Table 1.
Model | Validation Year | Training RMSE | Training Correlation Coefficient (%) | Validation RMSE | Validation Correlation Coefficient (%) |
---|---|---|---|---|---|
CNN-RNN | 2016 | 13.26 | 93.02 | 16.48 | 85.82 |
2017 | 12.75 | 93.68 | 15.74 | 88.24 | |
2018 | 11.48 | 94.99 | 17.64 | 87.82 | |
RF | 2016 | 13.38 | 92.74 | 25.48 | 69.52 |
2017 | 14.31 | 92.39 | 29.40 | 69.03 | |
2018 | 14.40 | 92.39 | 26.02 | 70.55 | |
DFNN | 2016 | 12.34 | 94.43 | 27.23 | 81.91 |
2017 | 11.21 | 95.09 | 23.88 | 79.57 | |
2018 | 11.54 | 95.25 | 21.37 | 79.85 | |
LASSO | 2016 | 19.88 | 81.81 | 32.58 | 61.90 |
2017 | 20.62 | 81.83 | 27.06 | 61.18 | |
2018 | 20.81 | 83.63 | 31.30 | 55.95 |
RF and DFNN stand for random forest and deep fully connected neural network, respectively. The average ± standard deviation for corn yield in years 2016, 2017, and 2018 are, respectively, 165.72 ± 30.35, 168.50 ± 32.88, and 170.77± 34.95. The unit of RMSE is bushels per acre.