increase in classifier confusion between adult

scan pairs may be due to a reduction of shared developmental changes in functional network organization

and increased environmental discrepancy between co-twins that is amplified as they age.
Top Predictive Features Reveal Similar Key Network Representation

Mapping the top features repeatedly chosen across subgroups revealed that connections in the DMN

and FP networks most consistently differentiated individuals, facilitating correct SVM classifier identifica-

tion. It is important to note that the DMN is the most highly represented in our ROI set (57 out of a total

255). However, we find that the high similarity in percentage and type of connection between the pediatric

and adult groups (Figure 3B) is informative in regard to the stability of individually unique connections.

Indeed, using the features from one age group (e.g., top features from the adult sample) to predict the

other age group (e.g., the pediatric subgroups) was significantly greater than chance in all but the adult

DZ group, although less optimal than features derived from one’s same age group (Figure 2A). Further-

more, feature set simulations choosing the same number of connection types at random highlighted the

unique nature of the network representation and type of connections within both age groups’ feature

sets. The similarity of network representation of chosen functional connections across pediatric and adult

groups contradicted our hypothesis that children and adolescents would have a different pattern of chosen

connections relative to adults. Higher-order cognitive functions such as problem solving (Fedorenko et al.,

2013; Hearne et al., 2016; Price et al., 2018), task switching (Church et al., 2017; Cole et al., 2013; Loose et al.,

2017), and sustained attention (Crittenden et al., 2016; Lawrence et al., 2003; Marek and Dosenbach, 2018)

rely on putative control networks such as the FP and CO networks and behaviorally show substantial differ-

ences between children and adults. The essential nature of these networks for human functioning is likely

highly individualized in their specific instantiation and therefore likely to be included in the functional

fingerprint. This study demonstrates potential age invariance in these networks’ contributions.

Previous work exploring functional fingerprints also implicate the FP and DMN networks as highly predic-

tive of an individual (Finn et al., 2015; Horien et al., 2019; Miranda-Dominguez et al., 2018), although con-

sistency of specific connections across age groups was not fully explored. Our results expand and clarify

these previous findings, suggesting that although these systems are still maturing and integrating

throughout adolescence, the individualized aspects of these core connections may be established early

on. However, some age-unique connectivity effects are likely embedded within these connections, as

swapping the feature sets between age groups produced lower, although still significant, accuracy across

nearly all groups. Based on the successful classification performance after swapping feature sets, one crit-

ical interpretation is that the inclusion of specific types of connections, at a specific ratio or count, may hold

a high level of importance in identifying individuals from their functional fingerprint. More work exploring

the developmental trajectory of functional connections that form a generalizable functional fingerprint is
8 iScience 23, 100801, January 24, 2020



necessary, but our initial findings suggest that a unique pattern is established, stable, and useful for iden-

tifying individuals even before whole-brain functional network organization is fully solidified in early

adulthood.
Motion Artifacts Unlikely Contributor to Classifier Accuracy

It is well established that motion contributes substantially to noise and rs-fcMRI results (Laumann et al.,

2016; Power et al., 2012; Power et al., 2014; Van Dijk, Sabuncu and Buckner, 2012). In-scanner motion is

linked to distance-dependent artifacts that especially affect measurement of long-range connections

(Satterthwaite et al., 2012; Van Dijk et al., 2012). Our fold-rank matrices (Figures S2 and S3) revealed that

the majority of chosen features for both age groups came from longer, ipsilateral connections between

anterior and posterior ROIs, as well as short-range, contralateral connections within posterior parietal

DMN and VIS network ROIs. Critically, these results were consistent across age groups, suggesting that

age-related differences in scanner motion did not drive the contribution of long-range connections to

classifier accuracy. In an effort to directly test the ability of motion to drive our classifier accuracies, the clas-

sifiers were trained on FD values in place of functional connectivity values. However, FDmotion calculations

provide only one value per repetition time (TR), in contrast to the 32,385 possible unique functional con-

nections, and therefore the feature selection step could not be realistically performed. The reduced

amount of data is underpowered for this type of analysis. Although testing classifier accuracies with the sin-

gle vector of FD values is not an accurate comparison to our main methods, classifier accuracies using FD

values did not approach significance for any group.

Moreover, our current work rigorously followed current best practices in neuroimaging data preprocessing

and motion correction, in an effort to mitigate the influence of motion on classifier accuracy. The mean FD

for all individuals and groups were well within the normative range for both pediatric and adult resting state

analyses, no major motion outliers were included in our groups, and the chosen FD of 0.25 mm is at or

below the commonly accepted motion censoring thresholds. Taking each of these motion considerations

into account, we believe that the influence of motion on our classifier results is minimal. However, future

approaches can possibly put this presumption to the test.
Limitations of the Study

Although this study expands upon recent findings in functional fingerprinting and genetic influences on

rs-fcMRI organization, the following limitations must be considered. One limitation is the size of the pedi-

atric twin sample. It is difficult to recruit and successfully retain pediatric neuroimaging participants. At the

time of analysis, the neuroimaging branch of the Texas Twin Project was one of the largest pediatric twin

resting state datasets, but did not provide a sufficient number of scans to fully explore analyses such as the

effect of same-sex DZ pairs. Soon after completion of the current study’s analyses, raw imaging data and

genetic information necessary to calculate zygosity has been released from The Adolescent Brain Cogni-

tive Development Study dataset (Casey et al., 2018; Volkow et al., 2018). This multi-site dataset includes

a large number of MZ and DZ pediatric pairs, and inclusion of these data should be included in future

analyses to better explore group differences. In addition, many unknowns are introduced in the realm of

functional organization during development. Currently, the exact developmental trajectory of functional

network organization is unknown. Incorporating future methods that quantify and account for age-related

changes in network organization would further clarify the accuracy of the SVM classifier results in our

pediatric subgroups.

Future analyses should explore other potential influences on classifier accuracy, such as same-sex versus

opposite-sex sibling pairs. We indirectly investigated the impact of sex on identification accuracy within

families by including a same-sex sibling group and comparing that with the MZ and DZ twin groups. How-

ever, siblings in this group necessarily differed by age, thus introducing a separate confound. Matching

declared sex for sibling pairs did, in fact, result in higher SVM classifier accuracy of the same-sex sibling

pairs than the pediatric DZ twin pairs (which was not sex-matched), suggesting a notable impact of sex

variance on identification of individuals through this approach. There are limited rs-fcMRI studies that

directly address sex differences in healthy twin populations, and the precise source of sex differences on

functional network organization is still not fully understood (Hjelmervik et al., 2014; Satterthwaite et al.,

2015). Future analyses on larger twin datasets can better parse out and control for sex differences between

genetically related individuals.
iScience 23, 100801, January 24, 2020 9



Conclusions

The ability of rs-fcMRI pattern classifiers to identify matched pairs of participants in pediatric and adult

samples decreased as genetic similarity decreased. This suggests a genetic influence on the pattern of

highly individualized functional connections within a functional fingerprint. Connections within the identi-

fied functional fingerprint were dominated by regions in the DMN and FP networks, suggesting that

integration of higher-order functional networks plays a key role in establishing the organization of

individualized functional fingerprints. This pattern of connections appears to be established early in life

and, importantly, is similar enough in children and adults to often allow for significant classification of

individuals using the opposite age group’s selected features.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The publicly available adult datasets are available in raw and preprocessed form. The Midnight Scan Club

data can be accessed at https://openneuro.org/datasets/ds000224/versions/00001. The Human Connec-

tome Project data can be acquired from https://www.humanconnectome.org/.

The scripts used to perform the main SVM classifier analysis can be found on the main author’s github page

https://github.com/iamdamion.
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Supplemental Figures 

 
Figure S1. Accuracies Over ANOVA Feature Selection Thresholds, Related to Figure 2 
Scikit-learn’s default 5% setting for ANOVA feature selection was used for all final analyses. A post-hoc examination 
of feature selection thresholds was conducted to ensure the main classifier results were not dependent on the a priori 
5% feature selection threshold default setting. All ANOVA thresholds from 1-100% were re-run on all subgroups using 
the SVM classifier method in our main analyses. Prediction accuracy generally peaked around 5-10% and then 
declined as percentages increased to 100%. These post-hoc accuracy scores suggest our a priori setting is within the 
optimal range for classification in all groups, that the main results were not driven by the 5% ANOVA threshold, and 
that using a different threshold would not provide a clear alteration to classifier performance.  
 
 
 



    

 
Figure S2. Pediatric “Fold-Rank” Matrix Features, Related to Figure 3 
All connections (87) chosen as features for at least 5 (yellow lines in circle graph) or 6 (white lines in circle graph) 
folds of the pediatric “fold-rank” matrix (total of 3 subgroups) are displayed. On-brain edges that are grey represent a 
between-network connection. Edges with a color represent a within network connection in the network of that color. 
 
  



    

 
 

 
Figure S3. Adult “Fold-Rank” Matrix Features, Related to Figure 3 
All connections (110) chosen as features for at least 5 (yellow lines in circle graph) or 6 (white lines in circle graph) 
folds of the adult “fold-rank” matrix (total of 3 subgroups) are displayed. On-brain edges that are grey represent a 
between-network connection. Edges with a color represent a within network connection in the network of that color. 
 
 
 
 



    

 
Figure S4. “Common Set” Rank Matrix Features, Related to Figure 3 
All connections (90 total) chosen for at least one fold across all pediatric and adult subgroups (total of 6 subgroups) 
are displayed. On-brain edges that are grey represent a between-network connection. Edges with a color represent a 
within network connection in the network of that color. 
 
Transparent Methods 
Contact for Resource Sharing 
Further information and requests for resources should be directed to and will be fulfilled by the 
Lead Contact, Damion V. Demeter (demeter@utexas.edu). 
 
Experimental Model and Subject Details 
Participant Demographics 
Data from 209 total participants were organized into four pediatric (ages 8-18 years) and three 
adult (ages 22-35 years) subgroups for analysis. The pediatric groups were collected at The 
University of Texas at Austin (UT) as part of the Texas Center for Learning Disabilities project 
(www.texasldcenter.org), the Texas Twin Project (Harden, Tucker-Drob, & Tackett, 2013), or as 
part of ongoing UT Developmental Cognitive Neuroscience Lab (Church) collections. All UT 
collections were approved by the Institutional Review Board at either the University of Texas 
Health Science Center at Houston, or the University of Texas at Austin. Parents provided 
informed consent and pediatric participants provided informed assent to participate in the study. 
The adult subgroups were created from two publicly available neuroimaging datasets: the 



    

Midnight Scan Club (MSC; (Gordon et al., 2017)) and the Human Connectome Project (HCP; 
(Van Essen et al., 2013).  
 
The pediatric subgroups included repeat-scanned individuals (spanning 5 to 18 months between 
scans); monozygotic (MZ) and dizygotic (DZ) twin pairs; and a group of same-sex sibling pairs 
that, like the DZ twin groups, share ~50% genetic information. The adult subgroups included 
repeat-scanned individuals (MSC scans were collected on two consecutive days), as well as MZ 
and DZ twin pairs. Detailed group information, including zygosity for twin pairs, is in Table 2. 
The similar subgrouping in our two age groups allowed us to test for familial similarities in 
network organization during both childhood and adulthood, determine whether those results 
were moderated by sex, and to address possible confounds imposed by MRI acquisition 
settings and scanner type by using both locally and externally collected datasets. 
 
Pediatric subgroups did not significantly differ from one another in mean IQ (p>0.32). Adult twin 
subgroups did not significantly differ from one another in fluid intelligence (p=0.19), as 
measured by Raven’s Progressive Matrices (Raven, 1941). The MSC group exhibited above-
average mean IQ but could not be statistically compared to the HCP adult sets due to difference 
in intelligence measures. Groups did not significantly differ in scanner movement that was 
quantified by post-motion censoring mean framewise displacement (FD) values (see resting 
state preprocessing). See Table 2 for detailed subgroup demographics, IQ, and motion 
information. 
 
Method Details 
Neuroimaging Acquisition: 
All pediatric participants were scanned at The University of Texas at Austin’s Biomedical 
Imaging Center on a Siemens Skyra 3 Tesla scanner with a 32-channel head coil. Participants 
were fitted with foam pads around the head to reduce motion and verbal feedback was provided 
between scans. All resting state scans were acquired after participants were instructed to lie 
still, stay awake, and keep their eyes open while looking at a white fixation cross on a black 
background. Resting state scans where participants reported falling asleep were not included in 
analysis. For each participant, one T1-weighted structural MPRAGE sequence scan 
(TR=2530ms, TE=3.36ms, FOV=256x256, voxel resolution=1x1x1 mm) and up to two, six-
minute functional resting state scans using a multi-band echo-planar sequence (TR=2000ms, 
TE=30ms, flip angle=60°, MB factor=2, 48 axial slices, voxel resolution=2x2x2mm) were 
collected.  
 
All HCP data used in the current analyses were collected on a custom 3 Tesla Siemens Skyra 
“Connectome scanner” with a Nova Medical 32-channel head coil (Van Essen et al., 2013). At 
each scanning session, participants underwent at least one T1-weighted structural MEMPRAGE 
sequence scan (TR=2400ms, TE=2.14ms, FOV=224x224, voxel resolution=0.7x0.7x0.7mm) 
and one, 14.5 minute functional resting state scan using a multi-band echo-planar sequence 
(TR=720ms, TE=33.1ms, flip angle=52°, MB factor=8, 72 axial slices, voxel 
resolution=2x2x2mm). 
 
Data in the MSC dataset was collected on a 3 Tesla Siemens TRIO scanner with a 16-channel 
head coil (Gordon et al., 2017). The current analyses include one T1-weighted structural 
MPRAGE sequence scan (TR=2400ms, TE=3.47ms, voxel resolution=0.8x0.8x0.8mm) and two 
30-minute functional resting state scans (TR=2200ms, TE=27ms, flip angle=90°, 36 axial slices, 
voxel resolution=4x4x4mm) collected over two consecutive visits. Resting state scans for all 
HCP and MSC sessions were acquired with each participant looking at a white fixation cross on 
a black background.  



    

 
Resting State Preprocessing: 
In an effort to accurately compare the datasets used in these analyses, all scans were 
preprocessed identically with an in-house resting state preprocessing pipeline comprised of 
FMRIB Software Library (Smith et al., 2004) and Freesurfer (Dale, Fischl, & Sereno, 1999) 
commands, as well as custom Matlab (www.mathworks.com) computational scripts. Adult scans 
were downloaded from their public database in unprocessed Neuroimaging Informatics 
Technology Initiative (NIfTI) format. Preprocessing steps followed best practices outlined in the 
current resting state literature (Hallquist, Hwang, & Luna, 2013; Power, Barnes, Snyder, 
Schlaggar, & Petersen, 2012; Power et al., 2014). The preprocessing steps included: (1) motion 
correction and registration to 2mm MNI atlas space; (2) mode 1k normalization; (3) temporal 
band-pass filtering (0.009 Hz < f < 0.08 Hz); (4) demeaning and detrending of fMRI data; (5) 
regression of band-pass filtered nuisance signals including six directions of motion plus their 
derivatives, cerebral spinal fluid, white matter, and whole brain signal; (6) and spatial smoothing 
(4mm full width at half maximum). To reduce the reintroduction of noise that occurs with multiple 
transformations, all registration steps were done in one single transform. Similarly, all nuisance 
signal regression and temporal filtering was performed simultaneously (Lindquist, Geuter, 
Wager, & Caffo, 2019). 
 
Due to the significant negative impact of motion on rs-fcMRI analyses (Power et al., 2012, 
2014), all functional scans were analyzed for excess motion and only participants that passed 
motion criteria were included in analyses. A framewise displacement (FD) threshold of .25mm 
was used for all datasets, and frames above this threshold were removed. Sections of 
timecourses without at least 5 contiguous frames post-censoring were also removed. At least 5 
minutes of data surviving motion censoring was required for inclusion in all analyses. In an effort 
to mitigate the influence of varied scan lengths across datasets, fully processed scans included 
for all analyses were cropped to the first 5 minutes of post-motion censored data. Resting state 
scans of 5 minutes with a .25mm FD motion censoring threshold allowed us to include the 
largest number of participants across all datasets, while adhering to suggestions of minimum 
acceptable scan time (Birn et al., 2013; Whitlow, Casanova, & Maldjian, 2011) and an 
acceptable threshold of head motion (Power et al., 2012, 2014). All scans underwent quality 
assurance and visual inspection. Any scans that did not successfully align to the MNI atlas, 
included motion or acquisition artifacts, or did not pass minimum scan length and motion criteria 
were not included in analyses. 
 
rs-fcMRI Feature Selection: 
Features used for SVM classification were chosen from functional connections derived from a 
pre-defined set of 264 ROIs (Power et al., 2011). Due to inconsistent scan coverage of the 
cerebellum across participants, a reduced set of 255 non-cerebellar ROIs was used. Resting 
state timecourses for each participant were extracted from each ROI (Figure 1a). To create the 
feature mask used by the SVM classifier, each 5-minute timecourse from the training set was 
divided into 20-second segments (15 total segments) and one pairwise correlation matrix 
between all 255 ROIs was created for each segment of resting state timecourse (Figure 1b). 
The correlation matrix was then masked to retain only off-diagonal correlation values and was 
converted into a vector comprised of 32,385 unique correlations for each segment. The 
segment vectors were then used for ANOVA feature selection (Figure 1c) in which the top 5% 
most variable correlations (1,619) -- representing functional connections -- were retained. The 
resulting feature mask was then applied to the full 5-minute resting state timecourse for each 
individual during the SVM classifier steps (Figure 1d). The classifier was trained on the same 
training set used for feature selection, and the held-out datasets (repeat scans for individuals or 



    

co-twin scans) were used to test the classifier’s accuracy using leave-one-group out cross-
validation (see details below).  
 
ANOVA feature selection was set at 5% (the default setting for scikit-learn’s (Pedregosa et al., 
2011) ANOVA feature selection function) as this default is derived from the traditional minimal p-
value threshold for significance tests. Additionally, we conducted a post-hoc examination of the 
influence of ANOVA thresholds from 1% to 100% to ensure that the a priori 5% threshold was 
not uniquely driving our results. We used the same classifier methods as used in the main 
analyses, but tested all feature selection thresholds from 1% to 100%. All ANOVA feature 
selection thresholds provided accuracies above chance for all of our sub-groups. However, 
accuracies did peak around the 5-10% range for each group and flattened out before eventually 
declining (Figure S1). Lower scores at percentages below 5% suggest that too few features did 
not provide the classifier ample information for identification. Alternatively, percentages nearing 
100% may include “noise” which reduces classifier accuracy. We thus found that our 5% feature 
selection setting choice did not uniquely drive our results.  
 
Similarly, segmenting the full resting state timecourse during feature selection provided a more 
accurate characterization of functional connectivity that is washed out using the full 5-minute 
timecourse. We tested feature selection segment lengths ranging from a single TR to one-half of 
the entire 5-minute timecourse. A reduction of accuracy scores was observed as segment 
lengths increased, with feature selection including the full 5-minute timecourse producing the 
lowest classifier performance in all groups. A segment length of 20-seconds was chosen as it 
identifies a set of connections that are highly discriminating between scan-pairs, provides 
sufficient samples for ANOVA feature selection, and still adheres to the findings of previous 
literature addressing the minimal segment length that is needed to capture the resting state 
functional network structure (Birn et al., 2013; Whitlow et al., 2011).  
 
Quantification and Statistical Analyses 
Support Vector Machine Classification: 
We used scikit-learn (Pedregosa et al., 2011) to train and test a multi-label classifier for each 
group, using the rs-fcMRI features chosen during the training step. Prediction accuracy was 
measured using a SVM classifier and a leave-one-group-out cross-validation scheme. Scan pair 
classification was achieved with the following steps: (1) Participant scans were organized into 
two sets: The first set contained one 5-minute scan from each participant and the second set 
contained either a 5-minute scan of that same participant collected at a different time, or a 
sibling’s scan. Thus, for classifying individuals with repeated scans, this included one set of first-
visit scans and one set of second-visit scans. For twin pairs, one set was twin A’s scan and the 
other set was twin B’s scan. (2) The first set of scans was then used for feature selection and 
classifier training, and the second set of scans (held-out data) was used for classifier testing. (3) 
A prediction accuracy score was calculated for each participant or sibling pair and represented 
the ratio of correct predictions that were made to the total number of predictions, thus 
quantifying how accurately the classifier could label each scan in the testing set, based off the 
data in the training set. (4) This procedure was then repeated for a cross-validation “fold”, where 
the training/testing scans within sets were swapped. During cross-validation, the second set of 
scans was used for the feature selection and training steps, and the first set was used for the 
testing step. (5) In order to address influences on classifier accuracy due to arbitrary grouping of 
training and testing scan sets, we applied a form of scan-set shuffling to the classification 
procedure. The feature selection and classification steps (steps 1-4) were run one-thousand 
times per group while altering which individual’s scan was placed in the training set vs the 
testing set, without shuffling the classifier labels (keeping all participant pair labels correct and 
intact). In this design, the order of scans did not matter, only that each individual (or twin pair) 



    

provides one unique scan in the training set and the other in the testing set. For example, the 
training set could include all A scans [1A, 2A, 3A…] and the testing set all B scans [1B, 2B, 
3B…]. In the next iteration, one or more scan pair’s assignment may swap between training [1A, 
2B, 3A…] and testing [1B, 2A, 3B…], but all scan pairs are represented only once in each set 
and the pair labels remain correct. Additionally, no combination of scan pairs was used more 
than once. Prediction accuracy scores across all scan-set shuffles and folds were then 
averaged to provide a mean group prediction accuracy score. (6) To quantify whether group 
classifier performance was above chance, one thousand randomized permutations were 
conducted for each of the one thousand tests in step 5. In this step the labels in the training and 
testing sets were shuffled (labels were no longer assigned to the correct scan pairs) and 
classification accuracy was re-calculated. This resulted in a distribution of one million chance 
accuracy scores. To assess the significance of the group prediction accuracy score, we 
calculated p-values as the proportion of chance distribution accuracies that were above the 
mean group accuracy score. This was achieved by dividing the number of randomized accuracy 
scores that were greater than our group accuracy score by the number of permutations. (7) 
Lastly, we assessed classifier sensitivity by calculating area under the receiver operating 
characteristic curve (AUC) values for each scan pair within all subgroups.  
 
Functional Fingerprint Mapping: 
We examined the specific functional connections that were most different between individuals 
by identifying connections repeatedly chosen during feature selection across folds and 
subgroups. Each subgroup’s main SVM classifier provided us with two folds, each containing a 
list of functional connections chosen as features. A matrix was created that tallied the number of 
times a functional connection was chosen as a feature across folds, which we refer to as a “fold-
rank” matrix. Each of these subgroup fold-rank matrices were summed into one pediatric and 
one adult group matrix that were calculated from the three main subgroups in each age range 
(excluding the same-sex sibling UT comparison group, as some overlap in sibling pairs existed 
with the pediatric DZ twin group). The final pediatric (Figure S2) and adult (Figure S3) fold-rank 
matrices each contained values ranging from zero to six, and a threshold of five was applied for 
our final selection of features for each group. Additionally, one “common set” rank matrix was 
created that combined chosen features across all six pediatric and adult subgroups (Figure S4). 
The common set matrix differs from the fold matrix, in that it is binary, and a connection chosen 
as a feature for either fold of a subgroup is given a value of one. The resulting matrix included 
values ranging from zero to six, after summing across all subgroups. We applied a threshold of 
six to the common set matrix, representing connections chosen as features for at least one fold 
in all six main subgroups.  
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