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Abstract

The brain undergoes two aging programs: chronological and
endocrinological. This is particularly evident in the female brain, which
undergoes programs of aging associated with reproductive competency.
Comprehensive understanding of the dynamic metabolic and
neuroinflammatory aging process in the female brain can illuminate

windows of opportunities to promote healthy brain aging. Bioenergetic crisis

and chronic low-grade inflammation are hallmarks of brain aging and
menopause and have been implicated as a unifying factor causally
connecting genetic risk factors for Alzheimer’s disease and other
neurodegenerative diseases. In this review, we discuss metabolic
phenotypes of pre-menopausal, peri-menopausal, and post-menopausal
aging and their consequent impact on the neuroinflammatory profile during
each transition state. A critical aspect of the aging process is the dynamic
metabolic neuro-inflammatory profiles that emerge during chronological
and endocrinological aging. These dynamic systems of biology are relevant
to multiple age-associated neurodegenerative diseases and provide a
therapeutic framework for prevention and delay of neurodegenerative
diseases of aging. While these findings are based on investigations of the
female brain, they have a broader fundamental systems of biology strategy
for investigating the aging male brain. Molecular characterization of
alterations in fuel utilization and neuroinflammatory mechanisms during
these neuro-endocrine transition states can inform therapeutic strategies to
mitigate the risk of Alzheimer’s disease in women. We further discuss a
precision hormone replacement therapy approach to target symptom
profiles during endocrine and chronological aging to reduce risk for
age-related neurodegenerative diseases.
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Introduction

The brain is the most energy-demanding organ in the body.
In humans, the brain comprises 2% of total body mass yet
consumes 20% of total oxygen and 25% of glucose'”, mak-
ing the brain susceptible to even modest disruptions in energy
homeostasis™™. Indeed, the aging brain, even of healthy
aging individuals, is marked by glucose hypometabolism and
mitochondrial dysfunction®’. These metabolic and bioenergetic
phenotypes are exaggerated in multiple age-associated
neurodegenerative diseases (NDs), including Alzheimer’s disease
(AD), Parkinson’s disease (PD), multiple sclerosis (MS), and
amyotrophic lateral sclerosis (ALS)*'%.

Both preclinical and clinical studies reveal that alteration in brain
metabolic status during aging and in ND is accompanied by shifts
in energy sources, from glucose metabolism to fatty acid metab-
olism and ketone bodies'*”?. While this strategy serves as an
adaptation to sustain ATP production’, it also leads to increased
free radical production'®**, lipid peroxidation’'*>*, oxidative
stress”””*, and endoplasmic reticulum (ER) stress'’'®. Increased
production of damage-associated molecular patterns (DAMPs),
such as extracellular ATP”, mitochondrial DNA (mt-DNA),
reactive oxygen species (ROS)¥, ceramides’’, oxidized low-
density lipoproteins®”, and myelin debris’ =, further induces
chronic systemic inflammation. Induction of chronic sys-
temic inflammation by metabolic stressors can serve as a missing
mechanistic link from metabolic and bioenergetic dysfunction to
ND*.

In females, estrogen therapy initiated during the critical win-
dows of peri-menopause to early menopause and surgi-
cal menopause has been shown to promote brain glucose
metabolism’~°, reduce chronic inflammation*’~’, and prevent
cognitive decline’’~’. Understanding the dismantling process of
estrogen-regulated metabolic and immune systems during both
chronological and endocrinological aging in the female brain can
provide insights into ND prevention, diagnosis, and therapy.
In this review, we discuss metabolic changes during pre-
menopausal aging, peri-menopausal aging, and post-menopausal
aging; their impact on neuroinflammation during each of
the chronological and endocrinological transition stages; and
the implications for NDs.

Menopause and estrogen regulation of brain
metabolism and inflammation

The menopausal transition is characterized by reproductive senes-
cence and loss of ovarian hormones, particularly estrogen, in
females. Estrogen regulates the systems of biology required for
brain glucose metabolism and mitochondrial function®. Estro-
gen promotes glucose uptake by both capillary endothelial cells
of blood-brain barrier and neurons™°, increases protein expres-
sion, and enhances activity of glycolytic enzymes** and also
increases protein expression of electron transport chain (ETC)
subunits’'=*. In vitro studies using rat embryonic neurons and
glial cells also revealed increased maximal respiratory capac-
ity in response to estrogen treatment™. Not only can estro-
gen promote ATP production in healthy neurons in vitro, it can
also preserve ATP production capacity in neurons exposed to
AB1-42. In surgically menopausal rodent models, estro-
gen treatment successfully prevented loss of mitochondrial
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respiratory capacity’’. Beyond promoting mitochondrial bioener-

getics in the brain, estrogen can further reduce ROS production®,

promote calcium homeostasis, and protect cells from
apoptosis®’, which collectively will promote mitochondrial
function.

Decline in estrogen level during menopause is also associ-
ated with an increase in inflammation, marked by the increased
expression of pro-inflammatory cytokines—interleukin-8 (IL-8),
tumor necrosis factor alpha (TNF-o), IL-6, and interferon gamma
(IFN-y)—in response to T-cell activation’*>%. Sexual dimor-
phism, especially with the decline of estrogen, is particularly
evident in the immune system®®. Post-menopausal women
have increased CD4/CDS8 ratios and T-cell proliferation and
activated T cell-mediated autoimmunity®>®’. Multiple effects
in the periphery are a direct response to the loss of immunosup-
pressive effects of estrogen. In the brain, estrogen is a master
regulator of glucose metabolism, neuronal and glial bioen-
ergetics, and microglial inflammation®. The dysregula-
tion of glucose metabolism in the brain is evident during the
menopausal transition and can cause the accumulation of
DAMPs, further causing the activation of innate and adaptive
immunity to induce chronic low-grade inflammation™.

Hormonal change associated with menopausal transition is a
gradual process spanning multiple years, thus allowing adap-
tation in both metabolic and inflammatory function in the
brain. Similarly, chronological aging before and after this
endocrinological aging stage is coupled by systematic altera-
tions in metabolic and immune systems. Below, we review
these fluctuations in more detail during pre-menopausal,
peri-menopausal, and post-menopausal stages.

Chronological aging: prelude to endocrine aging
Aging is associated with a reduction in glucose metabolism
and consequent increase in chronic low-grade inflammation®
(Figure 1). Clinical studies revealed that regional cerebral blood
flow in mesial frontal cortex is negatively correlated with age in
young to mid-life adults’’. Meta-analysis in adults between 20
and 50 years of age suggested that the reduction in brain glu-
cose uptake was most likely due to a reduction in brain aerobic
glycolysis’'. Similar findings were evident in a mouse model
of the natural menopausal transition’”. In comparison with young
female mice, mid-aged females had a significant reduction
in brain glucose uptake, which was accompanied by significant
down-regulation of neuronal glucose transporter 3 (GLUT3) and
reduced glycolytic capacity, as evident by a significant reduction
in hexokinase activity’”. Decline in glucose metabolic system
in the brain was exacerbated in the triple-transgenic AD mouse
model””. Furthermore, aging from early to mid-adulthood in
female rats was associated with significant down-regulation
of both gene and protein expression of insulin-like growth factor
1 (IGF-1) in the hippocampus’, suggesting that early disruption
in insulin or IGF-1 signaling may underlie changes in brain
glucose metabolism during this stage.

Decline in glucose metabolism was specific to the endocrine
aging transition as comparable changes were not evident in
the reproductively competent animals. No changes in the redox
system, including total brain glutathione (GSH) level, GSH
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Figure 1. Metabolic and immune signaling during chronological and endocrinological transitions in the mid-life female brain.
(A) Summary of the transition in metabolic and inflammatory female aging in the brain. AMPK-PGC1a, AMP-activated protein

kinase—peroxisome proliferator-activated receptor gamma coactivator 1-alpha; FA, fatty acid; H,0O

hydrogen peroxide; IGF-1, insulin-like

22

growth factor 1; IL, interleukin; MHC, major histocompatibility complex; NFkB, nuclear factor kappa B; OXPHOS, oxidative phosphorylation;
ROS, reactive oxygen species; TCA, tricarboxylic acid cycle; TNF, tumor necrosis factor. (B) Temporal conceptualization of transitions in
glucose metabolism, B oxidation, and innate and adaptive immune response during the course of female brain aging.

peroxidase activity, superoxide dismutase activity, and H,0, clear-
ance capacity, were observed in reproductively active female
rats between early to mid-adulthood™. Similarly, no significant
changes were observed in brain synaptic mitochondrial total
GSH, lipid peroxides, and cytochrome ¢ oxidase levels in female
mice between 10 and 24 weeks of age’”. These observations

are expected given the relatively steady level of brain and
plasma estrogen level during pre-menopausal aging.

Early indicators of disruption in glucose metabolism and IGF-1
signaling during the peri-menopausal phase are associated with
increased inflammation through the activation of the inflammatory
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sensors of aging, nuclear factor-kappa B (NFkB) and TNF
(Figure 1). In a peri-menopausal animal model (PAM), activation
of NFxB pathway and TNF-related genes occurred during the
chronological aging phase preceding the peri-menopausal tran-
sition. Activation of NFkB can also cause increased expression
of Nod-like receptor pyrin domain-3 (NLRP3) inflammasome
complex’’. The NLRP3 inflammasome complex is susceptible
to an aging-related increase in insulin resistance and the onset
of glucose hypometabolism during pre-menopausal aging’”.
The NLRP3 inflammasome complex is responsive to triggers
such as age-associated DAMPs, including oxidized mt-DNA
and extracellular ATP production due to the onset of metabolic
dysfunction”™”!, which initiate a cascade of chronic low-grade
inflammation in the brain®.

The two-step activation of NLRP3 inflammasome, which is an
“immuno-metabolic sensor of aging”, leads to the priming of
microglial cells®'. Secondary triggers such as extracellular ATP
and mt-DNA cause the secretion of pro-inflammatory cytokines
IL-1B and IL-18%. Interestingly, ketone body B-hydroxybutyrate
mitigates the activation of NLRP3 inflammasome complex®.
Pre-menopausal aging is also associated with increased expres-
sion of complement genes in the hippocampus, where complement
C4-A (C4A) acts as an upstream regulator”.

Therefore, alterations in the metabolic profile in the brain can
invoke an innate immune response from resident immune cells
— microglia and astrocytes (Figure 1). Simultaneous shifts in the
metabolic phenotype lead to sustained chronic inflammatory
responses, which when coupled with dysregulated steroidal hor-
mone levels can exacerbate inflammation.

Peri-menopause: metabolic-immunological transition
The peri-menopausal transition in females is defined by irregu-
lar menstrual cycles and decline in ovarian and brain estrogen
production'”*. This endocrinological transition is associated
with the early staging that dismantles estrogen regulation of
brain bioenergetics (Figure 1). Brain glucose uptake is gradu-
ally and significantly reduced during the peri-menopausal
transition, especially in brain regions such as temporal lobe,
precuneus, and frontal lobe, and is positively correlated with
mitochondrial cytochrome oxidase activity**%  As reviewed
above, pre-menopausal aging is associated with decreased gly-
colysis but relatively unchanged oxidative phosphorylation, and
mechanistic analyses in rat and mouse natural aging mod-
els recapitulating human menopausal transition revealed fur-
ther reduction in glucose uptake as well as significant down-
regulation of brain glucose transporters, key enzymes involved
in glycolysis, and oxidative phosphorylation during the peri-
menopausal transition””’”. Transcriptomic analysis revealed
IGF-1 and AMP-activated protein kinase—peroxisome prolif-
erator-activated receptor gamma coactivator 1-alpha (AMPK-
PGClo) signaling pathways as underlying regulators of meta-
bolic changes”. Brain glucose hypometabolism has also been
described as a trigger of hot flashes in peri-menopausal
females, an exaggerated compensatory neurovascular response
to increase blood flow and glucose delivery to the brain®’*.

Estrogen promotes glucose metabolism in the brain, and loss
of estrogen during menopausal transition can lead to utilization
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of auxiliary fuel sources in the brain, especially fatty acids and
ketone bodies™’. In natural menopausal mouse models, this
was evident by the activation of cytoplasmic phospholipase A2
(cPLA2) in the brain’', which was accompanied by increased
brain mitochondria H,O, production and lipid peroxide level*"*.
Activation of cPLA2 and production of arachidonic acid
are linked to increased inflammation through cyclooxygen-
ase activation and increased prostaglandin and leukotriene

secretion®.

Linking these metabolic shifts to ovarian hormones was dem-
onstrated in surgically menopausal rats as evidenced by
increased brain lipid peroxidase level and decreased super-
oxide dismutase activity as well as significantly lower serum
triglyceride but higher cholesterol, high-density lipids, and
low-density lipids™, a profile consistent with increased fatty
acid metabolism. Increased mitochondria lipid oxidation may
explain the accumulation of ROS during reproductive aging.

A causal link between metabolic dysregulation and conse-
quent change in the inflammatory profile in the brain during
peri-menopause has yet to be established. However, evidence
suggests that the regulator of inflammation, nuclear factor kappa
B (NFxB), is down-regulated in the hippocampus during peri-
menopause”. Meanwhile, in the periphery, T cell-mediated
autoimmunity is worsened during peri-menopause and is asso-
ciated with increased prevalence of rheumatoid arthritis,
autoimmune hepatitis, and infectious disorders in women***"!.

Decline in estrogen level during peri-menopause can also cause
increased expression of adhesion molecules that participate in
leukocyte transmigration”’. Regions such as the subventricular
zone in rodent models that closely surround white matter tracts
are particularly susceptible to the leukocyte transmigration’ .
Interestingly, autoimmune symptoms of MS, which generally
manifests in early adulthood, are worsened during transition
from peri-menopause to menopause’. Of note, peri-menopause
is marked by significant up-regulation of pro-inflammatory
cytokines secreted by CD4 T cells: IL-8 and TNF-0**. The
occurrence of vasomotor symptoms such as hot flashes during
peri-menopause has been correlated with increases in pro-
inflammatory cytokines IL-8 and TNF-o”. In contrast, circulat-
ing estradiol has an inverse relationship with serum IL-8 levels
in peri-menopausal women®. Microglial and astrocytic reac-
tivities increase in response to declining estrogen. Surgical ova-
riectomy in animals caused increased expression of microglial
markers CD14, CDI11b, and CD45 and phagocytic markers
Fcgrl and Fcgr2b in the hippocampus and cortex” . Collec-
tively, the metabolic-immunological transition of peri-menopause
is a tipping point in age-related inflammation in recruiting
adaptive responses to the brain (Figure 1).

Post-menopausal aging: profiles for risk and
resilience ahead

Circulating and brain estrogen levels are at their lowest in post-
menopausal females. Human and animal studies revealed that
the brain becomes even less efficient in glucose metabolism
and more reliant on lipid as its main fuel source’”**’. This is
evident by reduced regional cerebral blood flow”, brain glu-
cose uptake and ketone body uptake'’-'", glycolysis and citric
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acid (tricarboxylic acid cycle, or TCA) cycle enzyme
activities™'"*'®  mitochondrial oxidative phosphorylation®'-**,
and increased enzyme activities of fatty acid B oxidation’>
(Figure 1). Surgical menopausal rodents also exhibit a higher
fasting glucose level, greater brain insulin resistance, and
impaired IGF-1 signaling®. The hypothesis that the brain can
catabolize its own white matter to generate free fatty acid to
fuel itself is supported by high brain cytosolic phospholipase
A2 activity, especially in the hippocampus, and accumulation
of arachidonic acid in post-menopausal mice’’. This process
causes an accumulation of myelin debris, a sterile inducer of
inflammation”’*. Increase in myelin antigenic load thereby
causes phagocytic senescence of microglia and can lead to
dysregulated glial metabolism and alteration in extracellular
matrix, causing an adaptive response from the periphery.

Meanwhile, oxidative stress accumulates in the brain, where
reduced GSH level decreases, GSH disulfide (GSSG) level

)

increases’*', while ROS production such as H,O, production
and lipid peroxidation increases’**”°, which have been linked
to further inflammatory activation of astrocytes and microglia'’
(Figure 1). In the absence of the neuroprotective and anti-
inflammatory effect of estrogen, ROS production together with
accumulated sterile inflammatory triggers leads the female brain
into a chronic inflammatory status'’. In ovariectomized rodent
models, this is evident by increased expression of microglial
reactivity markers — major histocompatibility complex class II
(MHC 1I), CD74, CD86, CD68, and the complement system in
the hippocampus and cortex’”®. This microglial molecular signa-
ture significantly overlaps with the “late-stage neurodegenerative
disease” phenotype, which sees exacerbation of IFN response
signaling, and overexpression of MHC genes'”. Together,
these observations indicate that natural aging, particularly the
menopausal transition, exhibits a phenotype of microglia that
participates in neurodegeneration. It remains to be understood
whether this molecular signature is a beneficial compensation
or is the tipping point in the course of neurodegeneration.

Implications for neurodegenerative diseases

The peri-menopausal transition is a tipping point for female
brain aging’. From the metabolic perspective, the process begins
with decline in glucose metabolism’">>717283:104195 and increase in
insulin resistance’”’”?, followed by a compensatory mechanism to
use fatty acids and ketone bodies as an auxiliary fuel source”.
Furthermore, this process is coupled with increased ROS pro-
duction, oxidative stress, ER stress, and apoptosis'®'"'821=2¢
all of which provoke a neuroinflammatory reaction, to form a
vicious circle that activates across metabolic crisis, oxidative and
cellular stress, and chronic inflammation'"”.

On the metabolic front, analysis of postmortem AD brains
revealed significantly reduced activities of pyruvate dehydrogenase
complex, isocitrate dehydrogenase, and o ketoglutarate dehydro-
genase complex, whereas activities of succinate dehydrogenase
and malate dehydrogenase were increased’”. ETC complex IV
activity also declined''""'"”, as supported by reduced gene and pro-
tein expression of complex IV subunits''*~'"°. Similarly, patients
with PD have reduced resting-state glucose metabolism in the
brain, especially in cortical regions and motor networks™-''®!"7,
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and mitochondria from cultured PD neurons also demonstrated
reduced ETC activities''®'"”. Patients with MS have axonal
degeneration and oligodendrocyte dysfunction'”'*>,  which
have also been attributed to mitochondrial bioenergetic defi-
ciency in neurons and oligodendrocytes'”~'** and excessive ROS
production'”'?>'>> Patients with ALS have increased energy
expenditure'”® accompanied by impaired glucose tolerance'”’,
increased insulin resistance'*, and hyperlipidemia'”.

Decline in neuronal glucose metabolism and mitochondrial func-
tion can serve as an initiating factor for chronic inflammation.
Microglial stress response as observed during aging and neuro-
degeneration is seen through the accumulation of DAMPs due to
metabolic dysregulation'*. Sterile inducers of microglial inflam-
mation set in motion chronic low-grade inflammation, which
leads to premature microglial senescence and excessive synaptic
pruning. Specifically, single-cell RNA-sequencing (RNA-seq)-
based studies on familial AD models and ALS animal models
indicated a disease-associated microglia (DAM) phenotype that
is different from that of homeostatic microglia*"'**. DAM is
characterized by up-regulation of TREM2, APOE, TYROBP,
ITGAX, and B2M and down-regulation of CX3CRI1, P2RY12,
and TMEM119 gene expression'*”. The shared phenotype of this
microglial subpopulation between AD, ALS, and normal aging
indicates that a microglial subpopulation dedicated to debris
clearance and combating neurodegeneration emerges in the brain.

Engagement of the complement system and phagocytosis are
fundamental to synaptic pruning during development, yet dys-
regulation of this system can lead to excessive loss of synapses'*.
Dysregulation in complement signaling mediated through com-
plement receptor 3 (CR3) has been implicated in a rotenone-
induced PD mouse model'*. Microglial ablation achieved by
blocking colony-stimulating factor 1 receptor (CSFIR) signal-
ing without reducing amyloid-f load in the brain was beneficial
in restoring behavioral deficits and synaptic function'*'*°. While
microglial ablation leads to complete loss of microglia (includ-
ing homeostatic and DAM microglia), regulation of inhibitory
checkpoint signals such as CX3CR1 that play a prominent role
in DAM expansion could be pivotal to the development of ND
therapeutic strategies'’'. Activation of inflammasome complex
such as NLRP3 and NLRC4 also contribute to increased pro-
inflammatory cytokine secretion and increased amyloid-p load in
AD mouse models'*'.

Dysregulation of IFN signaling is central to MS pathology and
demyelination'”’. Interferonopathy induced by USP18 down-
regulation increases microglial reactivity associated with white
matter tracts to cause demyelination**'*". Up-regulation of type
I and type II IFN response genes and MHC II has also been
documented as a late-stage disease response in animal studies
that model progressive neurodegeneration and aging'"".

During the peri-menopausal transition, we identified the emer-
gence of a bioenergetic and inflammatory phenotype that is
shared between neurodegenerative disorders. Therefore, thera-
peutically targeting the metabolic and immune profiles that
emerge during this transition state could potentially limit the
development of at-risk phenotypes for age-related NDs.
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Genetic factors for neurodegenerative disease risk
Over the past decades, it became increasingly clear that
genetic variances modulate metabolic and inflammatory phe-
notypes present in at-risk populations and patients with ND.
For example, apolipoprotein E (APOE) genotype, particu-
larly APOE4, is a widely recognized risk factor for AD'*-'*.
APOEA4 carriers not only have lower brain glucose uptake com-
pared with non-carriers'™-'>> but also exhibit more severe,
more widespread, and more rapid decline in brain glucose
hypometabolism 515150155

Mechanistic studies indicate an association between APOE4
genotype and mitochondrial dysfunction and glucose hypome-
tabolism in the brain'*%PL153156158162  APOQE4  gene expres-
sion in humans was associated with down-regulation of genes
involved in mitochondrial oxidative phosphorylation and energy
metabolism'®*'®. In APOE4 knock-in mice, proteomic analysis
revealed decreased expression of proteins involved in the TCA
cycle, glucose, lipid and amino acid metabolism'®.

The impact of metabolic health on cognitive function was inves-
tigated in a cohort of healthy post-menopausal females'®"'*.
Outcomes of these analyses indicated that a metabolic profile
indicative of risk for metabolic syndrome/type 2 diabetes was
associated with significant deficits in verbal memory, executive
function, and global cognitive performance, which were more
prominent in APOE4 carriers'®"°%.

Microglia and astrocytes contribute as major cell types in the
production of APOE; therefore, the contribution of APOE to
innate immune responses can be expected'®~'"". Up-regulation
of APOE expression as part of the DAM phenotype contrib-
utes to a microglial phenotype that combats progression of
disease phenotype'*”. Given that the APOE4 allele is con-
sidered evolutionarily conserved to protect against viral and
bacterial infections, in mouse models of familial AD with
the APOE4 risk factor, inflammatory challenges such as
lipopolysaccharide (LPS) induced a robust pro-inflammatory
reaction'”>7+1> APOE4 interferes with microglial clearance
function through the down-regulation of insulin-degrading
enzymes'’®”7 and neprilysin'”® which further exacerbates
accumulation of DAMPs such as amyloid-f and activation of
the innate immune response®. These mechanistic findings are
indicative of the increased chronic low-grade inflammation clini-
cal profile seen in human APOE4 carriers, who have increased
expression of C-reactive protein and reduced latency to the
onset of AD'”.

On the therapeutic side, APOE4-positive patients with
mild-to-moderate AD were less responsive to rosiglitazone,
which can improve mitochondrial efficiency and glucose
metabolism'**'*!. Interestingly, APOE4 carriers exhibit a better
response to non-steroidal anti-inflammatory treatment'®'®.
Inflammation burden-specific treatment for APOE4 carriers
will be critical for the development of APOE4 targeted AD
therapeutics'®.

Precision treatment strategy and hormone therapy
Given the impact of genetic variance on phenotypes of
aging, metabolism, and inflammatory profiles, a personalized

F1000Research 2020, 9(F1000 Faculty Rev):68 Last updated: 30 JAN 2020

precision medicine approach that takes into consideration
differences in genetic background, stage of endocrinologi-
cal/chronological aging, and timing of treatment should be
considered when designing future prevention or intervention
strategies to promote healthy brain aging in females.

Understanding how the menopausal metabolomic-immuno-
crisis drives risk of NDs in females offers insight into preven-
tion and treatment strategies targeted to each chronological and
endocrinological aging stage. Furthermore, identification of
the subset of females at higher risk for NDs is pivotal to a
precision medicine approach for healthy brain aging. Clinical
studies have suggested that the combination of APOE genotype
and metabolic phenotype can help identify post-menopausal
females at risk for cognitive decline'®"'%*.

The data indicate that, during the transition from peri-
menopause to menopause, the metabolic-immune systems are in
transition from a brain fueled by glucose metabolism to a brain
fueled by auxiliary lipid and fatty acid metabolism that gener-
ates ketone bodies. This shift in fuel source is mediated in large
part by a parallel and interacting shift from an innate immune
phenotype to an activated and pro-inflammatory adaptive
immune phenotype.

Three key issues for precision hormone therapy require con-
sideration. The first is the limited time window for efficacy of
hormone therapy. The introduction of hormone therapy as a pre-
ventive versus a treatment intervention has limited windows
of efficacy. Efficacy of hormone therapy is limited to when
the system is undergoing a transition from peri-menopause to

menopause”*2*'#-% Hormone therapy has limited to no effi-
cacy and is not advised in late post-menopause for either nat-
ural or surgical menopausal females®"'$-185190191 " Second,

therapeutics should target the metabolic and immune systems
of biology rather than single components within these complex
systems. Third, hormone or other therapeutics should spe-
cifically target stage-specific metabolic and immune signaling
pathways (Figure 1). Hormone therapies, particularly estrogen
and progesterone, are regulators of systems of biology that pro-
mote glucose metabolism and repress inflammatory processes,
which can address these issues’0%192-1%4,

These considerations are born out in studies of early meno-
pausal females in which those receiving estrogen replacement
therapy had higher brain glucose uptake, regulated insulin
signaling, and sustained cognitive function’*=%1>-17 " In
animal studies, estrogen immediately following ovariectomy
resulted in improved bioenergetic capacity, insulin resistance,
increase antioxidants, and reduced lipid peroxidation relative
to untreated animals*—"19%1%,

Use of hormone therapy or estrogen replacement therapy can
also mitigate menopause-related neuroinflammation. Estro-
gen mitigates the inflammatory action of sterile and infec-
tious agents on microglia and astrocytes by down-regulating
inducible nitric oxide synthase (iNOS) and cyclooxygenase-2
(COX-2) expression, reducing TNF-o, IL-1f, macrophage
inflammation protein-2 secretion, and ROS production””. Estro-
gen mediates its effect through both intracellular estrogen
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receptors ERo. and ERP, which are abundantly expressed in
microglia and astrocytes. Ovariectomizing rodents increases
microglial reactivity and changes the morphology to a pro-
inflammatory phenotype’”. Preventive estrogen treatment before
ovariectomy mitigates the development of pro-inflammatory
phenotype of microglia by down-regulating complement
and microglial reactivity genes’. Peripheral immune cells
also respond to hormone therapy through mitigating pro-
inflammatory responses seen during menopause and preventing
immune senescence by maintaining lymphocytes and monocyte
numbers™.

Collectively, the data indicate that hormone therapy initi-
ated early in the menopausal transition results in sustained
brain metabolic viability and prevention of age-related
chronic low-grade inflammation and subsequent development
of adaptive immune responses related to inflammation and
autoimmunity.

Conclusions

Herein, we reviewed metabolic and inflammatory profiles that
emerge during female chronological and endocrinological brain
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aging. Furthermore, analysis of data from a broad range of stud-
ies and laboratories indicates that metabolic and immune transi-
tions in the brain are linked to act in concert. The pre-menopausal
aging phase is characterized by a decline in glycolysis and
glucose metabolism and a rise in innate immune responses.
Estrogen dysregulation sets the stage for peri-menopause and
causes further decline in glucose metabolism and mitochondrial
oxidative phosphorylation. Disruption in estrogen regulation
causes an increase in T cell-mediated adaptive responses. Dur-
ing the post-menopausal aging phase, to offset the bioenergetic
demand of neurons, the shift from utilization of glucose to the
utilization of auxiliary fatty acid fuel sources to generate ketone
bodies results in myelin breakdown. Accumulation of myelin
debris induces a rise in the IFN response and MHC expression.
Parallels to metabolic and immune profiles comparable to those
of the prodromal phases of AD and MS emerge during pre- to
peri- to post-menopause aging transition. Biomarkers of risk for
post-menopausal age-associated ND coupled with biomarkers
of therapeutic efficacy remain to be integrated with hormone
therapy interventions. In the twenty-first century, precision
hormone therapy is feasible given the current technologies and
knowledge of menopausal brain health.
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