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Abstract

Activation of the stimulator of interferon genes (STING) pathway by both exogenous and 

endogenous cytosolic DNA results in the production of interferon beta (IFN-β) and is required for 

the generation of cytotoxic T-cell priming against tumor antigens. In the clinical setting, 

pharmacological stimulation of the STING pathway has the potential to synergize with 

immunotherapy antibodies by boosting anti-tumor immune responses. We report the discovery of 

two highly potent cyclic dinucleotide STING agonists, IACS-8803 and IACS-8779, which show 

robust activation of the STING pathway in vitro and a superior systemic anti-tumor response in the 

B16 murine model of melanoma when compared to one of the clinical benchmark compounds.
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Stimulator of interferon genes (STING) is an innate pattern recognition receptor natively 

localized to the endoplasmic reticulum which plays a key role in host defense through innate 

detection of pathogenic or damage-associated nucleic acids.1–4 STING has recently been 

shown to be required for generation of optimal adaptive anti-tumor immune responses, thus 

deliberate pharmacological stimulation of the STING pathway is an exciting approach to 

boost anti-cancer immunity with the potential to synergize with FDA-approved 

immunotherapy antibodies.3,4 The STING pathway is activated upon direct binding to 

STING of cyclic dinucleotides (CDNs),5,6 second messenger molecules that are either of 

exogenous bacterial origin (such as 3’,3’-cyclic guanosine-adenosine monophosphate, 

cGAMP, Figure 1), or produced by a host cyclic GMP-AMP synthase (cGAS).7 cGAS acts 

as a sensor of double stranded cytosolic DNA of viral, malignant, or endogenous origin, 

generating the structurally distinct CDN ligand 2’,3’-cyclic guanosine-adenosine 

monophosphate (2’,3’-cGAMP, Figure 1), which features a non-canonical 2’,3’-

phosphodiester linkage.8,9 Binding of CDN ligands to STING results in its activation and 

initiates a signaling cascade culminating in robust engagement of the interferon regulatory 

factor 3 (IFR3) and nuclear factor kappa-B (NF-kB) pathways, ultimately stimulating 

production of interferon beta (IFN-β) and other pro-inflammatory cytokines.10 Beyond its 

canonical role in immune defense against viral or bacterial pathogens, activation of the 

STING pathway and resulting IFN-β production have been recognized as critical 

components of the innate immune sensing of tumors, which is a critical upstream event 

required for optimal cytotoxic T-cell priming against tumor antigens.11 Recent reports 

demonstrated that pharmacological activation of the STING pathway via intratumoral 

administration of synthetic CDN agonists results in significant antitumor responses in a 

variety of preclinical models, achieves robust tumor regression at both injected and distal 

uninjected lesions, and is reported to facilitate generation of long-lived immunologic 

memory.3,4,12 Clinical evaluation of synthetic STING agonists is underway, with ADU-
S100/MIW815,12 a 2’,3’-cyclic diadenosine monophosphate analogue featuring a 

thiophosphatediester bond (Figure 1) and MK-1454, a second agent of undisclosed 

structure, escalating in Phase I.13

Given the key role proposed for the STING pathway in modulating the innate antitumor 

immune response, we set out to generate high-potency STING agonists and to investigate the 

role of key nucleobase and ribose modifications with the goal of identifying STING agonists 

with improved translational potential as cancer therapeutics and ultimately expand the 

number of available clinical tools. Herein we report the rational design and the discovery of 
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IACS-8779 (1a) and IACS-8803 (3a, Figure 2), two highly potent 2’,3’- thiophosphate 

CDN analogs that show robust activation of the STING pathway in vitro and a superior 

systemic anti-tumor response when compared to the clinical benchmark ADU-S100 in the 

B16 melanoma murine model.

At the beginning of our exploration we decided to focus our efforts on 2’,3’-linked 

phosphorothioate analogs bearing a diadenosine monophosphate backbone (2’,3’-S2-CDA), 

due to the excellent feature of this class of synthetic CDNs and the compelling results 

reported for ADU-S100. The 2’,3’-phosphodiester linkage offers improved affinity for 

STING compared to the canonical 3’,3’-form.14,15 The introduction of sulfur atoms within 

the two thiophophodiester bonds confers improved resistance to phophodiesterase mediated 

degradation, resulting in enhanced activation of the STING pathway in vitro and 

significantly more robust antitumor responses in vivo.12,16 These advantages proved 

especially significant for one of the possible stereoisomers of the bis-thiophosphate analogs, 

the Rp,Rp-series in which both the stereogenic thiophosphate groups are in the R 
configuration. The 2,’3’- Rp,Rp-S2 analogs also proved to be potent agonists against both 

mouse STING as well as a number of human STING allelic isoforms, which is significant 

because these common polymorphic STING alleles are present in a large portion of the 

human population yet may possess differential responsivity to CDN agonists.12 At the onset 

of this project, the 2,’3’-Rp,Rp-S2-CDA analog was reported to have the best overall 

features, and we decided therefore to start our exploration from this lead molecule, targeting 

nucleobase and ribose modifications specifically designed to have a high probability of 

success in improving its antitumor efficacy and overall profile.

Amongst the several potential modifications evaluated for the nucleobase portion, we 

selected to start our exploration by substituting either of the two adenines within the 2’,3’-

CDA structure with the 7-deaza-adenine core (Figure 2, compounds 1a/b and 2a/b). Despite 

being a rather conservative modification, the 7-deaza substitution has been reported within 

the context of antiviral nucleotide projects to have significant effects on boosting intrinsic 

potency against nucleotide recognizing molecular targets, and to offer improved stability 

against metabolic degradation by adenosine deaminase and phosphorylase.17

As for modifications within the ribose portion, we targeted the specific replacement of the 

2’-hydroxyl within the 2’,3’-CDA structure with either a fluorine or a chlorine atom (Figure 

2, compounds 3a/b and 4a/b). Both these substitutions were selected in view of their 

successful replacements of the 2’-OH moiety reported in the context of antiviral nucleotide 

projects that targeted the inhibition of RNA-dependent-RNA-polymerases, where 

recognition through the ribose 2’-OH motif is known to play a crucial role.18,19

All the above 2,’3- S2-CDA analogs were evaluated in vitro for their ability to stimulate the 

human and mouse STING pathway head to head with two benchmark CDN agonists, 3’,3’-

cGMP and 2’,3’-RR-S2-CDA (ADU-S100). The compounds were tested at 1µg/mL in 

human THP-1-Dual™ and mouse J774-Dual™ cells (Invivogen), featuring stable integration 

of two inducible reporter constructs enabling simultaneous study of the two main signaling 

pathways activated by STING, the NF-kB pathway, and the interferon regulatory factor 3 

(IRF3) pathway. Data for the activation of the IRF3 pathway are reported in Figure 3a, as 

Ager et al. Page 3

Bioorg Med Chem Lett. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assessed by activity of the luciferase reporter gene. Several of these newly synthetized CDN 

analogues proved able to act as human and mouse STING agonists, with a selection of them 

showing equivalent or superior activity relative to the clinical benchmark 2’,3’-RR-S2-CDA. 

A noticeable difference was observed in the effect of 7-deaza-adenine substitution, with 

regioisomers 1a/b significantly more active than regiosiomers 2a/b, and 1a (IACS-8779) 

showing equivalent activity relative to the clinical benchmark 2’,3’-RR-S2-CDA. Within the 

ribose modifications evaluated in the 2’-position, substitution of the 2’-OH with a 2’-F in 

3a/b proved to be superior to the 2’-Cl analogs 4a/b, and showed a significant advantage 

compared to the clinical benchmark 2’,3’-RR-S2-CDA. The most promising analogs were 

then tested in a dose response manner over a range of concentrations (0.5 – 50 ug/mL, 

Figure 3b), where ‘8779 was found to be comparable, and the two 2’-F analogs 8802/8803 

showed superior activity to the 2’,3’-RR-S2-CDA benchmark. In light of these compelling 

data, compounds IACS-8779 (1a) and IACS-8803 (3a) were selected for evaluation of 

antitumor activity in mice bearing bilateral B16-OVA melanomas, in a head to head 

comparison with the 2’,3’-cGAMP and 2’,3’-RR-S2-CDA benchmarks (Figure 4a).

Mice were implanted bilaterally with 1×105 B16-Ova, and all the compounds were 

administered at the same dose (10 µg) with three intra-tumoral injections, on one flank only, 

on day 6, 9, 12 post implantation. While all the compounds showed comparable antitumor 

activity on the injected flank, IACS-8779 and IACS-8803 achieved superior regression on 

the untreated tumor in the contralateral flank, suggesting a more significant systemic 

immune response compared to the benchmark analogs. Treatment with ‘8779 and ‘8803 also 

resulted in a higher number of mice cured of both tumors compared to benchmarks (Figure 

4b). Follow up studies in additional tumor models and dose down experiments are planned 

with IACS-8779 and IACS-8803, and will be reported in a forthcoming article.20

To enable the in vitro and in vivo studies above described, we required a robust synthetic 

approach that would allow a modular and efficient assembly of the targeted 2’,3’-S2-CDA 

analogs. We first secured multigram amounts of the necessary building blocks 3’-H-

phosphonate intermediates A1–4 and the 2’-phosphoramidite intermediates B 1–2, depicted in 

Scheme 1.

We then employed the protocol developed by Gaffney et al. and its subsequent modifications 

to progress the above intermediates through an amidite-H-phophonate coupling and a first 

sulfurization step, employing 3-((dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-5-

thione (DDTT).21–23,14 Intermediates 5–8 were often carried through to the next step 

without need of chromatographic purification, as a mixture of stereoisomers at the newly 

formed phopshorothioate stereogenic center.24 Cyclization was then achieved with 2-

chloro-5,5-dimethyl-1,3,2-dioxaphosphorinane 2-oxide (DMOCP) in pyridine, and followed 

by a second sulfurization step with Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-

dioxide)25 in a two-step process reported to be selective for the Rp stereochemistry, 21,24 

and hence resulting in the formation of two cyclized diatereosiomer products with RpRp and 

SpRp configuration respectively.¥

Removal of the cyanoethyl protecting group was achieved by treatment with base, and the 

two CDN disatereoisomers were typically separated at this stage by reverse phase HPLC. A 
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desilylation step afforded the final 2’,3’-S2-CDN products as single stereoisomers, that were 

isolated as sodium salts after a second reverse phase HPLC followed by passage through ion 

exchange resin.§

The synthesis of the required building blocks intermediates was achieved either according to 

literature precedents (intermediates A2 and B1),22 or following the route described in 

Scheme 2 and Scheme 3 for intermediates A1-B2 and A3-A4 respectively. The 7-deaza-

adenine intermediates A1 and B2 were both obtained from the same 4-chloro-7-

deazaadenine ribose derivative 13. Following chlorine displacement with ammonia in 

MeOH, the resulting 4-amino group was selectively benzoylated via an in situ multi-step 

sequence, involving transient TMS-protection of the ribose hydroxyls.26 Selective tritylation 

of the 5’-hydroxyl, treament with TBSCl and chromatographic separation gave the 

regioisomeric mono-TBS protected alcohols 14 and 15, which were progressed to the 3’-H-

phosphonate A2 and to the 2’-phosphoramidite B2 respectively.

The synthesis of intermediate A3 started with chloride displacement of triflate 16,27 

followed by protecting group manipulations to obtain the 2’-deoxy-2’-chlorine-adenosine 

derivative 17a. The 5’hydroxyl was temporary protected with dimethoxytrityl to install the 

3’-H-phosphonate moiety, and then liberated to yield intermediate A3. The same synthetic 

sequence was employed to convert 17b in the 2’-deoxy-2’-fluorine building block A4.

In summary, we set out to generate high-potency CDN STING agonists by introducing a 

focused set of rationally selected modifications within the nucleobase and ribose portions of 

the 2’,3’-CDA structure. This focused approach led to the discovery of IACS-8779 and 

IACS-8803, two 2’,3’-phophothioate-CDA analogs that show robust activation of the 

STING pathway in vitro and a superior systemic anti-tumor response when compared to the 

clinical benchmark ADU-S100 in the B16 murine model of melanoma. Additional studies 

are ongoing towards positioning these molecules for clinical translation.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cyclic dinucleotide STING agonists.

Ager et al. Page 8

Bioorg Med Chem Lett. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The 2’,3’-linked phosphorothioate diadenosine monophosphate (2’,3’-S2-CDA) STING 

agonists herein described.
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Figure 3. 
Evaluation of CDN potency in THP-1 (human) and J774 (mouse) reporter cells; a) CDNs 

were added at 1 µg/mL to 1×105 THP-1 Dual or 5×104 J774-dual reporter cells for 20 hours 

and IF3 activity was measured by luciferase assay. b) CDNs were added at the indicated 

concentrations in the 0.5 – 50 µg/mL dose range to 1×105 THP-1 Dual reporter cells for 20 

hours and IF3 activity was measured by luciferase assay.
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Figure 4. 
Antitumor activity of selected CDNs in the B16-Ova melanoma model. Mice (n=5 per 

group) were implanted bilaterally with 1×105 B16-Ova and received 10 ug of each CDN on 

day 6, 9, 12 post implantation. CDNs were administered by intratumoral injection on one 

flank only.
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Scheme 1. 
Reaction conditions: a) Pyridine, TFA; b) DDTT, acetonitrile; c) aqueous Cl2HCCO2H; d) 

DMOC, pyridine; e) Beaucage reagent, pyridine; f) NH4OH, MeOH; g) NH4F, MeOH; h) 

Dowex®–50WX8 resin (Na+ form). Beaucage reagent = (3H-1,2-Benzodithiol-3-one 1,1-

dioxide); Bz = benzoate; DDTT = 3-((dimethylaminomethylidene)amino)-3H-1,2,4-

dithiazole-5-thione; DMOCP = 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphorinane 2-oxide; 

TBS = tert-Butyldimethylsilyl.
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Scheme 2. 
Reaction conditions: a) NH3, MeOH, 110 °C; b) i. TMSCl, pyridine, 0 °C; ii. BzCl, 0 °C to 

RT; iii. H2O, then aq. NH3 0 °C; c) DMTrCl, pyridine; d) TBSCl, pyridine, AgNO3; e) 

PivCl, pyridine, H3PO3; f) Cl2CHCO2H, H2O, DCM; g) 2-cyanoethyl 

diisopropylchlorophosphoramidite, DCI, DCM. Bz = benzoate; DMTr = 4,4-

Dimethoxytrityl; TBS = tert-Butyldimethylsilyl.
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Scheme 3. 
Reaction conditions: a) LiCl, DMF, 50 °C; b) BzCl, pyridine, 0–25 °C; c) TBAF, THF; d) 

aq. NH3, THF; e) DMTrCl, pyridine; f) PivCl, H3PO3, pyridine, 0–30 °C; g) Cl2HCCO2H, 

H2O, DCM. Bz = benzoate; DMTr = 4,4- Dimethoxytrityl; Tf = trifluoromethansulfonate; 

TBS = tert-Butyldimethylsilyl.
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