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STUDY QUESTION: Can exome sequencing identify new genetic causes of globozoospermia?

SUMMARY ANSWER: Exome sequencing in |5 cases of unexplained globozoospermia revealed deleterious mutations in seven new genes,
of which two have been validated as causing globozoospermia when knocked out in mouse models.

WHAT IS KNOWN ALREADY: Globozoospermia is a rare form of male infertility characterised by round-headed sperm and malformation
of the acrosome. Although pathogenic variants in DPY[9L2 and SPATA |6 are known causes of globozoospermia and explain up to 70% of all
cases, genetic causality remains unexplained in the remaining patients.

STUDY DESIGN, SIZE, DURATION: After pre-screening |6 men for mutations in known globozoospermia genes DPY[9L2 and SPATA |6,
exome sequencing was performed in |5 males with globozoospermia or acrosomal hypoplasia of unknown aetiology.

PARTICIPANTS/MATERIALS, SETTING, METHOD: Targeted next-generation sequencing and Sanger sequencing was performed for
all 16 patients to screen for single-nucleotide variants and copy number variations in DPY | 9L2 and SPATA | 6. After exclusion of one patient with
DPY9L2 mutations, we performed exome sequencing for the |5 remaining subjects. We prioritised recessive and X-linked protein-altering
variants with an allele frequency of <0.5% in the population database GnomAD in genes with an enhanced expression in the testis. All identified
candidate variants were confirmed in patients and, where possible, in family members using Sanger sequencing. Ultrastructural examination of
semen from one of the patients allowed for a precise phenotypic characterisation of abnormal spermatozoa.

MAIN RESULTS AND ROLE OF CHANCE: After prioritisation and validation, we identified possibly causative variants in eight of 15
patients investigated by exome sequencing. The analysis revealed homozygous nonsense mutations in ZPBP and CCDC62 in two unrelated
patients, as well as rare missense mutations in C2CDé (also known as ALS2CRI I), CCIN, C7orf6| and DHNA |7 and a frameshift mutation in
GGN in six other patients. All variants identified through exome sequencing, except for the variants in DNAH |7, were located in a region of
homozygosity. Familial segregation of the nonsense variant in ZPBP revealed two fertile brothers and the patient’s mother to be heterozygous
carriers. Paternal DNA was unavailable. Immunohistochemistry confirmed that ZPBP localises to the acrosome in human spermatozoa.
Ultrastructural analysis of spermatozoa in the patient with the C7orfé| mutation revealed a mixture of round heads with no acrosomes
(globozoospermia) and ovoid or irregular heads with small acrosomes frequently detached from the sperm head (acrosomal hypoplasia).
LIMITATIONS, REASONS FOR CAUTION: Stringent filtering criteria were used in the exome data analysis which could result in possible
pathogenic variants remaining undetected. Additionally, functional follow-up is needed for several candidate genes to confirm the impact of
these mutations on normal spermatogenesis.
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WIDER IMPLICATIONS OF THE FINDINGS: Our study revealed an important role for mutations in ZPBP and CCDC62 in human
globozoospermia as well as five new candidate genes. These findings provide a more comprehensive understanding of the genetics of male
infertility and bring us closer to a complete molecular diagnosis for globozoospermia patients which would help to predict the success of

reproductive treatments.
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(918-15-667); National Health and Medical Research Council of Australia (APP1120356) and the National Council for Scientific Research
(CONICET), Argentina, PIP grant 11220120100279CO. The authors have nothing to disclose.

Key words:

teratozoospermia / exome sequencing / acrosome / consanguinity

Introduction

Natural fertilisation occurs upon fusion of a spermatozoon with
an oocyte. For the spermatozoon, the acrosome reaction is a
crucial step in which the proteolytic contents of the acrosome are
released to facilitate penetration through the zona pellucida and to
expose key sperm-oocyte binding molecules (Patrat et al., 2000).
Globozoospermia is a very rare and severe form of infertility and
accounts for approximately 0.1% of all cases of male infertility. It is
characterised by a round-shaped sperm head and an absence of the
acrosome, which explains the inability of these spermatozoa to fertilise
an oocyte, and sterility (Dam et al. 2007). Globozoospermia can be
subdivided into type | (100% acrosomeless round-headed spermato-
zoa) and type Il (>50% acrosomeless spermatozoa). Ultrastructural
characterisation has shown that, in addition to pure globozoospermia,
some patients have a mixture of acrosomeless spermatozoa and
spermatozoa with small or detached acrosomes, which is defined
as acrosomal hypoplasia (Zamboni 1987; Baccetti etal, 1991;
Chemes 2018).

Based on family studies with two or more affected siblings, and the
presence of very distinct morphological characteristics of the sperm
head, a strong genetic basis was suspected for globozoospermia (Dam
et al., 2007). Currently, recessive deletions and point mutations in two
genes have been firmly identified as responsible for globozoospermia in
humans: DPY19L2 (Harbuzet al., 201 | ; Koscinski et al., 201 1), account-
ing for more than 70% of all cases analysed (Ghedir et al., 2016; Ray
et al., 2017), and SPATA | 6, representing less than 2% of the cases (Dam
et al., 2007; Ellnati et al., 2016).

Candidate genes for globozoospermia are in pathways involved in
the Golgi apparatus function, acrosome formation and the formation
as well as the integrity of the acroplaxome between the acrosome and
the nuclear membrane during spermiogenesis (Modarres et al., 2019).
In mice, knockout of at least 48 genes is known to cause globozoosper-
mia or absence of the acrosome (http://www.informatics.jax.org).
However, the role of these genes in human globozoospermia remains
unknown.

In this study, we aimed to decipher the genetic causes in cur-
rently unexplained cases of globozoospermia. For this purpose, we
performed whole exome sequencing in |5 globozoospermia patients
revealing mutations in seven new genes, of which two have been
validated as causing globozoospermia when knocked out in mouse
models.

globozoospermia / acrosomal hypoplasia / ultrastructure / genetic diagnosis / gene mutation / male infertility /

Materials and Methods

Patients

This study was approved by the Comité de Protection de la Personne
(CPP) at the University Hospital of Strasbourg, France, and the Ethics
Review Board of Centro de Investigaciones Endocrinolégicas, National
Research Council, Buenos Aires, Argentina. All patients gave informed
consent. For each of the |6 men, semen analysis to assess sperm
concentration and sperm morphology was performed by the IVF
clinics treating the patients. Patient GL-3, GL-6, GL-7, GL-10 and GL-
I'l were diagnosed with globozoospermia type |, and patient GL-1,
GL-2, GL-4, GL-8 and GL-9 were diagnosed with type Il. The type
of globozoospermia was unknown for GL-5, GL-12, GL-13, GL-14
and GL-19. ARGI3 was diagnosed with acrosomal hypoplasia. All
patients were tested but could not be diagnosed by recurrent homozy-
gous deletions in DPY[9L2 prior to this study. DNA was isolated
from a venous blood sample according to routine procedures. DNA
from the parents of the sib-pair GL-6 and GL-7 and DNA from two
fertile brothers and the mother of GL-I| were also available for
this study.

Pre-screening for mutations in genes
known for globozoospermia using
targeted sequencing

Prior to exome sequencing, absence of AZF deletions, aneuploidies,
DPY[9L2 deletions and mutations in SPATAI6 were excluded using
targeted sequencing of a panel of male infertility genes as previously
described (Oud et al., 2017). As analysis of DPY[9L2 is complicated
by the presence of pseudogenes, additional Sanger sequencing of the
gene was used to exclude DPY/9L2 point mutations, using a protocol
described earlier (Ghedir et al. 2016) with several changes related to
laboratory-specific set up (Supplementary Tables Sl and SlI).

Exome sequencing and

bioinformatic analysis

For 15 of 16 patients, exome sequencing was performed. GL-| to
GL-13 and GL-19 exome library preparation was done with Agilent
SureSelect Human All Exon V5 (Agilent Technologies, Santa Clara, CA),
and sequencing was performed by Genome Diagnostics Nijmegen
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(https://www.genomediagnosticsnijmegen.nl) using the NextSeq 500
platform (lllumina, San Diego, CA). The ARGI3 sample was enriched
with the lllumina TruSeq Rapid Exome Capture Kit (lllumina) and
sequenced on the NextSeq 500 platform by the Institute of Genetic
Medicine at Newcastle University in Newcastle, UK. Read mapping
and variant and copy number variation (CNV) calling for all samples
were performed using the in-house pipeline of the Radboudumc
Genome Technology Centre. Homozygosity calling was performed
using RareVariantVis (Stokowy et al., 2016).

Filtering

We selected only single-nucleotide variants (SNVs) that (i) were
present in at least five variant sequencing reads and (ii) were present
in more than 15% of reads covering that locus. Next, we excluded
all variants with an allele frequency > 0.5% in GnomAD, dbSNP and
our local database containing > 15000 alleles and selected only non-
synonymous and splice variants. For the three affected sib-pairs, we
selected only those variants shared by both brothers. We focussed
on an autosomal recessive or X-linked mode of transmission and
looked for autosomal homozygous, compound heterozygous and X-
linked variants. We then only selected variants in genes known to be
expressed at elevated levels in the testis (n =2237); indicative protein
localisation was obtained from the Human Protein Atlas version 8.1
(Uhlen et al., 2015).

All remaining variants were curated for variant quality using manual
inspection of the BAM file in the Integrative Genomics Viewer 2.4
(http://software.broadinstitute.org/software/igv/) resulting in the
elimination of likely false-positive calls. All variants were classified
according to the American College of Medical Genetics and Genomics
(ACMG) and the Association for Molecular Pathology (AMP)
2015 guidelines (Richards et al., 2015). All prioritised variants were
confirmed with Sanger Sequencing.

Immunohistochemical localisation of ZPBP
during spermatogenesis

Testis material was obtained with consent from an otherwise
healthy male presenting with unexplained testicular pain requiring
orchidectomy as described previously (Kennedy et al., 2004). The testis
biopsies were fixed in Bouin’s solution for 5 h at room temperature
(RT), processed and cut into 5-um sections. Sections were stained
overnight at 4°C using a 4-pug/ml mouse a-ZPBP| antibody (F-12:
sc-393 152; Santa Cruz Biotechnology, USA), after which donkey anti
mouse-488 secondary antibody was added for | h at room tempera-
ture. Next, nuclei were counterstained with TO-PRO 3 and imaged

with an SP8 confocal microscope as previously described (Dunleavy
etal., 2017).

Electron microscopy

A semen sample from patient ARGI3 was diluted [:5 with 0.1 M
phosphate buffer (0.1 M, pH 7.4), pelleted by centrifugation and fixed
in 3% buffered-glutaraldehyde, post-fixed in 2% osmium tetroxide and
embedded in Epon-Araldite resin. Thin sections were obtained with a
Pelco diamond knife in an RMC MT-7000 ultra-microtome, mounted
on 300-mesh copper grids, double-stained with uranyl acetate and lead
citrate and examined and photographed in a Zeiss EMI09T electron
microscope.

Results

Pre-screening for known causes of
globozoospermia using targeted sequencing

First, all |6 patients (described in Table IIl) were pre-screened for dele-
tions and/or mutations in DPY/9L2 and SPATA| 6, using a combination
of targeted next-generation sequencing (NGS) and Sanger sequencing
to detect point mutations and CNVs in these two genes and other
known infertility genes (Oud et al., 2017). No pathogenic variants were
identified in SPATA| 6. However, in patients GL-6, GL-7 and GL-14, we
identified heterozygous DPY | 9L2 deletions and only a likely pathogenic
missense variant in GL-14, but not in GL-6 and GL-7 (Table ). Given
that no conclusive diagnoses were obtained for 15 out of |6 patients
by looking at SPATA[ 6 and DPY | 9L2, exome sequencing was performed
for these patients.

Exome sequencing to find new causes of
globozoospermia

Globozoospermia is an extremely rare form of isolated primary infer-
tility, and therefore, we prioritised ultra-rare (<0.5% allele frequency
in population databases) SNVs segregating in a recessive or X-linked
manner in genes with elevated expression in the testis (Supplementary
Table SIlI). After filtering and validation by Sanger sequencing, a total of
[4 variants in |12 genes remained in 8 patients (Table Il; Supplementary
Table SIV), in addition to the DPY[9L2 variant in GL-14. No high-
confidence variants were found after filtering in patients GL-5, GL-10 or
GL-19 orin both sib-pairs GL-6/GL-7 and GL-8/GL-9. For the 12 genes
in which we found plausible variants, we then checked the existence of
knockout mouse models for these genes, as well as a known role in
acrosome formation or function.

Sanger gene sequencing

No pathogenic variants

No pathogenic variants

Table I Results targeted NGS and Sanger sequencing of DPYI9L2.
Sample Targeted NGS

GL-6 Heterozygous deletion

GL-7 Heterozygous deletion

GL-14 Heterozygous deletion

Chrl12(GRCh37):.6403827C>G
NM_173812.4:c.715G>C
p.(Gly239Arg)
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Table Il Overview of all prioritized and validated variants identified in this study. A detailed description of all variants and
pathogenicity prediction scores are available in Supplementary Table SIV.

Patient Gene Variant Zygosity GnomAD variant Variant Mouse model Link to Conclusion
frequency classification acrosome
(population according to the biology
with highest ACMG/AMP
frequency): 2015 guideline
GL-1 GGN p.(Gly424Alafs«65) Homozygous 0.00% (SAS: Likely pathogenic Yes, meiotic arrest No Possibly
GL-2 0.01%) (Jamsai et al. 2013) causative
GL-3 DNAHI17  p.(Arg944Trp) Heterozygous 0.15% (NFE: Uncertain Yes, male infertility No Possibly
p.(Phe2594lle) Heterozygous 0.24%) significance (Dickinson et al. 2016) causative
Absent Uncertain
significance
GL-3 MAGEA3  p.(Leu201Phe) Hemizygous 0.00% (SAS: Uncertain No No Unlikely
0.01%) significance causative
GL-4 C2¢Db6 p.(His| 13Arg) Homozygous Absent Uncertain No Yes (Wangetal.  Possibly
(ALS2CRIT) significance 2015) causative
GL-11 ZPBP p.(GIn31 I) Homozygous Absent Likely pathogenic Yes, globozoospermia  Yes (Lin et al. Likely
(Lin et al. 2007) 2007) causative
GL-1'1 TM4SF19  p.(Valé8Leu) Homozygous 0.02% (OTH: Uncertain No No Unlikely
0.15%) significance causative
GL-12 CCIN p.(Gly285Ser) Homozygous 0.00% (NFE: Uncertain No Yes (Lecuyer Possibly
0.01%) significance et al. 2000) causative
GL-13 CCDC62  p.(GIn148x) Homozygous Absent Likely pathogenic Yes, globozoospermia ~ Yes (Li et al. Likely
p.(His283Tyr) Homozygous 0.01% (NFE: Uncertain (Lietal. 2017) 2017) causative
0.01%) significance
GL-13 CCDC73  p.(Leu224Phefsi | I)Homozygous 0.00% (NFE: Uncertain Yes, no infertility No Unlikely
0.00%) significance (Khan et al. 2018) causative
GL-13 NRIP3 p.(lle132Asn) Homozygous Absent Uncertain No No Unlikely
significance causative
GL-13 ATP8A2  p.(Arg778GlIn) Homozygous 0.04% (AS): Uncertain No No Unlikely
0.10%) significance causative
GL-14 DPYI9L2 N/A Heterozygous Unknown Pathogenic Yes, globozoospermia  Yes (Koscinski et Likely
p.(Gly239Arg) Hemizygous Absent Likely pathogenic (Koscinski etal. 2011;  al. 2011; causative
Harbuz et al. 201 1) Harbuz et al. 201 1)
ARGI3  C7orf6l  p.(Glu87Argfs:46) Homozygous Absent Likely pathogenic No Yes (Behrouzi Possibly
etal. 2013) causative

*GnomAD variant frequency was downloaded from: http://gnomad.broadinstitute.org/ (version 2.1). SAS: South Asian, NFE: Non-Finnish European, OTH: Other, AS): Ashkenazi

Jewish.

Homozygous loss-of-function variants

in genes implicated in globozoospermia

in mice

Firstly, we found likely pathogenic variants in two genes already known
for globozoospermia when mutated in mice. Our filtering strategy
revealed that patient GL-11, who was conceived from first-degree-
cousin parents, carries a homozygous nonsense mutation (c.931C > T;
p.(GIn31 1)) in zona pellucida binding protein (ZPBP) (Fig. | A; Table II;
Supplementary Table SIV). Knockout of this gene in mice causes globo-
zoospermia (Lin et al., 2007). The patient mutation is predicted to
result in a truncated protein lacking the 40 last amino acids of the con-
served SP38 domain (Fig. | A). The variant is located in a homozygosity
region of approximately 24 Mb on chromosome 7 (Supplementary
Fig. SI) and is completely absent in all population databases. Two
brothers of GL-I1 are also infertile, but of an unknown aetiology,

and DNA is unavailable. DNA was, however, available from two
fertile brothers and the mother of GL-I1. All three individuals
were heterozygous carriers of the nonsense variant (Fig. |B). Using
immunostaining, we confirmed acrosome localisation of the protein in
human spermatids (Fig. |C). Of interest, ZPBP forms part of the same
gene interaction network with known globozoospermia genes SPATA | 6
and DPYI9L2 (Fig. ID), thus suggesting they are mechanistically
linked. Collectively therefore, these data suggest that the aetiology
of globozoospermia in GL-1| was a homozygous nonsense mutation
in ZPBP.

Patient GL-13 showed five homozygous variants in four genes
(Table II; Supplementary Table SIV). Four of these are variants of
uncertain significance: p.(His283Tyr) in coiled-coil domain containing
62 (CCDC62), p.(Leu224PhefsxI1) in coiled-coil domain containing
73 (CCDC73), p.(llel32Asn) in nuclear receptor-interacting protein 3
(NRIP3) and p.(Arg778GlIn) in ATPase phospholipid transporting 8A2
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Figure | Mutations in zona pellucida binding protein (ZPBP) and in coiled-coil domain containing 62 (CCDC62). A Homozygous
nonsense mutation in ZPBP observed in the exome data of patient GL-| . The nonsense mutation likely leads to a truncated protein and disrupts
the conserved Sp38 domain. B Segregation analysis in the family of GL-11. Sanger sequencing was performed on all available DNA samples. C
Immunocytochemistry of ZPBP (green) in healthy human testis material. ZPBP localises to the acrosome of spermatids (arrow). D STRING Network
analysis of known and candidate genes for globozoospermia (STRING version 10.5). E Homozygous nonsense mutation (c.442C > T; p.GIn148:x) and
missense mutation (c.847C > T; p.His283Tyr) in CCDC62 observed in the exome data of patient GL-13. Protein domains were predicted by SMART
(http://smart.embl-heidelberg.de/). SP38 = zona-pellucida-binding protein (InterPro: IPRO10857). The ortholog alignment was made by Alamut Visual

version 2.10 (http://www.interactive-biosoftware.com).

(ATP8A2). Of note, the knockout mouse model for Ccdc73 does not
show any phenotype and males are fertile (Kahn et al., 2018). The fifth
variant identified is a nonsense variant (c.442C > T; p.(GIn148x)) in
CCDCé62 (Fig. |E). The variant is located in a stretch of homozygosity
of approximately 9 Mb on chromosome |2 (Supplementary Fig. S2). A
homozygous nonsense mutation in Ccdcé2, called repro29, was shown
to cause acrosome defects similar to globozoospermia (Li et al., 2017).

Similar to the finding in mice, CCDC62 localises to the acrosome in
human spermatozoa (Li et al., 2017). The premature stop codon is
located before the missense variant and is predicted to cause nonsense-
mediated decay resulting in an absence of protein. The pathogenicity
classification and function of the gene make the homozygous nonsense
variant in CCDC62 the most likely cause of globozoospermia in this
patient.
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Figure 2 Mutations in candidate genes for globozoospermia. A Homozygous missense mutation in C2CD6 in patient GL-4 affecting a
conserved amino acid in the ALS2CRI | domain. B Homozygous missense mutations in CCIN detected in GL-12 affecting a conserved amino acid
in a Kelch domain. € Structural model of a homologous Kelch domain was used to model the effect of the mutation on protein structure. In the top
right corner; an overview of the domain is represented as a ribbon. The side chain of the mutated residue is coloured in magenta and shown as a small
ball. In the lower left corner, a close-up of the mutation is shown (region indicated by rectangle). The protein domain is coloured in grey; the side chains
of both the wild-type and mutant residues are shown and coloured green and red, respectively. The structural model and images were made by HOPE
(http://www.cmbi.umcn.nl/hope/) (Venselaar et al., 2010). D Homozygous frameshift mutation in C7orfé | detected in patient ARGI3. E C7orf61
is localised in the acrosomes of round spermatids (solid arrow) and spermatozoa (dashed arrow). Image credit: Human Protein Atlas. This image
is adapted from imid:20265234 available from v|8.|.proteinatlas.org (Uhlen et al., 2015). Protein domains were predicted by SMART (http://smart.
embl-heidelberg.de/). ALS2CRI | : amyotrophic lateral sclerosis 2 candidate | | (InterPro: IPR031462). BTB: broad-complex, tramtrack and bric a brac
(InterPro: IPR0O002 10). BACK: BTB and C-terminal kelch (InterPro: IPROI 1705). Kelch: Kelch repeat type | (InterPro: IPROI 1705). DUF4703: domain of
unknown function (InterPro: IPR0O31534). Ortholog alignments were made by Alamut Visual version 2.10 (http://www.interactive-biosoftware.com).

Identification of variants in genes with a link
to acrosome biology

We also identified mutations in three genes with a known link to
acrosome biology, but for which no knockout mouse model is currently
available.

In patient GL-4, a homozygous missense variant (c.338A > G;
p.(His| 13Arg)) was found in C2 calcium-dependent domain-containing
6 (C2CD6, also known as ALS2CRI 1) (Fig. 2A; Table II; Supplementary
Fig. S3 Supplementary Table SIV). The variant has not been recorded
before in population databases. The missense variant is located in the

conserved C2 domain (InterPro: IPRO00008) which has an important
function in calcium-dependent phospholipid binding and targeting
proteins to cell membranes (Nalefski and Falke, 1996). C2CDé6 is
detected throughout spermatogenesis (Guo et al., 2018) and interacts
with SPATA 16 and ZPBP (Fig. 1D).

In patient GL-12, a homozygous missense variant (c.853G > A;
p-(Gly285Ser)) was found in Calicin (CCIN) (Fig. 2B; Table Il; Supple-
mentary Fig. S4; Supplementary Table SIV). The variant is located
in a conserved region of the Kelch repeat type | domain (InterPro:
IPR0O06652). A 3D structure of a homologous Kelch domain is available
(PDB: 2XN4), and structural modelling revealed that the variant is
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Figure 3 Electron microscopy in patient ARG 3. A Normal sperm head from a fertile individual. Note its elongated shape with a 2.4/ length
to transversal diameter ratio. The thin, dense acrosome covers 2/3 of the head surface. The extension and/or location of the acrosome is indicated
by asterisks. B-F Sperm from ARGI3. B: A rounded acrosomeless head depicts three large chromatin rarefactions. C: This round head with normal
chromatin has an extremely small acrosome in its lower right corner. D: Ovoid sperm head with two large chromatin rarefactions and a small detached
acrosome in its lower right corner. Another small, ring-like acrosome is present underneath. E: The elongated head has a big chromatin rarefaction in
its cranial aspect and is covered by a small, hypoplastic acrosome. F: An ovoid sperm head with normal chromatin is devoid of a normally positioned
acrosome. Two acrosomal structures lay free in the cytoplasm underneath the head. Panel magnification is indicated by length of the bars.

located on the surface of the Kelch domain, which is important for
binding of other molecules such as actin filaments (Fig. 2C). The
differences between the wild-type and mutant residues may influence
the interaction with other molecules or other parts of the molecule.
The torsion angles for the mutated residue may not be flexible enough,
which can force the local backbone into an incorrect conformation
disturbing the local structure (Fig. 2C). In humans, CCIN binds actin in
the acrosomal region of round spermatids and localises to the post-
acrosomal region of elongated spermatids (Lecuyer et al., 2000).
Patient ARGI3 carries a homozygous frameshift variant (c.259del;
p.(Glu87Argfsx46)) in chromosome 7 open reading frame 61 (C7orf6 1)
(Fig. 2D; Table II; Supplementary Fig. S5; Supplementary Table SIV).
The variant is absent from population databases. Normal spermatozoa

from fertile men have 3-5-pm-long heads with dense, compact chro-
matin. The acrosome closely attaches to the head and covers approx-
imately 2/3 of its cranial surface (Fig. 3A). In contrast to this, more
than 95% of spermatozoa from patient ARG 3 possessed conspicuous
head-shaped and acrosomal anomalies. Many heads were close to
spherical with absent or minute acrosomes (globozoospermic). Others
were roundish or irregularly ovoid and had small acrosomes, not well
attached to the nuclear surface or completely disengaged from it (acro-
some hypoplasia, Fig. 3B—F). Additionally, there were frequent defects
in chromatin compaction, as indicated by nuclear pseudo-vacuoles
containing lightly granular or amorphous material (Fig. 3B—F). The
function of C70rf6 | remains largely elusive. The protein was detected
in the insoluble fraction of human sperm cells including the nucleus,


https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez246#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dez246#supplementary-data

Genetic causes of globozoospermia

247

A

Human

Chimp

Gorilla

Orangutan

White-tuffed-ear marmoset
Rat

Mouse

Dog

Cow

Chicken

Fruitfly C

>»> >

»>» »

p.Arg 441‘?# )

GGN

p.Gly424Alafs*65

652
p.(Arg944Trp)
L I P R L A K D R
L I P R L V K D R
L I P R L A K D R
L I P R L A K G R
L I P R L A K G R
L I P R L A K G R
C M P R | V A D N
p.Phe25%lle

1 DNAH17

Human
Chimp
Gorilla
Orangutan
White-tuffed-ear marmoset
Rat

Mouse
Dog

Cow
Chicken
Fruitfly

<< <<

<

<c<< .

-Tm

“-TTTThm

4462
p.(Phe2594lle)

A V S F P Q E

A VvV S F P G Q E A

A VvV S F P Q E

A VvV S F P G H E A

A VvV S F P G Q E A

A VvV S F P G Q E A

A V S F P G Q E A

S V A P P G E D T
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sperm tail and perinuclear theca (Behrouzi et al., 2013). Consistent
with this finding, the protein is localised to the peri-acrosomal region
of spermatids (Fig. 2E). The data suggest that C7orf6| protein may
therefore play an important role in acrosome formation and nucleus
shaping during spermiogenesis and can be considered a novel candidate
gene for acrosomal hypoplasia.

Variants in genes without an obvious link to
globozoospermia or acrosome biology

Finally, we also found ultra-rare variants in genes that have a link with
male infertility but not globozoospermia. Specifically, brothers GL-1

and GL-2 are both homozygous for a frameshift mutation (c.1271del;
p.-(Gly424Alafsx65)) in the first coding exon of Gametogenetin (GGN)
(Fig. 4A; Table Il; Supplementary Table SIV). Both brothers carry large
overlapping stretches of homozygosity (both approximately 7 Mb) on
chromosome |9 containing GGN (Supplementary Fig. S6). Homozy-
gous knockout of Ggn in mice causes pre-implantation embryonic
lethality, and heterozygous mice showed deficient double-strand break
repair during male meiosis (Jamsai et al., 2013). As this early lethal-
ity precluded an analysis of the consequences of GGN ablation in
spermatids, the possibility remains that it has a role in acrosome
biology.
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Finally, patient GL-3 carries two heterozygous missense variants in
dynein axonemal heavy chain 17 (DNAHI7) (Fig. 4B; Table II; Sup-
plementary Table SIV). Both variants were classified as Variant of
Unknown Significance. The same patient also carries a hemizygous vari-
ant of uncertain significance (c.601C > T; p.(Leu201Phe)) in MAGEAS.
The function of this protein is not known to be related to globo-
zoospermia. It remains uncertain whether variants in DNAHI7 or
MAGEA3 cause globozoospermia.

Discussion

Globozoospermia is commonly caused by recessive deletions of
DPY19L2, but a significant fraction of all patients remain undiagnosed
(Dam et al., 2007; Harbuz et al., 201 I; Koscinski et al., 201 1). In this
study, we aimed to identify new genes involved in globozoospermia
by exome sequencing in unexplained globozoospermia cases. Our
analysis revealed likely pathogenic variants in two known mouse
globozoospermia genes and variants in five novel candidate genes
for human globozoospermia (Tables Il and Il1).

Novel genetic causes of globozoospermia

We identified two likely pathogenic homozygous nonsense muta-
tions, which most probably lead to a truncated protein (ZPBP;
c.931C>T; p.(GIn311*)) or nonsense-mediated MRNA decay
(CCDC62; c.442C >T; p.(GInl48%)), in genes previously known to
cause globozoospermia when mutated in mice (Lin et al, 2007; Li
etal, 2017).

Similar to the findings in mice, ZPBP (Fig. IC) and CCDC62 (Li
etal, 2017) are both localised to the acrosome in human sperm.
Indeed, sperm cells from the Zpbp | knockout mouse have severely
disorganised acrosomes, abnormal nuclear shape, excessive cytoplasm
and coiled sperm tails (Lin etal., 2007). Mutations in ZPBP have
been described before in patients with sperm head defects (Yatsenko
etal, 2012), but it remains unclear if these patients suffered from
globozoospermia. Also, the involvement of the described missense and
splice mutations in disease has not clearly been demonstrated.

Loss of Ccdcé2 in mice leads to fragmentation of the acrosome in the
maturation phase of acrosome development and abnormal bending
and cytoplasmic retention around the sperm head (Li et al., 2017).
CCDC62 contains coiled-coil domains similar to PICKI and GOPC,
whose knockout mouse models display also globozoospermia (Yao
et al., 2002; Xiao et al., 2009). CCDC62 was shown to interact with
GOPC, whereas no interaction between CCDC62 and PICKI| was
observed (Wang et al., 2015). Interestingly, in humans, CCDC62 was
shown to be co-expressed with ZPBP. However, the exact role of
CCDC62 in human globozoospermia remains unclear. Unfortunately,
no sperm or testis material of the patient with the CCDC62 mutation
was available to perform further functional studies.

Our patient with a homozygous ZPBP mutation had two children
after intra-cytoplasmic sperm injection (ICSI) treatment: a healthy
baby girl and a boy with cardiofaciocutaneous (CFC) syndrome. CFC
syndrome is caused by de novo mutations in genes involved in the
RAS/MAPK signalling pathway in most cases (Pierpont et al., 2014).
Whereas a contribution of the variant in ZPBP to the son’s phenotype
cannot be excluded, a link between ZPBP and the RAS/MAPK pathway
has not been reported before.

Novel candidate genes for globozoospermia

In addition to mutations in genes already linked to globozoospermia
in mice, we identified variants in novel genes C2CDé6 (c.338A > G;
p.(Hisl13Arg)), CCIN (c.853G>A; p.(Gly285Ser)) and C7orf6!
((c.259del; p.(Glu87Argfsx46)), with a clear link to acrosome biology.
All three genes are expressed at elevated levels in the testis. The
involvement of C2CDé in the acrosome formation and function is based
on its interaction with SPATAI6 and ZPBP. CCIN and C7orf6 | have an
acrosomal localisation (https://www.proteinatlas.org/). In addition,
CCIN is known to bind to actin. Therefore, it could be involved in the
transport of acrosomal vesicles from the Golgi apparatus to the apical
region of the sperm head during acrosome biogenesis. Mouse models
to morphologically assess sperm function and male fertility, however,
are not yet available. Hence, in order to learn more about the role of
these genes in globozoospermia, the generation of such animal models
would be of great value.

We also identified variants in genes for which no data are yet
available concerning their function in the acrosome formation. GL-|
and GL-2 are brothers and share homozygous frameshift mutations
in GGN. While data support a role for Ggn in meiotic double-strand
break repair and early embryonic development, the death of Ggn null
mice during early embryogenesis precluded an analysis of its role in
acrosome formation. GGN is localised in spermatocytes, spermatids
and sperm tails in mouse and human testes (Jamsai et al., 2008). In
addition, GGN is also known to interact with CRISP2 (Jamsai et al.,
2008). This protein is incorporated into the developing acrosome and
the outer dense fibres of the sperm tail (Foster and Gerton, 996;
O’Bryan et al., 2001). Knockout of Crisp2 leads to sub-fertility in the
mouse characterised by acrosome reaction defects and stiff mid-piece
syndrome (Lim et al., 2019). It is thus plausible that in humans, GGN
plays an as-yet unidentified role in acrosome formation. Interestingly,
brothers GL-1 and GL-2 also harboured a missense variant in PDCD2L
that was predicted to introduce a cryptic splice site in exon 4. As altered
splicing could not be confirmed (data not shown), the gene is not
enriched in the testis and a link to acrosome biology has never been
reported, it is unlikely that this variant causes globozoospermia. The
precise role of PDCD2L in spermatogenesis, or any other process, has
not however, been tested.

Finally, we identified two variants in DNAH | 7. Parental samples were
not available to test compound heterozygosity. A Dnah!7 knockout
mouse is known to suffer from male infertility and abnormal hair
growth (http://www.informatics.jax.org/). A more detailed descrip-
tion of the mouse spermatogenesis is currently not available. Recently,
mutations in DNAH | 7 were identified in patients with asthenozoosper-
mia (Whitfield et al., 2019). It remains elusive whether the variants in
DNAH 7 may cause infertility in GL-3.

Acrosomal hypoplasia

The lack of acrosome in globozoospermic patients was originally
attributed to absent formation, but Alvarez Sedo etal. (2012)
documented deficiencies in a set of six subacrosomal proteins
in globozoospermia and proposed that this may result in faulty
acrosomal adherence to spermatid nuclei and subsequent acrosomal
loss (Chemes, 2018). In addition to acrosomal absence, acrosomal
hypoplasia (small, thin and detached acrosomes) may be present in
up to 30-60% round or amorphous sperm heads of infertile men
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Table Il Overview of familial and clinical data.
Patient Globozoospermia Candidate Ethnicity Consanguinity  Fertility in family Sperm conc. ICSI result
type gene members (sperm/ml)
reported by
IVF clinic
GL-1 2 GGN Turkish Yes (unknown | brother with < 2 million 3xICSI: 25%
degree) globozoospermia fertilization, no
(GL-2), | fertile success
brother with 4
children)
GL-2 2 GGN Turkish Yes (unknown | brother with 2 million 2xICSI: no
degree) globozoospermia fertilization
(GL-1, | fertile
brother with 4
children)
GL-3 | DNAH 17 French No 2 fertile sisters 10 million 6xIUl: no success
(Mulhouse) IxIVF with donor
sperm: child is
born
GL-4 2 C2CD6 Moroccan Yes (mother is 3 brothers and 2 Not available No ICSI
the niece of the sisters, all fertile
father)
GL-5 Unknown None Unknown No Unknown Unknown Unknown
GL-6 | None French (Dijon) No | brother with 38 million IXICSI: healthy
globozoospermia girl was born
(GL-7), | infertile
half-sister
GL-7 | None French (Dijon) No | brother with 109 million 2xICSI: no
globozoospermia success
(GL-6), | infertile
half-sister
GL-8 2 None French (Lille) No 2 brothers with Unknown, 95% IXICSI: 25%
globozoospermia atypical sperm fertilization, |
including GL-9 child was born
GL-9 2 None French (Lille) No 2 brothers with Unknown, 98% IXICSI: 25%
globozoospermia atypical sperm fertilization, |
including GL-8 child was born, |
additional
pregnancy
GL-10 None Not known No Unknown Unknown Sperm donation:
twins were born
GL-11 | ZPBP Moroccan Yes (unknown 2 infertile brothers 52 million 2 children
degree)
GL-12 Unknown CCIN Lebanese Yes (unknown 3 infertile brothers, | < 2 million IXICSI:
degree) fertile sister pregnancy (2011)
GL-13 Unknown CCDC62 Lebanese Yes (unknown | fertile sister, | 32 million Unknown
degree) infertile male cousin
GL-14 Unknown DPYI9L2 USA No Unknown 4 million IXICSI: |
pregnancy from
frozen embryo
transfer, healthy
boy was born
GL-19 Unknown None The Netherlands ~ No No affected brothers 180 million 6xIUl: no
(indicated as pregnancy
Caucasian) IXIVF: no
fertilization
3xICSI: | healthy
girl was born
ARGI3  Acrosomal C7orf6 1 Argentina Yes (unknown Unknown Unknown, 95% Unknown

hypoplasia

degree)

atypical sperm
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(Chemes, 2018). The correct identification of globozoospermia and
acrosomal hypoplasia is very relevant because failed in vitro fertilisation
due to low or absent Ca’* oscillations following ICSI into oocytes is
associated with defective acroplaxome, i.e. the cytoskeletal platform
to which the acrosome normally adheres during spermatogenesis
(Alvarez Sedo et al., 2012), discussed in (Chemes, 2018). As shown in
the present report, there is not a clear-cut separation between a failure
of acrosome biogenesis (globozoospermia) and failures of acrosome
adhesion to the developing sperm head (acrosomal hypoplasia). Both
conditions may coexist in the same semen sample.

Genetic studies in globozoospermia

Recessive genetic disorders are common in inbred populations since in
offspring born from consanguineous parents, stretches of the genome
are homozygous as a result of inheriting identical chromosomal seg-
ments from both parents, which may carry rare variants that cause
recessive disorders. Because consanguinity has previously been a com-
mon observation in globozoospermia cases (Dam et al., 2007; Harbuz
et al., 201 I; Koscinski et al., 201 1), we used the exome data to identify
stretches of homozygosity. In 7 out of |5 cases (47%), we studied
through exome sequencing large (>10-Mb) stretches of homozygos-
ity were found, indicating consanguinity and again confirming that
globozoospermia is more common in inbred populations (Table |l
Supplementary Fig. S7 and Supplementary Table SV). In all seven cases,
we identified a possible causative mutation in such regions, indicating
that homozygosity mapping is an effective method to identify potential
disease loci for globozoospermia.

In 7 out of |5 patients, no clear cause of globozoospermia could be
identified. It is possible that our filtering strategy was too stringent and
excluded the possibly pathogenic variants in the unsolved cases.

Patients with globozoospermia type | and wishing to conceive are
forced to use ICSl for fertilisation. The success rate of fertilisation using
ICSI for globozoospermic men is however lower than in unselected
groups of male infertility (24.3% compared to 70-80%), and rates range
between 0 and 100%, with most authors reporting low to no fertil-
isation (Dam et al., 2007; Palermo et al., 2009; Chansel-Debordeaux
et al., 2015). This suggests that infertility in globozoospermia is more
complex than just the presence or absence of the acrosome. As
indicated above, this may be related to the presence of essential
molecules required for oocyte activation in the acroplaxome. The
fertilisation rate is restored by assisted oocyte activation (AOA) using
mechanical, chemical and electrical approaches (Kuentz et al., 2013).
The identification of the genetic cause of globozoospermia may help
us to improve prediction of treatment success and may even impact
future therapeutic strategies, which will aid in improving the clinical
management of globozoospermia patients.

Conclusion

Our study on globozoospermia patients identified homozygous non-
sense mutations in human in two genes known to cause globozoosper-
mia in mice, ZPBP and CCDC62. This definitively establishes the role of
these genes in human globozoospermia. In addition, homozygous and
heterozygous variants in five candidate novel genes for globozoosper-
mia were identified. Elucidating the genetic cause of globozoospermia
can help to better understand the aetiology of globozoospermia, which

is invaluable to better understand the process of spermiogenesis and
to predict the success as well as the risks of reproductive treatments
such as ICSI.

Supplementary data

Supplementary data are available at Human Reproduction online.
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