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Abstract

Background: Predicting clinical course of cognitive decline can boost clinical trials’ power and 

improve our clinical decision-making. Machine learning (ML) algorithms are specifically designed 

for the purpose of prediction; however. identifying optimal features or algorithms is still a 

challenge.

Objective: To investigate the accuracy of different ML methods and different features to classify 

cognitively normal (CN) individuals from Alzheimer’s disease (AD) and to predict longitudinal 

outcome in participants with mild cognitive impairment (MCI).

Methods: A total of 1,329 participants from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) were included: 424 CN, 656 MCI, and 249 AD individuals. Four feature-sets at baseline 

(hippocampal volume and volume of 47 cortical and subcortical regions with and without 

demographics and APOE4) and six machine learning methods (decision trees, support vector 

machines, K-nearest neighbor, ensemble linear discriminant, boosted trees, and random forests) 

were used to classify participants with normal cognition from participants with AD. Subsequently 

the model with best classification performance was used for predicting clinical outcome of MCI 

participants.

Results: Ensemble linear discriminant models using demographics and all volumetric magnetic 

resonance imaging measures as feature-set showed the best performance in classification of CN 

versus AD participants (accuracy = 92.8%, sensitivity = 95.8%, and specificity = 88.3%). 

*Correspondence to: Ali Ezzati, MD, Albert Einstein College of Medicine, 1225 Morris Park Avenue, Bronx, NY 10461, USA. Tel.: 
+1 718 430 3885; Fax: +1 718 430 3870; ali.ezzati@einstein.yu.edu.
1Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://
adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided 
data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at https://
adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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Prediction accuracy of future conversion from MCI to AD for this ensemble linear discriminant at 

6, 12, 24, 36, and 48 months was 63.8% (sensitivity = 74.4, specificity = 63.1), 68.9% (sensitivity 

= 75.9, specificity = 67.8), 74.9% (sensitivity = 71.5, specificity = 76.3), 75.3%, (sensitivity = 

65.2, specificity = 79.7), and 77.0% (sensitivity = 59.6, specificity = 86.1), respectively.

Conclusions: Machine learning models trained for classification of CN versus AD can improve 

our prediction ability of MCI conversion to AD.
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INTRODUCTION

The burden of Alzheimer’s disease (AD) is estimated to more than double current levels by 

2060, when 13.9 million Americans are projected to have the disease [1]. Despite the high 

burden of this disease, preventive and therapeutic interventions for AD have largely failed. 

Failure of these trials are thought to be partially due to biological heterogeneity of AD and 

due to the frequent occurrence of mixed dementia pathologies [2, 3]. Many investigators 

have attempted to characterize this heterogeneity using different predictive methods with 

varying degrees of success [4]. In recent years neuroimaging techniques such as positron 

emission tomography (PET) and magnetic resonance imaging (MRI) have been proposed as 

a proxy for brain pathology and are recommended as effective diagnostic and prognostic 

tools [5]. However, a significant proportion of population are cognitively normal and 

biomarker positive or vice versa, making the utility of using these biomarkers as in 

univariate models for predicting clinical outcomes questionable [6].

A growing number of studies have been using machine learning (ML) and multivariate 

analysis methods to classify individuals at risk of progression to AD. A combination of 

demographics and imaging markers are typically entered into these models [7]. These 

studies largely suggest the advantage of using multivariate analysis over univariate 

techniques as they account for the relationship between variables and are less prone to 

classification errors. Some of the prior studies that have used ML methods for predictive 

analysis are limited by reporting performance of the models at short and single follow-up 

times (e.g., 1 or 2 years) and using a relatively small sample [8, 9]. Performance of ML 

methods in larger samples with longer duration of follow-up is not well studied. When 

sample size is smaller, the ratio of measures (features) to participant will be higher and 

predictive models are more prone to overfitting. Therefore, to develop generalizable 

prediction models we need to evaluate validity of models in larger samples.

In this study, we used demographics and structural MRI measures for classification of 

cognitively normal (CN) versus AD participants (training set) from the Alzheimer Disease 

Neuroimaging Initiative (ADNI) and applied the trained model to participants with mild 

cognitive impairment (MCI) from ADNI (independent test set) to predict AD conversion. 

Our specific aims were 1) to compare the performance of different linear and non-linear 

classifiers for the classification of CN versus AD; 2) to compare the effective gain in 
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classification accuracy by using multiple brain structures as opposed to a single brain region 

(hippocampus); 3) evaluate the additive effect of age, sex, education, and APOE4 genotype 

on performance of classifiers; and 4) evaluate the performance of the best classifier in 

prediction of conversion to AD in the test sample at different follow-up times up to 4 years.

METHODS

Study design and participants

The data used for this analysis were downloaded from the ADNI database (http://

www.adni.loni.usc.edu) in September 2018. The ADNI is an ongoing cohort, which was 

launched in 2003 as a public–private partnership. The individuals included in the current 

study were initially recruited as part of ADNI-1, ADNI-GO, and ADNI-2 between 

September 2005 and December 2013. This study was approved by the Institutional Review 

Boards of all participating institutions. Informed written consent was obtained from all 

participants at each site.

A total of 1,329 participants from ADNI-1, ADNI-GO, and ADNI-2 were eligible for this 

study. Eligible individuals completed baseline MRI and had at least one wave of follow up. 

Participants whose scans failed to meet quality control or had unsuccessful automated image 

analysis were excluded from this study. At the time of enrollment, each individual was 

assigned to one of the three diagnostic groups of cognitively normal (CN), MCI, or mild 

AD. The CN, MCI, and mild AD groups included in current study comprised of 424, 656, 

and 249 individuals, respectively.

All ADNI participants with the diagnosis of MCI, were diagnosed as having amnestic MCI; 

this diagnostic classification required Mini-Mental State Examination (MMSE) scores 

between 24 and 30 (inclusive), a memory complaint, objective memory loss measured by 

education-adjusted scores on the Wechsler Memory Scale Logical Memory II, a Clinical 

Dementia Rating (CDR) of 0.5, absence of significant impairment in other cognitive 

domains, essentially preserved activities of daily living, and absence of dementia. The 

participants with AD had to satisfy the National Institute of Neurological and 

Communicative Disorders and Stroke–Alzheimer’s Disease and Related Disorders 

Association (NINCDS-ADRDA) criteria for probable AD, and have MMSE scores between 

20 and 26, and CDR of 0.5 or 1.

Each participant received a baseline clinical evaluation and was revaluated during follow-up 

at 6 months, 1 year, 2 years, 3 years, and 4 years. At each clinical visit, participants were 

assigned to a diagnostic group (CN, MCI, or AD). Based on diagnosis at each follow up, 

participants with an initial diagnosis of MCI were assigned to one of the three subgroups:

I. Progressive MCI subgroup (MCI-p): Individuals who progressed to AD during 

the follow-up.

II. Stable MCI subgroup (MCI-s): Individuals who did not have a change of 

diagnosis and remained stable during the follow up time.

III. MCI reversion subgroup (MCI-r): Individuals who had a reversion to CN during 

the follow up time.
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To facilitate interpretation of the performance of the classifier, MCI-r and MCI-s groups 

were merged into one group of non-progressive MCI (MCI-np). To train classifiers with 

measurements that belong to CN participants, they were assigned to two groups: 1) stable 

CN (CN-s; remained CN after 2 years of follow-up; and 2) progressive CN (CN-p who 

progressed to MCI or AD after 2 years of follow up). None of the individuals with AD 

diagnosis at baseline had reversion to MCI or normal during follow up (Fig. 1).

MRI acquisition and preprocessing

MRIs were obtained across different sites of ADNI study with a unified protocol (For more 

information, please see http://www.adni.loni.usc.edu). MRI data were automatically 

processed using the FreeSurfer software package (available at http://

surfer.nmr.mgh.harvard.edu/) by the Schuff and Tosun laboratory at the University of 

California-San Francisco as part of the ADNI shared data-set. FreeSurfer methods for 

identifying and calculation of regional brain volume are previously described in detail [10].

Data analysis

Feature selection—Demographics including age, sex, and education, APOE4 status, and 

volumetric MRI measures were used as features in the predictive models. MRI measures of 

interest were volumetric measures regions of interests (ROIv) derived from FreeSurfer 

software. A total of 47 cortical and subcortical ROIs, parcellated by FreeSurfer, were 

included. ROIv were normalized for total intracranial volume (TICV) and the ratio of ROIv 

to TICV [i.e., (ROIv/TICV) x mean whole population ROIv] was used in the analyses and 

reported throughout manuscript unless otherwise specified.

We chose four different feature-sets and compared the accuracy of models using each set: 1) 

Hippocampal volume; 2) Hippocampal volume plus age, sex, education, APOE4; 3) All 

MRI volumetrics; 4) All MRI volumetrics plus age, sex, education, APOE4. Hippocampal 

volume has been reported as the single most useful structural measure in previous prediction 

models in preclinical stages [8]. Therefore, we specifically chose hippocampal volume as the 

only ROI in two of the feature-sets.

Classification and pattern recognition models—In the present study, we used six 

different linear and nonlinear supervised machine learning methods for classification and 

pattern recognition:

I. Decision trees (DT). DTs are powerful classifiers that sequentially dichotomize 

the feature space into regions associated with different classes. As such, they are 

capable of learning arbitrarily complex Boolean functions that map the features/

predictors to class labels [11]. While they are widely used due to their ease of 

training based on labeled data, and robustness to missing features, they are 

known to be unstable due to their hierarchical structure: an incorrect decision at a 

high node in the tree would propagate down the nodes and results in 

misclassification (for details, see [12]). We used a fine DT (f-DT) model in the 

current study.
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II. Support Vector Machines (SVMs). SVMs aim at inferring regularities from a set 

of labeled training examples by modeling the mapping from features to labels as 

a linear combination of kernels. When the kernel is a linear function of the 

features, the classifier is referred to as a linear SVM (L-SVM). While there are 

countless choices of decision boundaries that can separate two classes, SVM 

finds a decision function with the maximal the margin between the training 

examples and the resulting decision surface, namely the optimal margin 

hyperplace (OMH). The support vectors refer to examples in the data set that line 

on the margin, and are thus critical to the separation of the two classes. In brief, 

given a training set of size K: (xk, yk)k = 1…K, where xk in Rd are observations, 

and yk in (−1, 1) are corresponding labels, linear SVMs find a hyperplane 

separating the two classes with the optimal margin (for details, see [13, 14]). We 

used an L-SVM in this study.

III. K-nearest neighbor classification (KNN). KNNs are among the simplest, yet 

effective machine learning methods that use the idea of polling among the labels 

of the training examples closest to a new sample, and assigning the majority vote 

as its predicted label. To this end, for a positive integer K, the Euclidean distance 

between the new sample and the elements of the training set are computer and K 

training examples with the smallest distance are chosen to poll from (for details, 

see [15]). In brief, the Euclidean distance is specified by the following formula, 

where p is the new sample to be labeled and q is any of the examples in the 

training set, each having n features. The term pi refers to the value of the ith 

feature of example p, while qi refers to the value of the ith feature of example q, 

for i = 1,2, … , n:

dist p, q = p1 − q1
2 + p2 − q2

2 + ⋯ + pn − qn
2

IV. Ensemble Linear Discriminant (ELD). This technique is among the family of 

classification methods known as ensemble learning, in which the output of an 

ensemble of simple and low-accuracy classifiers trained on subsets of features 

are combined (e.g., by weighted average of the individual decisions), so that the 

resulting ensemble decision rule has a higher accuracy than that obtained by each 

of the individual classifiers [16, 17]. In this work, we combined linear 

discriminant functions (i.e., hyperplanes that dichotomize the samples based on 

subsets of features) to construct the ensemble classifier.

V. Boosted Decision Trees (BDT). Similar to other ensemble methods, boosting is a 

method of combining many weak learners (in this case DTs) to a strong learner. 

At each step of the sequence of combining weak learners, participants that were 

incorrectly classified by the previous classifier are weighted more heavily than 

participants that were correctly classified. The predictions from this sequence of 

weak classifiers are then combined through a weighted majority vote to produce 

the final prediction. Details of the theoretical foundation of boosting and its 

relationship with established statistical methods is described previously [18, 19].
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VI. Random Forests (RF). RFs are a combination of DT predictors such that each 

tree depends on the values of a random vector sampled independently and with 

the same distribution for all trees in the forest. In other words, a RF is a classifier 

consisting of a collection of tree-structured classifiers {h(x, θk), k = 1,…} where 

the {θk} are independent identically distributed random vectors and each tree 

casts a unit vote for the most popular class at input x. Details and foundation of 

RFs techniques used in this paper are described elsewhere [20].

Analysis and computation of machine learning methods were conducted using MATLAB 

©(version 2017b) using standard libraries of the classification learner toolbox.

Training models—Data from the two groups of CN-s and AD participants (training-set) 

were used for training of the models. Models were trained to recognize CN-s versus AD 

using each of the four feature-sets mentioned above. Considering that we used four 

classification methods, a total of 16 models were created. A 10-fold cross-validation 

procedure was used in all models for testing validity of the models. Cross-validation is an 

established statistical method for validating a predictive model, which involves training 

several parallel models, each based on a subset of the training data. Then, the model 

performance is evaluated based on the average accuracy in predicting the labels of the 

omitted portion of the training data [21]. Cross-validation can detect if models are overfitted 

by determining how well the model generalizes to other subsets of datasets by partitioning 

the data.

The performance of each model was calculated based on the percentage of correct 

classification (accuracy), sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV), and area under the ROC curve (AUC).

Comparison of classification performance—We used the McNemar test to select the 

most accurate model [22]. Based on the results of this test the best model was selected for 

the next step (prediction models).

Prediction of future outcome in MCI participants—Following training of the 

models, we used the model with best classification performance to predict the clinical 

outcome of all MCI participants (independent test set). Using baseline data, models assigned 

MCI participants to CN-like or AD-like groups. The accuracy of the predicted outcome 

(CN-like or AD-like) was evaluated using the available clinical outcomes from follow-up 

data. Considering change in proportion of MCI subgroups over time (due to drop outs, 

death, etc.), the accuracy is reported separately for each wave of follow-up at 6, 12, 24, 36, 

and 48 months. Furthermore, we computed sensitivity, specificity, PPV, and NPV of the 

model for predicting conversion to AD at each follow-up time-point.

Assessment of time-to-conversion from MCI to AD—Cox-proportional hazards 

regression models were used to determine the hazard ratio of incident AD in MCI 

participants predicted as AD-like versus those predicted to be CN-like. The time variable 

was amount of time, in years, from baseline to the visit in which AD was diagnosed, or to 

the most recent visit for censored cases (6-month intervals). Kaplan Meier survival curve for 
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Dementia is presented based on this prediction. Statistical analyses were carried out using 

SPSS version 25.0.

RESULTS

Demographics and baseline characteristics

Table 1 summarizes participants’ demographics and clinical characteristics. Among MCI 

participants with 1-year of follow up data available, 87 persons (13.8%) progressed to 

dementia at 1-year follow up. The number who progressed increased to 109 persons (34.3% 

of n =318) for participants with available follow-up data at 4 years.

Effect of feature-set on performance of classifiers

As shown in Table 2, feature sets that included demographics and APOE4 status (set 2 and 

set 4) generally performed better than feature sets without these measures. The choice of 

feature-set also had distinct effect on performance of different ML method: while decision 

trees and ensemble linear discriminant models had higher accuracy when multiple MRI 

volumetrics were included in the feature set, SVM and KNN models performed worse when 

all volumetric measures were included in the models.

Performance of different ML methods in classification of CN versus AD

Performance of each ML method using four different sets of features is summarized in Table 

2. Ensemble linear discriminant models trained with all volumetric measures and 

demographics showed the highest overall accuracy, specificity, PPV, and NPV and very high 

sensitivity in comparison with other classifiers. McNemar test also confirmed that ensemble 

linear discriminant models have the best overall performance (p < 0.001 in all model 

comparisons). Based on this result, ensemble linear discriminant model trained with feature-

set 4 (All volumetrics plus demographics and APOE4 status) were selected and used for 

predicting the outcome of the test dataset (MCI group).

Prediction accuracy for clinical outcome in MCI subgroup

In the next step, the ensemble linear discriminant model with the full baseline feature set (all 

volumetric measures, demographics, and APOE4 status), which had the best performance in 

the training dataset was used to assign MCI participants to either CN-like or AD-like 

subgroups. Prediction accuracy of future conversion from MCI to AD for this model at 6, 

12, 24, 36, and 48 months was 63.8%, 68.9%, 74.9%, 75.3%, and 77.0%, respectively. Table 

3 summarizes the accuracy of this assignment for in prediction of clinical outcome at 

different follow-up times (6, 12, 24, 36, and 48 months) for each MCI subgroup.

Among MCI participants assigned to AD-like group, 11.3% at 6 months, 27.4% at 12 

months, 53.7% at 24 months, 58.6% at 36 months, and 69.1% at 48 months converted to 

AD. Among MCI participants assigned to CN-like group, 97.5% at 6 months, 94.6% at 12 

months, 87.4% at 24 months, 83.9% at 36 months, and 80.4% at 48 months converted to 

AD. In other words, PPV of the model rose from 11.3% at 6 months to 69.1% at 48 months, 

and NPV of the model decreased from 97.5% at 6 months to 80.3% at 48 months. The 
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sensitivity and specificity of model for prediction of conversion to AD at each follow-up 

time point is summarized in Table 4.

Assessment of time-to-conversion from MCI to AD

A Cox-proportional hazards model indicated that participants who were determined to be 

AD-like by the ensemble linear discriminant model based on the full feature set at baseline 

had a significantly higher proportion of conversion to AD during longitudinal follow up (HR 

= 5.36, 95%CI 4.13–6.98, p < 0.001; Fig. 2).

DISCUSSION

Our results indicate that although performance of machine learning classifiers is generally 

high in terms of accuracy, sensitivity, or specificity, some methods (specially ensemble 

methods) can perform better than the others. This performance is partially dependent on the 

selected feature-set and characteristics of data-set. Inclusion of demographics and APOE4 
status in training feature-sets improves the performance of all models. Furthermore, our 

results indicated that performance of the models in for prediction of outcome in MCI group 

(as an independent test set) is time-dependent: PPV of models rose from 11.3% at 6 months 

to 69.1% at 48 months, while NPV evolved from 97.5% to 80.3%. Moreover, after 48 

months of follow-up individuals who were classified as abnormal (AD-like) were 5.36 times 

more likely to convert to AD than individuals who were classified as normal (CN-like).

The performance of classifiers used in the current study are in general agreement with 

previous studies, which have used MRI features for classification in different cohorts 

including ADNI [8, 23–25] and reported accuracies ranging from 80% to 92%. The 

differences between accuracy of these models is likely multi-factorial and due to differences 

in size of sample, training feature set, and the model itself. Our results indicate that the 

feature set selected for training affects performance of models significantly. We showed 

including multiple volumetric measures in the feature-set does not always lead to an increase 

in the performance of the classifier and such increase in performance is dependent on the 

type of classifier. Similar to previous studies [8], our results indicated that inclusion of 

demographics and APOE4 status as part of the training feature-set improves classification 

performance regardless of classification method.

We found that the classifier based on the ensemble linear discriminant method with the full 

feature set at baseline was able to predict progression from amnestic MCI to AD or lack 

thereof over up to 48 months of follow-up with an accuracy of 77%. Results from other 

studies show substantial differences in the ability of structural imaging to predict conversion 

from amnestic MCI to AD. Korf et al. [26] showed that atrophy in the medial temporal lobe 

could predict conversion to AD with a global accuracy of 69%. Devanand et al. [27] found 

that a combination of cognitive scores and hippocampal and entorhinal cortex volumes could 

predict conversion to AD with an accuracy of 87.7%; however, age alone correctly classified 

71.9% of the participants. Querbes et al. [28] reported an accuracy of 76% in prediction of 

conversion to AD using a normalized thickness index comprised of cortical thickness of 22 

different regions. Of note, the duration of follow-up was different for each these studies 

ranging from 2 years to 5 years, which makes a direct comparison between studies difficult.
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Different applications for predictive models such as the ones presented in this study have 

been proposed. One major clinical application of these predictive models is for boosting 

power for clinical trials by reducing sample size estimates required to observe the effect of 

intervention. In a clinical trial with the aim of slowing the rate of cognitive decline, the trials 

could be enriched by inclusion of subpopulation of participants who are more likely to 

decline. Models that show higher PPV in comparison with observed prevalence in the 

population are particularly useful. For example, our models showed PPV of 53.7% at 24 

months of follow-up (25.9% more than the base prevalence 27.8% progression at 24 

months), and PPV of 69.1% at 48 months (34.8% higher than the base prevalence of 34.3% 

progression at 48 months). Another application of these classifiers is to choose the next step 

in management in care of patients. Considering that some diagnostic tests (e.g., CSF studies) 

are invasive or expensive (PET imaging), selecting the appropriate subpopulation of patients 

who have higher chance of benefitting from such tests, can decrease undesired side-effects 

and costs in the whole population.

A limitation of this study is that ADNI is not a population-based study and there are strict 

inclusion and exclusion criteria for selection of participants, which can affect 

generalizability of our findings. Therefore, validating our findings in other population-based 

studies and in data from clinical trials is an essential next step. To increase the number of 

eligible participants for this study, we focused only on structural MRIs and demographics as 

features for the models. However, using multimodal measures (e.g., biomarkers from PET 

imaging and CSF) as predictive features can increase performance of classifiers [29, 30]. 

Despite the potential increase in predictive accuracy of models with additional measures, the 

cost-effectiveness of processing data to collect such measures and ‘real-world’ clinical 

applicability are the other aspects which are not well studied. Finally, we selected the 

features for ML models based on prior hypotheses and did not use feature-selection 

methods.

To conclude, our results indicate factors such as choice of features, choice of ML algorithm, 

and time-frame of prediction each have significant effect on performance of models 

predicting cognitive outcomes. Therefore, each of these factors should be comprehensively 

evaluated before claiming we have developed valid, reliable, and high-performance 

predictive models. Multivariate and machine learning techniques have huge potential for use 

as tools of clinical decision making; however, they need to be carefully tested and validated 

against conventional diagnosis in different clinical settings and on population-based cohorts.
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Fig. 1. 
Study design diagram. *based on diagnosis at last follow-up visit.
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Fig. 2. 
(Color Legend) Kaplan-Meir Survival Curves for MCI participants assigned to AD-like (red) 

or CN-like (blue) groups using ensemble linear discriminant models based on baseline 

measurements. MCI-p, individuals who progressed to AD; MCI-np, individuals who did not 

progress to AD.
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Table 3

Accuracy of ensemble linear discriminant models in predicting the outcome of MCI subgroups at different 

follow-up time-points based on baseline indicators

Model (SD) N (% of total) AD-like, N (% of AD like) CN-like, N (% of CN-like)

At 6 months

Total 656 256 400

MCI-p 39 (6.0) 29(11.3) 10 (2.5)

MCI-np 615 (94.0) 227 (88.7) 388 (97.5)

At 12 months

Total 631 241 390

MCI-p 87 (13.8) 66 (27.4) 21 (5.4)

MCI-np 544 (86.2) 175 (72.6) 369 (94.6)

At 24 months

Total 543 201 342

MCI-p 151 (27.8) 108 (53.7) 43 (12.6)

MCI-np 392 (72.2) 93 (46.3) 299 (87.4)

At 36 months

Total 461 157 304

MCI-p 141 (30.6) 92 (58.6) 49 (16.1)

MCI-np 320 (69.4) 65 (41.4) 255 (83.9)

At 48 months 320 (69.4) 65 (41.4) 255 (83.9)

Total 318 94 224

MCI-p 109 (34.3) 65 (69.1) 44 (19.6)

MCI-np 209 (65.7) 29 (30.9) 180 (80.5)

MCI-p, individuals who progressed to AD, MCI-np, individuals who did not progress to AD.
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Table 4

Model sensitivity and specificity for prediction of conversion to AD among MCI participants who progressed 

to AD at different follow-up time-points based on baseline indicators

Follow-up time Sensitivity Specificity

At 6m 74.4 63.1

At 12m 75.9 67.8

At 24m 71.5 76.3

At 36m 65.2 79.7

At 48m 59.6 86.1
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