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The C3HC type zinc-finger protein (ZFC3)
interacting with Lon/MAP1 is important for
mitochondrial gene regulation, infection
hypha development and longevity of
Magnaporthe oryzae
Shaoshuai Liu1,2, Yi Wei1 and Shi-Hong Zhang1*

Abstract

Background: The rice blast is a typical fungal disease caused by Magnaporthe oryzae, and the mitochondrial ATP-
dependent Lon protease (MAP1) has been proven to be involved in blast development. We previously screened a
C3HC type Zinc-finger domain protein (ZFC3), which is interacted with MAP1. The purpose of this research was to
study the biological function of ZFC3 protein in M. oryzae.

Results: We first confirmed that the ZFC3-RFP fusion protein is localized within the mitochondria. The deleted
mutant strains of ZFC3 (ΔZFC3) showed the enhanced expression level of mtATP6, particularly mtATP8, and almost
unchanged nATP9. ΔZFC3 produces more conidia and more tolerance to multiple stressors. The knock-out strain
shows more melanin accumulation suggests the susceptibility to aging. ΔZFC3 displays faster early-stage hypha
infiltration involved in MAP1-mediated pathogenicity in host rice.

Conclusion: These results support the view that ZFC3 is a key regulator involved in gene regulation, stress
response, cell wall integrity, longevity, conidiation, infection hypha development and MAP1-mediated pathogenicity
in M. oryzae.

Keywords: C3HC type zinc-finger protein, Mitochondrial Lon/MAP1, Infection hypha development, Mycelia
longevity, Magnaporthe oryzae

Background
Magnaporthe oryzae is the best-studied phytopathogenic
fungus, which can cause severe blast disease in rice [1,
2]. The disease can lead to a great loss of the yield of
grain production during epidemics [3]. The rice blast
fungus has a variety of life cycle pathways. It is better to
understand the specific function in each pathway, to
provide biological evidence in eukaryotic development
and pathogenesis with feasible molecular genetic ma-
nipulation methods. Since a large number of genes have
been well investigated in this pathogen, they supply po-
tential targets for rice blast disease control [4–6].

Transcription factors (TFs) are proteins that bind to
specific DNA sequences, which can control the rate of
transcription from DNA to mRNA [7, 8]. TFs turn genes
on or off to ensure that they are expressed in the right
cell at the right time. This TF-controlled regulation oc-
curs throughout the life of the cell and the organism [9–
11]. Many putative TFs that specifically associate nuclear
matrix and some other related transcriptional factors
have been confirmed to globally affect gene activation
and repression in the rice blast fungus, and further func-
tional analyses indicated that several TF genes are im-
portant for fungal development, pathogenesis, and
environmental stress tolerance. For example, in hyphal
growth [12, 13], conidiogenesis [14, 15], plant infection
[16], response to oxidative stress [17, 18] and longevity
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[19, 20]. However, fungal cytoplasm transcription fac-
tors, particularly mitochondrial gene transcription fac-
tors are actually unknown in M. oryzae. Therefore, it is
necessary to further probe functions of these TFs.
In filamentous fungi, aging research in the early 1950s

described that cultures of the filamentous ascomycete
Podosprora anserine did not grow indefinitely but sen-
esce after a strain specific period of growth [21]. The
vital phenotype is characterized by an age-related de-
crease in the growth rate of mycelium and an increase in
the pigmentation of aging cultures [22]. Here are several
factors can affect life span: i. The life span of P. anserina
was affected after adding different metabolic inhibitors
to the medium [23].
Kanamycin and neomycin act as inhibitors of mito-

chondrial ribosomes could lead to an increased life span
[24]; ii. Age-related reorganization of the mitochondrial
DNA, nuclear genes and extrachromosomal genetic
traits (mitochondrial DNA) can control the onset of sen-
escence [25–27]; iii. Mitochondrial oxidative stress and
compensation of mitochondrial dysfunctions [28, 29].
Mitochondria are maternally inherited multifunctional

organelles, which can form a comprehensive network in
many cells to maintain an intricate balance between fis-
sion and fusion, mitochondrial biogenesis, and mito-
phagy [30–32]. Somatic mitochondrial DNA (mtDNA)
mutations and respiratory chain dysfunction accompany
normal aging [33], and fungal aging and longevity are
highly dependent on mitochondrial integrity and func-
tions [34–37]. Better communication between the nu-
cleus and mitochondria is the basis of different
mitochondrial stress signals as well as the nuclear stress
response pathways to handle these stressors maintain
bioenergetic homeostasis in most cases.
In fungal pathogens, mitochondria play major roles in

developmental and morphogenetic switches such as hy-
phal differentiation and biofilm formation, adaptation to
stress, cell wall biosynthesis, and structure, innate im-
mune cell interaction and susceptibility to antifungal
drugs [38–42]. Therefore, the mitochondrion is consid-
ered a prime target for treating fungal diseases [41, 43].
The ATP-dependent Lon protease is the most highly

conserved member of the energy-dependent proteases in
a myriad of organisms, which vary across different sys-
tems and circumstances [44]. Lon proteases play import-
ant biological roles in the cell cycle, differentiation,
sporulation, motility, and development during stress
[45–48]. MAP1, a Lon-like protease of fungal phytopath-
ogens, shares common functions in response to environ-
mental stressors with fungal pathogens. For example,
MAP1 is involved in cell wall integrity and maintains
pathogenicity and development of M. oryzae [49, 50].
The involvement of MAP1 in pathogenesis is through
the regulation of specific interacting proteins [49].

Previous research showed that ZFC3 is one of the inter-
acting proteins with MAP1 [50]. The function of nuclear
transcription factors have been investigated in mamma-
lian mitochondria and may directly regulate mitochon-
drial gene expression [51]. There is increasing concern
about nuclear transcription factors as a direct regulator
of mitochondrial gene expression [52, 53].
In this study, we demonstrate ZFC3 is a TF protein

which interacts with MAP1 and localizes to the mito-
chondria to regulate the relative expression of ATP syn-
thesis genes. ΔZFC3 knock-out strain is tolerant to
stressors and accelerates the aging process of fungi.
With the fast infiltration speed in host rice plants, it fails
to change the symptoms of the disease. Our findings
provide new insights into ZFC3 mediation of the devel-
opment and metabolism of the fungal pathogen.

Results
The structure of the zfc3 gene in M. oryzae
In different species, the ZFC3 protein contains two con-
served domains, namely, the C3HC zinc finger domains
and the Rsm1 superfamily domain (Fig. 1a). Based on
the conserved amino acid sequence of the M. oryzae
ZFC3 protein, C3HC zinc fingers conserved domain is
common in different species (M. oryzae, Fusarium oxy-
sporum, Gaeumannomyces graminis, Nectria haemato-
cocca and Togninia minima).
The nucleotide sequence of zfc3 gene (MGG_04317)

was aligned and compared with several reported se-
quences of ZFC3 proteins in other species (Add-
itional file 1: Figure S1a). Phylogenetic analyses of ZFC3
within the eukaryotic tree indicated that this protein was
closely related to the other fungal proteins (Additional
file 1: Figure S1b).

Subcellular localization of ZFC3-RFP protein
ZFC3 subcellular localization was determined with a red
fluorescent protein (RFP) fusion strategy, then the binary
vector was introduced into the wild-type strain. The ob-
tained mutants were used to investigate the cellular
localization of ZFC3-RFP fusion protein. The fusion pro-
tein was distributed throughout the mitochondria (Fig.
1b) by confocal laser scanning microscopy examination.
Indicating that ZFC3 protein mainly localizes to mito-
chondria in M. oryzae.

Relative expression of ATP synthesis genes increased
Since the ZFC3 protein localizes to the mitochondria
and interacts with the MAP1 protein (Additional file 1:
Figure S1c), nuclear and mitochondrial DNA (mtDNA)
are thought to be of separate evolutionary origin. Mito-
chondrial DNA is only a small portion of the DNA and
is common in a eukaryotic cell, 15 mtDNA-encoded
genes are available in M. oryzae (Additional file 2). It has
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been reported that mtDNA-encoded genes involved in
energy metabolism [54] in the process of develop-
ment. Thus, ATP synthesis gene expression was
checked by qRT-PCR. Our data demonstrated that ex-
pression level of mtATP6 (GenBank: MGG_21007),
particularly mtATP8 (GenBank: MGG_21008) main-
tained an up-regulated level. The target nATP9 (Gen-
Bank: MGG_00892) remained unchanged level (Fig. 2)
in comparison with WT and complemented ZFC3-C

strains. We concluded that ZFC3 involved in ATP
synthesis and as a negative regulator of mitochondria.

Oxidative adaptation and cell wall integrity test
To check the response to oxidative stress in M. oryzae,
the WT, ΔZFC3 and ZFC3-C strains were cultured on
CM agar containing the oxidative-stress regents H2O2 at
28 °C for 10 days. ΔZFC3 mutant strains displayed in-
creased tolerance to oxidative stress (Fig. 3a). Congo

Fig. 1 The ZFC3 protein involves two principal domains and localizes to mitochondria. a Domain structures of the ZFC3 protein in M. oryzae and
the conservative and evolutionary analysis of the ZFC3 like protein in representative fungi. b Expression and localization of ZFC3-RFP protein in M.
oryzae. Vegetative hyphae expressing the ZFC3-RFP fusion protein was examined under microscope. Mito-Tracker green (green fluorescent dye as
a membrane marker). Scale bar = 2 mm

Fig. 2 Differential ATP synthesis genes analysis on transcriptomes of the ΔZFC3 mutant and those of the WT and complemented strains. The analysis was
performed using a one-way ANOVA Tukey’s multiple comparison test. Asterisk (*) indicates a significant difference at P< 0.05. All values are normalized to
actin. Averages are taken from quadruplicate analysis. Values are based on three biological samples and error bars indicate the mean ± SD
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Red (CR) and sodium dodecyl sulfate (SDS) are both
typical inhibitors against cell wall synthesis [55–57], and
the cell wall disturbing agent’s CR and SDS were used
for the cell wall integrity test. The results demonstrated
that after 10 days of incubation, there is no significant
difference in the growth of CR treatment (Fig. 3b)
among different strains. The WT, ΔZFC3 and ZFC3-
C strains also inoculated on CM agar containing the
indicated stress-mimetic agent’s SDS, ΔZFC3 mutant
strains displayed a significant difference to SDS

control treatment (Fig. 3c). These data suggest ZFC3
is involved in oxidative-stress adaptation as well as
cell wall integrity in M. oryzae.

The absent of ZFC3 accelerates aging
Since mitochondrial metabolism increased ATP synthe-
sis, the speed of respiration was enhanced. Normally, the
fast respiration rate is appropriately proportional to an
increase in metabolic rate. The previous study indicated
that differences in metabolic rate have an important

Fig. 3 ΔZFC3 strains are tolerant to oxidative adaptation and cell wall integrity test. a WT, ΔZFC3 and ZFC3-C strains of M. oryzae on CM plates
supplemented with the oxidative-stress agent H2O2 (2.5 mM) and H2O2 (5 mM). b The strains inoculated on CM plates containing the cell wall
disturbing agents Congo Red (CR, 100 μg/mL) and (CR, 200 μg/mL). c The strains inoculated on CM plates containing the cell wall disturbing
agents sodium dodecyl sulfate (SDS, 0.005%) and (SDS, 0.01%). Data represent means ± standard deviations (SDs) from three independent
experiments in which triplicate plates were examined for each strain in each experiment. **: significant at P < 0.01; *: significant at P < 0.05
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effect on the adult lifespan [58]. Traditionally the
lowest metabolic rates lived longer and reproduced
more often [59]. In order to determine the biological
function of zfc3 gene on lifespan, the wild-type and
mutant strains were also inoculated on CM solid
plates and CM liquid medium. The extent of melanin
production was observed in both different mediums.
ΔZFC3 mutant showed more accumulation of mel-
anin in both different mediums (Fig. 4a and b). The
aging process always accompanied by numerous pig-
mentary changes, e.g., melanin or lipofuscin may in-
crease with time of age [60]. The result is consistent
with the conclusion that the accumulation of melanin
means the aging of the organism.
Life span analysis among WT, ΔZFC3 and ZFC3-C

strains was also carried out based on Geydan et al.
and Cui et al. [61, 62]. Each strain was separately in-
oculated on the edge of 150-mm solid plates and cul-
tured in climate chamber for 20 days, then the
explants were inoculated on fresh medium again for
the next culture cycle. The growth of the ΔZFC3
strain quit at the10th day of the fouth culture cycle,
indicating the life span of fungi was less than 70 days
(Fig. 4c). On the contrary, the WT and ZFC3-C
strains can grow until the fifth culture cycle. We thus
speculated that ZFC3 has a positive effect on fungal
lifespan.

Increased the production of conidia
To investigate the role of ZFC3 in the pathogen conidia-
tion and conidial morphogenesis, we inoculated mycelia
on the OM medium and SDC medium. The analysis of
conidial morphology revealed that there is no significant
difference between ΔZFC3 mutant conidia and those of
the WT and complemented strains conidia (Fig. 5a).
Further analysis of the conidia production, ΔZFC3 mu-
tant revealed an increased number of conidia (2.2 ±
0.02 × 106/mL) in comparison to WT (1.8 ± 0.03 × 106/
mL) and ZFC3-C (1.9 ± 0.05 × 106/mL) (Fig. 5b and c).
Taken together, our data demonstrate that ZFC3 con-
trols the production of conidia and as a regulator of the
pathogen conidiation.

The infection hypha of knock-out strains developed
earlier than WT and complemented strains, but
symptoms remained unchanged
To comprehensively evaluate the virulence role of
ΔZFC3 in M. oryzae. we inoculated intact host rice
leaves (compatible cultivar JJ88) and barley cultivar
Golden Promise with conidial suspension (4 mL, 5 × 104

spores/mL) by the spraying inoculation method [63]. Le-
sions caused by the WT and mutant strains were ob-
served at 7 d (rice) and 5 d (barley). The control and
ΔZFC3 mutant strains produced obvious lesions on rice

Fig. 4 ZFC3 loss accelerates mycelia aging of M. oryzae. a The loss of zfc3 gene increased the accumulation of melanin on CM solid medium. b
The loss of zfc3 gene increased the accumulation of melanin in CM liquid medium. c Life span analysis was carried out among WT, ΔZFC3 and
ZFC3-C strains. Data represent means ± standard deviations (SDs) from three independent experiments
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as well as barley leaves and displayed the same infection
symptom of all strains (Fig. 6a and b).
To elucidate the difference in the process of infection,

we performed an infection assay to examine the early in-
fectious hyphae growth on rice leaf sheaths. Infectious
hyphae growth was assayed on rice tissues at 12, 24 and
48 hpi post-inoculation using spore suspensions. ΔZFC3
displayed faster infection speed compared to WT and
complemented strains (Fig. 6c and d). These results sug-
gested that zfc3 was essential for early penetration and
infectious growth in M. oryzae. The production of mel-
anin significantly enhances the virulence of many im-
portant human and plant pathogenic fungi, so fungal
melanin also plays an important role in disease spread-
ing [64–66], thus explaining why ΔZFC3 mutant with
more melanin accumulation displayed faster hypha infil-
tration in host rice.

Discussion
The rice blast fungus M. oryzae is a typical model be-
tween fungal-plant interaction. A large number of im-
portant genes have been characterized for functional
analysis. They are mostly involved in the process of
fungi’s development and physiology. TF protein ZFC3 is
an interacting protein of Lon protease. MAP1 is a

member of Lon protease involved fungal pathogenesis.
In this study, we set out to explore the role of ZFC3 me-
diated by MAP1 in the development and pathogenicity
of the fungus M. oryzae, to provide the evidence of TF
roles in Mitochondria.
A large number of ZFC3 orthologs have been charac-

terized in the fungal pathogen. Moreover, many studies
have confirmed that ZFC3 can act as mitochondrion
protein (Fig. 1b) and play an important role in the
fungi’s development and metabolism. Bioinformatics
analysis revealed that ZFC3 protein is present in several
filamentous fungi, including GgZFC3 (Gaeumannomyces
graminis, XP_009223819.1), CoZFC3 (Colletotrichum
orbiculare, TDZ25575.1), FgZFC3 (Fusarium oxysporum,
EXL95675.1), VmZFC3 (Valsa mali KUI69614.1),
BbZFC3 (Beauveria bassiana XP_008599184.1), VdZFC3
(Verticillium dahlia XP_009650679.1). These filament-
ous fungi share the conserved C3HC zinc finger do-
mains which are a vital part of the genome. To clarify
the biological function of ZFC3, we generated gene dele-
tion mutant with the gene homologous recombination
method and complemented mutant, as well as the red
fluorescent protein-tagged mutant to determine the sub-
cellular location of ZFC3 in M. oryzae. Confocal results
showed that ZFC3 localized within the mitochondria.

Fig. 5 Increased the production of conidia. a Light microscopy of conidia produced by the WT, ΔZFC3 and ZFC3-C strains. Scale bar = 10 μm. b
Development of conidia is affected by the deletion of zfc3 gene. Strains grown on SDC medium for 7 days were examined by light microscopy.
Bars equal 10 μm. c Statistical analysis of conidia production among WT, ΔZFC3 and ZFC3-C strains. The analysis was performed using an
independent samples t-test. Symbol (*) indicates a significant difference at P < 0.05. Error bars indicate the mean ± SD from three
independent experiments
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The interacting protein MAP1 was also localized in the
mitochondria [49]. A previous study showed that MAP1
was also important in maintaining the healthy lifespan of
the filamentous fungus Thermomyces lanuginosus [62].
Thus, we speculate ZFC3 works in conjunction with
MAP1 to maintain mitochondrial integrity and functions
in fungi. In the ΔZFC3 mutant, the relative expression of
ATP-synthesis related genes is up-regulated (Fig. 2).
ZFC3 involves the metabolic of organism mediated by
bioenergetics and biosynthetic pathways to maintain the
function of mitochondria to keep the organism in
healthy condition for growth and development.
Mitochondria is a major organelle to generate oxida-

tive stress. Due to its role in converting oxygen and nu-
trients into adenosine triphosphate (ATP), it is generally
reported to be involved in oxidative-stress adaption [33,
49]. The tolerance of M. oryzae increased when the WT
and knock-out strains were exposed to different concen-
trations of H2O2 (Fig. 3a). Additionally, the ΔZFC3
strain was also tolerant to SDS treatment (Fig. 3c) in
comparison with WT and complemented strains. These
results indicate that ZFC3 has a specific role in dealing
with oxidation stress as well as cell wall integrity.

Melanin ranks as one of the important natural pig-
ments, as it is synthesized by members of all biological
kingdoms. It is normal in a variety of species, such as
fungi, bacteria, and helminths. Melanin is a sign of aging
with the accumulation of pigment. Besides, it has broad
contributions to fungal pathogenesis [67–69]. Therefore,
the increased production of melanin in ΔZFC3 mutant
(Fig. 4a and b) indicates the accelerated aging and the
enhanced early stage of pathogenicity in M. oryzae.
For pathogen inoculation experiments, we observed

that the ΔZFC3 mutant exhibited the same symptom of
the infection leaves. It did not change the virulence of
M. oryzae, but the increased amount of the conidia pro-
duction (Fig. 6a and b) and the fast hypha infection rate
(Fig. 6c and d) are different from the WT and comple-
mented strains. The increased ATP synthesis suggests a
high energy consumption for hypha infiltration. Higher
metabolic rates increased free radical formation, which
in turn may accelerate aging and lead to early mortality
[70, 71]. ΔZFC3 mutant exhibited enhanced develop-
ment phenotypes, such as increased hyphal growth rates
and conidium production (Fig. 5b and c). Indicating that
zfc3 is involved in the regulation of conidiation and

Fig. 6 Effect of ΔZFC3 mutant on pathogenicity. a Rice seedlings cultivar Jijing88 were inoculated by spraying method. Typical leaves were
photographed at 7 dpi. b Barley seedlings cultivar Golden Promise were inoculated by spraying method. Typical leaves were photographed at 5
dpi. c Observation of the invasive hyphal growth inside the rice leaf sheath inoculated with the WT, ΔZFC3 and ZFC3-C strains, Scale bar = 10 μm
(d) Statistics of invasive IH hyphal growth rate at 50 appressorium penetration sites by rating the level I to IV. 1 = IH length shorter than 10mm
with no branching; 2 = IH length is 10–20 mm with 0–2 branches; 3 = IH length is longer than 20 mm and/or with more than 2 branches within
one cell; 4 = IH has spread to adjacent cells
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infection-related development. It also highlights the im-
portance of the transcription factors for pathogenicity
[12, 18].
We further will clarify the function and regulation

mechanisms of the zinc-finger protein, to confirm the
transcription activity of ZFC3 protein and to identify the
promoter or non-specific mtDNA sequences, and
mtRNA sequences by ChIP and RIP (RNA-IP) ap-
proaches. These may constitute a research direction to
reveal the mysterious veil of this transcription factor.

Conclusions
In short, this study provides many new insights into
ZFC3 on the regulation of asexual development, growth,
conidiation, pathogenicity, and especially aging in M.
oryzae. Moreover, this study establishes a solid basis in
M. oryzae to further explore the specific mitochondrial
metabolism process as regulated by ZFC3.

Methods
Strains and culture conditions
The M. oryzae JL0910 strain used as the wild-type (WT)
was isolated and purified from Oryza sativa cultivar Jij-
ing88 (a widely planted variety in Jilin Province, China),
the spring barley (Hordeum vulgare L.) cv. Golden
Promise was used in the experiment, the rice and barley
plants were grown in a climate chamber under 16 h light
photoperiod (240 μmol m− 2 s− 1 photon flux density) at
18 °C/14 °C (day/night). All fungal strains were kept on
paper filters at − 20 °C in our lab. An oatmeal agar
medium (OM, 4% (w/v) oatmeal, 2.0% (w/v) agar) and
corn agar media (SDC: 100 g of straw, 40 g of corn pow-
der, 15 g of agar in 1 L of distilled water) at 25 °C under
bright light [63, 72] was used for sporulation analysis
and conidia harvesting, genomic DNA isolation, trans-
formation, measurements of vegetative growth rate and
conidiation as described [73]. For testing sensitivities to
various stresses, fungal growth was determined after cul-
turing at 22 °C on complete medium (CM:10 g/L glu-
cose, 2 g/L peptone, 1 g/L yeast extract, 1 g/L casamino
acids, 0.1% (V/V) trace elements, 0.1% (V/V) vitamin
supplement, 0.5 g/L MgSO4, 6 g/L NaNO3, 0.5 g/L KCl,
1.5 g/L KH2PO4, pH 6.5) plates. Each test was repeated
three times.

Nucleic acid manipulation
For generating the zfc3 gene replacement construct
pXEH20, the upstream and downstream fragments of
the zfc3 gene were respectively amplified with primers
CL-S/CL-A and CR-S / CR-A (Additional file 3). The
resulting PCR products were cloned into the XhoI -
EcoRI and BamHI - HindIII sites of vector pXEH20. The
knockout vector was introduced into Agrobacterium
tumefaciens strain AGL-1 and then do transformation

with M. oryzae JL0910 by the ATMT method as de-
scribed [74], Transformants cultured in hygromycin at
200 μg/mL were screened, then they were identified by
PCR with primers HYG-F/HYG-R (Additional file 3). To
generate complemented vector, a fragment containing
1800 bp upstream of the coding region of zfc3 was amp-
lified by PCR with primers pZFC3-S/pZFC3-A (Add-
itional file 3) and cloned into vector pCB1532 [49]. The
complementary vector was transformed into A. tumefa-
ciens strain AGL-1 and the resultant transformants gen-
erated by the ATMT method were screened on
chlorimuron-ethyl containing DCM medium. Selected
transformants were determined by diagnostic PCR to
confirm the integration cases, so ZFC3-C mutant strains
were also taken as control.

RT-PCR and qRT-PCR analysis
Total RNAs were isolated from mycelia harvested from
2-day-old CM media with TRIzol reagent (Invitrogen)
and purified with the DNA-free kit (Ambion). The first-
strand cDNA was synthesized from one microgram of
total RNA using the Improm II RT-PCR kit (Promega,
Madison, WI). The designed PCR and RT-PCR primers
(Additional file 3) were used for amplifying the full
length of zfc3 DNA and cDNA from reverse transcrip-
tion. The ABI Prism 7500 Sequence Detection System
(Applied Biosystems) and SYBR® premix EX taq™ II
(TliRNaseH Plus) Kit (Takara, Dalian, China) were used
for qRT-PCR analysis with primers (Additional file 3).
The M. oryzae actin gene (MGG_03982.6) was taken as
a reference gene for normalization.

Generation of gene fluorescent fusion sub-cellular
localization mutants
The pKD7 plasmid vector (a kind gift from Dr. Wang
Hongkai and Dr. Jianping Lu, Zhejiang University,
China) including DsRed gene was applied for transform-
ation. The localized fragments, which contained the en-
tire targeted gene was amplified by PCR with primers
(DSRED-F/DSRED-R) (Additional file 3) and integrated
into pKD7 vector. The localized vector was introduced
into A. tumefaciens strain AGL-1 and then do trans-
formation with M. oryzae JL0910 by the ATMT method
[74]. Transformants cultured in G418 at 200 μg/mL were
screened. To detect mutants by PCR with primers NEO-
pl/NEO-p2 (Additional file 3).

Lifespan measurement
Lifespan test was based on the method of [61, 62] with
suitable optimization. In a word, lifespan was deter-
mined in time (days) and in length (cm) of continuous
growth on Petri dishes (150 mm × 25mm) filled with 65
mL CM medium. Each experiment was carried out at
least two replications. The stains were incubated under
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an angle of 30°–45° and to record the growth every 2
days. Explants were transferred to fresh medium for fur-
ther measurement form the edge of over-grown Petri
dishes. The observation was done until the growth rate
declined significantly. They were classified as non-
senescent when the growth rate did not slow down and
when there were no morphological changes. Fast senes-
cing cultures displayed a decline in the growth rate and
morphological changes and accompanied by a cessation
of growth.

Sporulation formation, rice sheath penetration assays and
plant infection assays
Quantitative measurement of condition was assayed on
OM medium and SDC medium, while the aerial hyphal
and conidial development was monitored as described
previously [75].
Plant infection assays were performed on 4-week-old

rice seedlings (Oryza sativa cv. JJ88) and barley cultivar
Golden Promise by spraying 4 mL of the conidial sus-
pensions (5 × 104 conidia/mL in 0.2% gelatin). Inoculated
plants were placed in a moist chamber at 28 °C for the
first 24 h in darkness, and then placed in another moist
chamber with a photoperiod of 12 h under the light. The
disease severity was assessed after inoculation.
Conidial suspensions were injected into seedling leaf

sheaths by a 1-mL syringe, 100 μL of conidial suspension
(5 × 104 spores/mL) on the inner leaf sheath cuticle cells.
and the inoculated plants were placed in a moist cham-
ber. Lesion formation and necrosis around the inocula-
tion sites were examined when the injection-wounded
leaves unfolded at different time points after injection.
Mean IH growth rates and movement to adjacent cells
at 12, 24 and 48 hpi were determined from 50 appresso-
ria per treatment, repeated in triplicate, as previously de-
scribed [75].

Microscopy examination
Live-cell imaging was performed as described previously
using 3 cm-long leaf sheaths segments from around 3-
week-old rice plants and injecting one end of the sheath
with a spore suspension of 1 × 105 spores/mL in 0.2%
gelatin. At the indicated time points, leaf sheaths were
trimmed and observed using a Nikon Eclipse 80i
microscope.
In order to examine the subcellular localization of the

ZFC3 protein, subcellular localization mutants were cul-
tured with CM medium and the hypha was harvested 5
days later. The hyphae were washed 3 times with ddH2O
and placed in100 nM Mito-green solution for 30 min.
Mito-Green (Invitrogen, Ltd., Paisley, United Kingdom)
is a carbocyanine-based and mitochondrion-selective
green fluorescence regent, which can be used for stain-
ing and tracking the presence of mitochondrion location

under the 488 nm laser wavelength with Olympus Xa21
microscope (Olympus, Tokyo, Japan).

Statistical analysis
All experiments were performed three times. The means
± SD of the growth rate and relative expression were de-
cided using SPSS statistics 22 software, P < 0.05 was con-
sidered statistically significant. Error bars mean standard
deviation.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12866-020-1711-4.

Additional file 1: Figure S1. Phylogenetic and structural analysis of
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