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Abstract

Background and Purpose: Volumes of hemorrhage and perihematomal edema (PHE) are 

well-established biomarkers of primary and secondary injury, respectively, in spontaneous 

intracerebral hemorrhage (ICH). An automated imaging pipeline capable of accurately and rapidly 

quantifying these biomarkers would facilitate large cohort studies evaluating underlying 

mechanisms of injury.

Methods: Regions of hemorrhage and PHE were manually delineated on CT scans of patients 

enrolled in two ICH studies. Manual “ground-truth” masks from the first cohort were used to train 

a fully convolutional neural network to segment images into hemorrhage and PHE. The primary 

outcome was automated-versus-human concordance in hemorrhage and PHE volumes. The 

secondary outcome was voxel-by-voxel overlap of segmentations, quantified by the Dice similarity 

coefficient (DSC). Algorithm performance was validated on 84 scans from the second study.

Results: 224 scans from 124 patients with supratentorial ICH were used for algorithm derivation. 

Median volumes were 18 ml (IQR 8–43) for hemorrhage and 12 ml (IQR 5–30) for PHE. 

Concordance was excellent (0.96) for automated quantification of hemorrhage and good (0.81) for 

PHE, with DSC of 0.90 (IQR 0.85–0.93) and 0.54 (0.39–0.65), respectively. External validation 

confirmed algorithm accuracy for hemorrhage (concordance 0.98, DSC 0.90) and PHE 

(concordance 0.90, DSC 0.55). This was comparable with the consistency observed between two 

human raters (DSC 0.90 for hemorrhage, 0.57 for PHE).
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Conclusions: We have developed a deep learning-based imaging algorithm capable of 

accurately measuring hemorrhage and PHE volumes. Rapid and consistent automated biomarker 

quantification may accelerate powerful and precise studies of disease biology in large cohorts of 

ICH patients.
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INTRODUCTION

Spontaneous intracerebral hemorrhage (ICH) leads to significant disability through a 

combination of primary and secondary injury mechanisms. Advancing the understanding of 

these mechanisms is facilitated by reproducible measurement of imaging biomarkers of 

injury. The best-established biomarkers of primary and secondary injury are hemorrhage 

volume and perihematomal edema (PHE) volume, respectively. While the former is easy to 

measure, the latter is time-consuming and susceptible to human variability, becoming 

infeasible in clinical trials and large population studies.1 We developed an imaging 

algorithm capable of automatically and accurately segmenting both hemorrhage and PHE 

from serial CT scans of patients with ICH. Such a tool will allow the ascertainment of these 

neuroimaging biomarkers from thousands of ICH patients, propelling investigations in 

multiple areas of ICH research.

METHODS

Study Design and Participants

We utilized data from two cohorts of ICH: the Yale Longitudinal ICH study (derivation 

cohort) and the Ethnic/Racial Variations of Intracerebral Hemorrhage (ERICH) study 

(validation cohort).2 Study participants in both provided informed consent. Imaging data are 

available upon reasonable request.

Delineation of Ground Truth Imaging Measures

Regions of hemorrhage and PHE were manually outlined on each slice of baseline and 

follow-up non-contrast CTs by three trained investigators (one assigned to each scan) using 

Analyze (version 11.0) or 3D Slicer (version 4.1) software to visualize the images, following 

guidelines outlined previously.3 All masks were reviewed for consistency and accuracy by a 

single investigator. We excluded infratentorial ICH cases and scans with excessive motion/

artifacts. In 20 cases, we had one rater repeat delineation one week apart to assess intra-rater 

reliability, while in 40 cases we had two raters independently perform manual segmentation 

of hemorrhage and PHE.
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Training of Automated Segmentation Algorithm

We implemented a fully convolutional neural network with 4 layers following the U-Net 

architecture (Supplemental Figure I).4 Output was a probability map of the likelihood that 

each voxel represented brain, hemorrhage, or PHE. For training, we used a stochastic 

gradient descent algorithm (Adam) with cross-entropy cost as the loss function. We used a 

mini-batch size of 10, a learning rate of 0.001, and dropout rate was set to 0.75 for network 

regularization.

Evaluation of the Algorithm Accuracy

Our primary measure of performance was the concordance between manual and automated 

hemorrhage and PHE volumes using Lin’s concordance coefficient (ρ). We also assessed 

bias as the median difference between automated and manual measurements and present 

limits of agreement (1.96 times the standard deviation) with Bland-Altman plots. Our 

secondary outcome was the Dice similarity coefficient (DSC), a measure of spatial overlap 

between two segmentations, with 0 being no overlap and 1 representing complete voxel-by-

voxel agreement. These outcome measures were evaluated firstly using 10-fold cross-

validation within the training dataset. Subsequently, in the testing phase, the resulting 

algorithm was applied to segment scans from ERICH. We also evaluated accuracy of 

human-versus-human segmentation in order to compare algorithm performance with intra- 

and inter-rater reliability among human experts.

RESULTS

224 CTs from 124 patients with supratentorial ICH were utilized for algorithm derivation 

and cross-validation (Supplemental Table I). Processing time per CT using a single 

CPU/GPU machine was four minutes to segment both hemorrhage and PHE (see 

Supplemental Figure II for illustration). Automated hemorrhage volume displayed excellent 

concordance with manual measurements (ρ = 0.96, Figure 1, panel A). The median 

difference in measured volumes was 0.15-ml with limits of agreement from 14-ml below to 

13-ml above ground-truth volume (Figure 2, panel A). DSC for hemorrhage segmentation 

was excellent at 0.90 (0.85–0.93) and did not vary by hemorrhage location, scan timing 

(baseline vs. follow-up) or whether IVH was present. Automated PHE volume also 

displayed good concordance (ρ = 0.81, Figure 1, panel C). The median difference in PHE 

volumes between methods was 1.5-ml with limits of agreement from −25 to +29 (Figure 2, 

panel C). Median DSC for PHE segmentation was 0.54 (IQR 0.39–0.65) and did not vary by 

scan timing. However, segmentation accuracy was significantly improved when IVH was 

absent than when it was present (0.57 vs.0.46), even after adjusting for hemorrhage and PHE 

volume (p=0.02).

The algorithm was further evaluated on 84 scans from 45 subjects enrolled in ERICH. 

Concordance for hemorrhage volume was 0.98 (Figure 1, panel B) with median difference of 

1-ml (limits of agreement −9 to +7-ml). Concordance of PHE volumes was 0.90 (0.85–0.93, 

Figure 1, panel D) with median difference 0.9-ml (limits of agreement −18 to +19-ml). 

Segmentation accuracy was almost identical to that seen with cross-validation (DSC 0.90 for 

hemorrhage, 0.55 for PHE).
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Among 40 scans with hemorrhage and PHE outlined by two different raters, median DSC 

between raters was 0.90 for hemorrhage and 0.57 for PHE. Concordance of volumes 

between raters was 0.97 for hemorrhage and 0.92 for PHE. For intra-rater reliability, DSC 

was 0.89 for segmentation of hemorrhage and 0.62 for PHE (Figure 3). Concordance of 

volumes was 0.99 for hemorrhage and 0.83 for PHE. See Supplemental Table II for detailed 

results comparing algorithm performance to human segmentation.

DISCUSSION

We trained and externally validated a neural network to automatically segment CT images of 

patients with ICH into regions of hemorrhage and perihematomal edema. Our algorithm is 

equivalent to the accuracy of humans to capture hemorrhage and PHE (as measured by inter-

rater reliability). Accuracy was higher for automated and human delineation of hemorrhage 

than for PHE, as expected given than the latter is a poorly demarginated area of hypodensity 

around the ICH. In fact, the lower DSC for PHE may primarily reflect the variability and 

inaccuracies of human “gold standard” labeling of edema around ICH, which varied on 

retest even for a single rater.

Our algorithm is capable of rapidly and accurately measuring hemorrhage and PHE at 

different time points, capturing their evolution over time and enabling dynamic studies of 

these biomarkers in large cohorts. Manual measurement of ICH and PHE takes up to an hour 

per scan while our automated algorithm can obtain volumes in minutes; this means that 

biomarker ascertainment can be easily performed on thousands of ICH patients.. It may also 

provide more consistency in large datasets than human raters who manifest significant 

variability, especially for PHE. Moreover, because the algorithm eliminates “intra-rater” 

variability, longitudinal measures may be more accurate than human raters, even if the rater 

is the same individual. Our algorithm exhibited consistently high accuracy when applied to 

scans from several external sites, a critical but often under-appreciated validation step for 

machine learning algorithms.

Although some prior reports have used machine learning approaches to segment regions of 

hematoma in ICH, they have mostly relied on feature-based methods, such as random 

forests.5, 6 In contrast, our deep learning network does not rely on a priori imaging features, 

but instead learns and extracts the optimal network of features from the training data. In 

addition, there have been no published reports of algorithms able to segment both 

hemorrhage and PHE from the same scans.

This study has limitations. Machine learning approaches are susceptible to over-fitting and 

may lose accuracy when applied to disparate data. We validated the algorithm on a relatively 

small cohort of scans from outside sites and larger-scale validation should still be performed. 

Our algorithm was trained on ground-truth masks created by one of three different human 

raters, introducing variability in subjective human estimation. These “ground-truth” 

delineations might have been improved by utilizing the overlap of two concurrent human 

segmentations (which, as we have shown in a subset, varies between raters, especially for 

PHE). Furthermore, PHE was defined and therefore delineated as the hypodensity around 

ICH, a subjective estimate of secondary injury that still requires additional evaluation to 

Dhar et al. Page 4

Stroke. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



better understand its biological significance. In addition, comparative studies should explore 

whether intensity-based thresholding (as has been proposed in the past) could extract PHE 

volumes as accurately as our neural network-based approach.7

Finally, we did not segment IVH separately from ICH, so hemorrhage volume encompasses 

both components. The accurate delineation of IVH from adjacent parenchymal hematoma 

has proven challenging even for experienced human raters.8 We are currently working to 

implement a processing pipeline capable of automatically importing, preprocessing, and 

segmenting CT scans to obtain volumetric results seamlessly in large cohorts.9 An imaging 

pipeline capable to processing thousands of images and extracting multiple relevant 

phenotypes would facilitate much deeper evaluations of injury mechanisms and outcomes 

after ICH.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Concordance of manual with automated hemorrhage (top) and perihematomal edema 

(bottom) volumes. Results from the cross-validation (Yale cohort) are shown in panels A and 

C while results from the external (ERICH) cohort are shown in panels B and D. Line of 

identity is also plotted.
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Figure 2: 
Bland-Altman plots of automated measurement of hemorrhage volume (top) and 

perihematomal edema volume (bottom) compared with manual ground-truth for the entire 

derivation cohort (panels A and C) and for the validation (ERICH) cohort (panels B and D). 

Dotted lines represents limits of agreement (1.96 times standard deviation).
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Figure 3: 
Dice similarity coefficients for segmentation of hemorrhage and perihematomal edema 

comparing manual to automated algorithm (red for cross-validation, green for external 

validation cohorts) and repeat testing by the same rater (i.e. intra-rater reliability, blue) and 

different rater (inter-rater, purple)
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