Skip to main content
. 2020 Jan 24;10:1750. doi: 10.3389/fpls.2019.01750

Table 1.

Corn yield prediction performance for years 2016, 2017, and 2018.

Model Validation Year Training RMSE Training Correlation Coefficient (%) Validation RMSE Validation Correlation Coefficient (%)
CNN-RNN 2016 13.26 93.02 16.48 85.82
2017 12.75 93.68 15.74 88.24
2018 11.48 94.99 17.64 87.82
RF 2016 13.38 92.74 25.48 69.52
2017 14.31 92.39 29.40 69.03
2018 14.40 92.39 26.02 70.55
DFNN 2016 12.34 94.43 27.23 81.91
2017 11.21 95.09 23.88 79.57
2018 11.54 95.25 21.37 79.85
LASSO 2016 19.88 81.81 32.58 61.90
2017 20.62 81.83 27.06 61.18
2018 20.81 83.63 31.30 55.95

RF and DFNN stand for random forest and deep fully connected neural network, respectively. The average ± standard deviation for corn yield in years 2016, 2017, and 2018 are, respectively, 165.72 ± 30.35, 168.50 ± 32.88, and 170.77± 34.95. The unit of RMSE is bushels per acre.