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Abstract

Purpose of Review: Eosinophils are short-lived granulocytes that contain a variety of proteins 

and lipids traditionally associated with host defense against parasites. The primary goal of this 

review is to examine more recent evidence that challenged this outdated role of eosinophils in the 

context of pulmonary infections with helminths, viruses, and bacteria.

Recent Findings: While eosinophil mechanisms that counter parasites, viruses and bacteria are 

similar, the kinetics and impact may differ by pathogen type. Major antiparasitic responses include 

direct killing, immunoregulation, as well as some mechanisms by which parasite survival/growth 

is supported. Antiviral defenses may be as unembellished as granule protein-induced direct killing 

or more urbane as serving as a conduit for better adaptive immune responses to the invading virus. 

Although sacrificial, eosinophil DNA emitted in response to bacteria help trap bacteria to limit 

dissemination. Herein, we discuss the current research redefining eosinophils as multifunctional 

cells that are active participants in the host defense against lung pathogens.

Summary: Eosinophils recognize and differentially respond to invading pathogens, allowing 

them to deploy innate defense mechanisms to contain and clear the infection, or modulate the 

immune response. Modern technology and animal models have unraveled hitherto unknown 

capabilities of this surreptitious cell that indubitably has more functions awaiting discovery.
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Introduction

Eosinophils are granulocytes derived from CD34+ pluripotent hematopoietic stem cells in 

the bone marrow and belong to the innate branch of the immune system. While sharing some 

phenotypic and functional similarities with other members of the granulocyte family, 

eosinophils maintain their individualilty by their granule structure and contents, and the 

sophisticated means by which they are released. Although previously described by other 

investigators, Paul Ehrlich is credited for the identification and appellation of eosinophils in 
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1879 based on their unique staining properties from eosin uptake by granules [1]. 

Eosinophils have been evolutionarily preserved across organisms; invertebrates like annelids, 

insects, and crabs, contain eosinophil-like cells, while vertebrates including fish, reptiles and 

even lampreys have cells that are morphologically similar to the classical mammalian 

eosinophils [2, 3].

Eosinophils are regarded as terminally differentiated cells that reside in mucosal tissues. 

Pluripotent CD34+ stem cells commit to the myeloid lineage through expression of GATA-1, 

PU.1, and c/EBP transcription factors and develop into mature eosinophils when stimulated 

with IL-3, GM-CSF, and IL-5 [4]. Their presence in the bone marrow may help sustain 

plasma B cell populations long-term, thereby contributing to overall humoral memory 

especially to vaccines [5, 6]. Once released into the blood stream, eosinophils migrate to the 

thymus, mammary glands, gastrointestinal tract, and the uterus, where they may function in 

organ development and remodeling during homeostasis and disease [7, 8]. Resting 

eosinophils are maintained in the bone marrow, blood, and spleen [9]. Chemokines 

(primarily eotaxins) as well as IL-5 released in response to stimuli, signal eosinopoiesis and 

emigration to the trigger site where their survival depends on microenvironmental 

availability of growth factors, especially IL-5 [4, 10].

Despite the wealth of information garnered over the past 140 years resulting in 46,250 

articles (at the time of writing) on PubMed dating back to 1911, the exact biophysical 

function of eosinophils and the reason for their evolutionary conservation remains unclear. 

Eosinophil deficiency in humans and mice appears to have no impact [8, 11], and yet, 

eosinophils and their products are generally considered injurious agents during allergic 

asthma [12, 13]. Their presence in stimulated tissues appears to be the focus point for 

investigation into their functions and contribution to disease. The structural composition of 

eosinophil granules is unique with an electron dense core mainly consisting of major basic 

protein (MBP) and an electron lucent matrix, containing other eosinophil-specific cationic 

proteins (high affinity for acidic dyes) in addition to a variety of cytokines, demarcated by a 

trilaminar membrane [14, 15]. Functions of eosinophil cationic proteins range from affecting 

mitogenic and motogenic properties of other cells, to inducing tissue injury and promoting 

repair [7, 16]. Lipid bodies in the cytoplasm permit additional functions for eosinophils as 

regulators of lipid metabolism and eicosanoid production sites [17, 18]. The number of lipid 

bodies contained in eosinophils increases with inflammation [18] further emphasizing the 

dynamic and responsive nature of these cells.

Largely owing to their presence in the targeted tissues, eosinophils are deemed to be 

detrimental in diseases like allergic asthma. Reducing the number of circulating eosinophils 

through anti-IL-5/IL-5R antibodies (mepolizumab, reslizumab, and benralizumab) in 

patients with severe asthma correlates with reduced asthma exacerbations, however, this 

effect is also noted in non-eosinophilic asthmatics [19]. Given that asthma inflammation is 

rich in leukocytes both in variety and abundance, it is difficult to ascertain cells that are 

causative from those that are recruited but have spectator impacts. Since a number of other 

leukocytes are responsive to IL-5 (B cells [20], mast cells [21], basophils [22]), alleviation 

of symptoms with anti-IL-5 therapies may be due to a variety of other factors that influence 

asthma inflammation and a definite tissue-destructive role for eosinophils may not be 

LeMessurier and Samarasinghe Page 2

Curr Allergy Asthma Rep. Author manuscript; available in PMC 2020 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assigned. Similarly, their abundance in tissues hosting parasites led to the notion that anti-

helminth immunity was the raison d’être for eosinophils. The LIAR (local immunity and/or 

remodeling/repair) hypothesis [3] suggests instead that eosinophils are recruited to locales of 

tissue damage where they engage in contributory effector functions at the inflammatory foci 

together with other cells to regain tissue homeostasis. The multitude of mediators contained 

within [23] basically makes this cell a miniature immune system capable of a broad range of 

functions [7, 8, 10, 23] which underscores their importance to host immunity (Figure 1).

Akin to other organ systems, the respiratory system performs secondary functions such as 

host defense, acid balance, optimizing cardiac output, and filtration [24–26]. Mainly owing 

to the large surface area and vasculature for their primary function of gas exchange, the 

lungs are incessantly at risk for pathogen infections. In addition to mucosal defenses that 

include antimicrobial peptides, muco-ciliary escalator, surfactants, and the physical barrier 

that the airway lining provides, resident cells of the pulmonary system like macrophages 

engage in routine antigen clearance to prevent infection and maintain lung homeostasis. 

Recently, lung resident eosinophils were identified to perform a similar function [27]. While 

best known functions of eosinophils have been delineated in pulmonary disease triggered by 

allergens and parasites, eosinophil responses to respiratory viruses and bacteria are now 

being rapidly elucidated. Readers are referred to a number of excellent reviews that discuss 

eosinophil responses to allergens [28, 29] and their potential role in asthma [13, 30, 31]. The 

purpose of this article is to provide a compendium of the literature that focuses on the 

functions of eosinophils during pulmonary stages of parasite infections as well as during 

viral and bacterial infections of the lungs.

Eosinophils and Worms: In Sickness and in Health

Helminths are now considered “old world” pathogens because morbidities associated with 

them only affect small fraction (albeit hundreds of millions) of the world’s population at 

present [32]. However, helminths are likely an important aspect of the “old friends” 

hypothesis suggesting that their elimination in the human host may have led to an increase in 

aberrant diseases like asthma. Nematodes, trematodes, and cestodes have lung migration 

and/or dwelling phases in their life cycles that can trigger inflammation with an eosinophil 

predominance in the blood and tissue that occurs within hours to days after infection [33, 

34].

Defense against extracellular multicellular organisms generally involves humoral and 

cellular components of innate and adaptive immunity, as phagocytosis may not be feasible 

due to size. Eosinophil granule proteins, MBP, eosinophil peroxidase (EPO), and eosinophil 

cationic protein (ECP) are all cytotoxic to parasites [16], and eosinophils rapidly aggregate 

around helminths killing them within minutes [35] as a display of their lethality. The 

immunoregulatory roles played by MBP and EPO during parasite infection is evident in 

studies that have utilized mice deficient in these proteins [36]. Both MBP and EPO deficient 

mice have increased worm burden and size, and altered macrophage and T cell functions in 

response to nematode infection [37]. Additionally, eosinophil derived neurotoxin (EDN) is 

an alarmin that promotes dendritic cell (DC) polarization toward TH2 [38] thereby setting 

the stage for a TH2 immune response during helminth infections. Other eosinophil secretory 
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products such as IL-4, IL-5, TGF-β may accompany granule proteins during eosinophil 

degranulation to regulate the landscape surrounding helminths during lung infection [7, 39, 

40].

While fully capable of killing helminths directly, it is unclear whether eosinophils perform 

this action in vivo [39]. Studies utilizing eosinophil deficient mice show little [36, 41] to no 

[39, 42] benefit during helminth infection suggesting that eosinophil responses to parasites 

may be situational and redundant [43]. Furthermore, eosinophils are necessary for the 

survival of Trichinella spiralis in mouse skeletal muscles [42], with enhanced recruitment of 

neutrophils observed in their absence resulting in nitric oxide mediated killing of the 

parasite, and reduced numbers of IL-4 producing CD4+ T cells [44]. Since T cells are 

incapable of directly killing these large extracellular multicellular organisms, it is speculated 

that T cells orchestrate parasite damage through disabling, degrading, and dislodging effects 

[40] of which eosinophils are particularly useful for degrading effects which destroy parasite 

integrity. Anti-helminth properties of eosinophils may be redefined as more sophisticated 

functions of eosinophils are identified. It is possible that eosinophils are recruited to the 

lungs during parasite infections as an effector cell to directly harm the parasite as well as an 

immunomodulatory cell to enhance cell-cell crosstalk at the infection site to expel the 

parasite and promote wound repair mechanisms or temporally safeguard the parasite to 

maintain a ‘healthy’ antigen burden in the tissue to help reduce allergies (Figure 2).

When Eosinophils Meet Viruses

Common respiratory viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), and 

influenza A virus (IAV) annually infect millions worldwide and cause severe morbidity and 

mortality incurring a significant economic burden to society. Infection of the respiratory 

epithelia triggers the release of cytokines and chemokines that may inadvertently incur 

eosinophil recruitment to the lungs. Additionally, eosinophils can be recruited to the airways 

during chronic lung conditions, where they may encounter invading respiratory pathogens. 

Allergic asthma is often characterized by the presence of eosinophils in the 

peribronchovascular areas of the lungs, in sputum, and in the blood, although it should be 

noted that not all asthmatics have eosinophilia [45] and severe asthma can develop even in 

eosinophil deficient patients [11]. Virus-induced wheezing seems to predispose children to 

asthma later in life [46–48], and although correlation does not necessarily intimate 

causation, this observation led to the hypothesis that early virus exposure preconditions the 

lungs to subsequent reactions to environmental agents. Conversely, the presence of 

eosinophils in the allergic airways may alter host responses to virus infections. As such, 

investigating the function of eosinophils during respiratory infections is of benefit. 

Eosinophils undergo piecemeal degranulation in response to IAV [49], and RSV [50], 

although the kinetics and dynamics of granule protein release has not been determined. Once 

released, granule proteins may directly impact viral infectivity/load, or influence resident 

leukocytes (dendritic cells, neutrophils [51] and macrophages [52]) and the epithelial cells 

[53] to indirectly hinder virus dissemination. While it is accepted that eosinophil granule 

proteins are released in response to viruses, the mechanisms by which they reduce viral 

infectivity or impact viral pathogenesis is still unclear.
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Perhaps the most attention drawn to eosinophils in the context of viruses arose during the 

unfortunate first RSV vaccine trial in which infants that received the formalin inactivated 

virus had more severe disease when naturally infected and vaccinated children that died had 

heightened eosinophilia in the lungs [54]. Herein, eosinophil recruitment and degranulation 

were thought to have contributed to sustained inflammation and tissue damage that 

aggravated virus-associated pathophysiology [55]. Formalin-inactivated RSV vaccinated 

monkeys were demonstrated to have elevated TH2 responses with eosinophilia and severe 

disease after virus challenge [56]. Although similar findings have been reported in murine 

models of RSV, the function of eosinophils in the tissue during the infection is unclear [57]. 

Domachowske et al. demonstrated in vitro that eosinophils reduce RSV infectivity in a dose-

dependent manner [58]. Since then, many others have reported the antiviral role of 

eosinophils against respiratory virus infection, although it appears that the mechanisms 

employed by eosinophils for antiviral immunity varies by virus family.

Eosinophils have been showcased as active contributors to innate immunity against virus 

infection rather than bystanders [55, 59, 60]. Their recruitment kinetics into the virus-

infected tissue suggests that they may be required for tissue healing [61, 62], although it has 

not been specifically investigated. Indeed, eosinophils are capable of responding to 

rhinovirus [63], RSV [64], pneumonia virus of mice [65], IAV [49], and parainfluenza virus 

[66]. The arsenal of immune regulators within eosinophils allow these cells to act directly or 

indirectly in response to respiratory viruses. Eosinophil granule proteins have clear antiviral 

functions wherein virus infectivity is reduced in the presence of ECP, eosinophil derived 

neurotoxin (EDN), and EPO [58, 67]. While MBP has been demonstrated to induce 

cytopathology in epithelial cells [68], it is unclear whether MBP plays a direct antiviral role 

against respiratory viruses. In our hands, recombinant MBP does not affect IAV infectivity 

(unpublished data). Eosinophil degranulation and products thereof have been reported in 

RSV patients [55, 69] thereby providing a clinical justification to investigate pathways of 

eosinophil recruitment, activation, and functions during respiratory virus infections.

Eosinophils also use other components in their arsenal in defense against viruses. Nitric 

oxide (NO), a free radical gas produced by nitric oxide synthase (NOS) using L-arginine, is 

a mediator of numerous biological functions including neurotransmission, vasodilation, 

inflammation, immune regulation and host defense [70]. Eosinophils generate NO [71] that 

reacts with superoxide anion (O2-) to form peroxynitrite (ONOO-) which functions as a 

cytotoxic compound. Eosinophil-derived NO can mediate antiviral responses to 

parainfluenza virus [66] and RSV [72] through viral load reduction. Interestingly, NO 

synthesis by eosinophils is dependent on interferon responses during virus infection [66]. As 

producers of a variety of cytokines, eosinophils themselves may contribute to the local 

cytokine milieu during virus infections as we have found them to release IFNγ in response 

to IAV [49]. Therefore, maintaining the intricate balance between TH1 and TH2 immune 

responses supports antiviral immunity.

More targeted immune responses through cellular and humoral immunity are required to 

fully clear virus, stop ongoing inflammation, and regain homeostasis. Specific antigen 

presentation and co-stimulation are required to activate T cells to initiate the adaptive 

immune cascade. Ovalbumin-pulsed eosinophils transferred intratracheally, migrate to the 
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draining lymph nodes and present peptide to trigger ovalbumin-specific T cell activation in 

mice [73–76] showcasing their ability to moonlight as antigen presenting cells. In the 

context of IAV and other virus infections, effective viral clearance largely depends on CD8+ 

T cell activation [77–79]. Our studies established that eosinophils upregulate MHCI and 

CD86 in response to IAV, are found in the T cell zones when transferred into infected mice, 

engage in direct interaction with CD8+ T cells, and promote the recruitment of virus-specific 

CD8+ T cells into the lungs to enhance antiviral immunity in the host [49]. It is still unclear 

how eosinophils obtain viral peptides for presentation, and while our work suggests that 

antigen availability may be due to susceptibility to infection [49], it may also be possible 

that eosinophils obtain viral antigen from the environment through phagocytosis, a function 

which they are capable of [80]. Rather than being activated directly by virus binding/

sensing, eosinophil responses to respiratory viruses may be governed by other leukocytes. It 

has been reported that human eosinophils degranulate in response to RSV, RV or 

parainfluenza virus only in the presence of CD4+ T cells and DCs [81].

Eosinophils may tailor their antiviral responses to virus type, and multiple mechanisms may 

partake independently, or in combination (Figure 2). Granule proteins are clearly virucidal in 
vitro against a variety of viruses, however, it is still unclear if such a function occurs or is 

important in vivo during an active infection. Since piecemeal degranulation occurs in 

response to viruses, it is necessary to determine the kinetics and sequence of granule 

contents that are released in response to each type of virus. If eosinophils do indeed function 

as putative antigen presenters to elevate T cell responses, it is important to determine the 

antigen processing and presentation processes within these cells.

Eosinophils Trap Bacteria

Although eosinophils have been historically implicated in allergy and helminth infection, 

they also possess the ability to recognize, ingest and kill bacteria [82, 83]. The importance of 

eosinophils in host defense against bacteria has been demonstrated in vivo. Transgenic mice 

overexpressing IL-5 subjected to cecal ligation puncture or infected intraperitoneally with 

Pseudomonas aeruginosa, show prolonged survival compared to control mice without 

eosinophilia [84, 85]. Conversely, there is higher outgrowth of P. aeruginosa following 

intraperitoneal infection of eosinophil-deficient PHIL mice than wild-type mice, a 

phenotype that is rescued by the adoptive transfer of eosinophils prior to infection [84]. 

Although eosinophils are phagocytic, both uptake and intracellular killing of bacteria are 

significantly lower than for other phagocytes [82, 86, 87]. Therefore, it is likely that the 

contribution of eosinophils during bacterial infection is related to their potent killing of 

extracellular bacteria by mechanisms such as released antimicrobial granule proteins and 

generation of extracellular DNA traps.

Eosinophil granule proteins, in particular the cationic proteins, have been ascribed 

antimicrobial properties since the 1970s, and treatment of mice with purified granule 

proteins significantly reduces P. aeruginosa burden in vivo [84]. Following interaction with 

specific triggers, eosinophils can generate an extracellular web of either mitochondrial [85] 

or nuclear [88] DNA that can physically trap pathogens and act as a scaffold for granule 

proteins such as MBP and ECP [85, 89]. Of significance, the generation of nuclear DNA 
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nets occurs during a specific cytolytic process termed ‘eosinophil extracellular trap cell 

death’ (EETosis) [88], whereas cells that extrude mitochondrial DNA retain viability [85, 

90]. In addition to granule proteins, intact eosinophil granules can also be enmeshed in the 

extracellular DNA traps, some of which are able to respond to cytokines and secrete their 

contents within the tissue [88]. It is likely that by facilitating the co-localization of bacteria 

and antimicrobial granule proteins, eosinophil extracellular DNA traps provide a mechanism 

to optimize bacterial killing while limiting non-specific damage to surrounding tissue.

Many cationic proteins and peptides have been implicated in bacterial defense due to their 

innate affinity to negatively charged lipid membranes, and similarly EPO, MBP and ECP 

have defined antibacterial functions. In 1978, Migler et al. reported that a lysate of 

eosinophils enriched from a patient with eosinophilia possessed potent bactericidal activity 

against Staphylococcus aureus and Escherichia coli when combined with hydrogen peroxide 

and a halide, which they attributed to the heme peroxidase EPO [91]. Jong et al. (1980) later 

confirmed this assumption by reproducing the E. coli killing using purified guinea pig EPO 

[92]. Human EPO is also bactericidal against Mycobacterium tuberculosis; interestingly, 

killing can occur in the absence of exogenous hydrogen peroxide, albeit at a slower rate than 

when hydrogen peroxide is supplemented [93]. Although rapid bacterial killing is observed 

in vitro, Epx null mice with Alternaria alternata-induced eosinophilia cleared Haemophilus 
influenzae from the airways equally as well as wildtype mice, despite having fewer recruited 

eosinophils, and eosinophils that were present were less likely to express TLR4 [94]. This 

disparity between the in vitro and in vivo findings needs to be clarified with further studies. 

Following its release in response to pathogen sensing, MBP, which exists as an inert 

nanocrystal within mature eosinophil granules, is converted to a cytotoxic entity by granule 

acidification and the subsequent formation of extracellular amyloids [16]. Protein 

aggregation is crucial to the bactericidal activity of MBP, and disruption of amyloid 

formation significantly reduces its ability to kill E. coli [95]. Similarly, ECP also forms 

amyloid-like aggregates [96, 97], and has bactericidal activity against both Gram-positive 

and -negative bacteria [98]. Human ECP has a high affinity for both peptidoglycan, highly 

expressed in the cell wall of Gram-positive bacteria, and lipopolysaccharide (LPS), a 

constituent of the outer membrane of Gram-negative bacteria [99]. While ECP binding to 

peptidoglycan does not trigger autolysis or result in visible cell damage of Gram-positive 

bacteria, ECP causes considerable depolarization of the outer membrane and promotes 

bacteria agglutination in Gram-negative bacteria [99]. Both non-aggregating ECP mutants 

and E. coli LPS truncation mutants reduce bacterial agglutination and killing [97, 100] 

suggesting that, following the recognition of LPS by ECP, the formation of amyloid-like 

aggregates on the surface of Gram-negative bacteria cause the disruption of the lipid bilayer. 

Although EDN shares 89% cDNA sequence homology with ECP [101] and has reported 

antiviral activity [102], it has not been reported to directly kill bacteria. Instead, EDN 

augments bacterial clearance by recruiting and activating dendritic cells [103, 104].

The release of granule proteins in response to bacterial stimuli is surprisingly discriminatory, 

with some bacteria stimulating global degranulation, while others promote the selective 

release of granule components by piecemeal degranulation [105]. In vitro studies indicate 

that ECP is secreted by human eosinophils predominantly in response to Gram-negative 

bacteria, whereas EPO and MBP are released following exposure to a selection of both 
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Gram-negative and -positive bacteria [106]. EDN is released upon stimulation with heat-

killed Clostridium difficile and Staphylococcus aureus, but not with H. influenzae, 

Prevotella sp, or Bifidobacterium bifidum [107, 108]. The mechanisms dictating these 

discrete eosinophil responses to bacteria can be attributed to distinct pathogen sensing 

mechanisms. Human eosinophils express complement receptors [109, 110], Fc receptors 

[111, 112], and a wide repertoire of pattern-recognition receptors, including all toll-like 

receptors (except TLR-8), nucleotide-binding oligomerization domain (NOD)-like receptors 

(NLR) 1 and 2, and the C-type lectin receptor Dectin-1 [113–120]. The expression of these 

receptors on eosinophils can vary during disease conditions and upon stimulation by 

bacterial components during infection [115]. For example, Driss et al. reported that 

eosinophils from individuals with eosinophilia express TLR-2 and TLR-4 on their surface, 

whereas eosinophils from healthy patients did not [115]. The release of EPO, which has 

antimicrobial activity against mycobacteria, occurs following TLR-2-mediated activation of 

human eosinophils by M. bovis bacillus Calmette-Guerin, along with the generation of α-

defensin and reactive oxygen species [115]. Furthermore peptidoglycan, another TLR-2 

ligand, causes eosinophils to selectively release intracellular stores of proinflammatory 

cytokines IL-1β, IL-6, IL-8 and GRO-α, a process that is abolished by a TLR-2 neutralizing 

antibody [120]. The release of ECP from granules can be stimulated by LPS sensing through 

TLR-4 and CD14 on eosinophils [113]. The ability of eosinophils to selectively release 

granule content upon recognition of pathogen motifs is an elegant mechanism to prevent the 

excessive inflammation and damage to the surrounding host cells, while promoting the 

killing of local bacteria.

Cell-to-cell crosstalk may play a crucial role in inflammatory responses triggered by 

eosinophils during bacterial infections. Activated eosinophils can express MHCII on their 

surface, as evident in eosinophils recovered from the blood, sputum and airways of 

asthmatics [121–123] and can be induced in vitro by incubation with GM-CSF [124]. S. 
aureus superantigens SEA and SEB (staphylococcal enterotoxins A and B) and TSST-1 

(toxic shock syndrome toxin) bind to MHCII on eosinophils inhibiting apoptosis [125] and 

promoting MHCII-TCR crosslinking [126] to activate CD4+ T cells. However, although 

GM-CSF-activated eosinophils stimulate resting CD4+ T cells after incubation with SEA 

and SEB [127], studies defining eosinophils as antigen presenting cells capable of 

processing and presenting bacterial antigens are limited and conflicting. Weller and 

colleagues reported that HLA-DR+ eosinophils incubated with tetanus toxoid then fixed with 

paraformaldehyde were able to promote T cell proliferation whereas cells fixed prior to 

toxoid pulsing were not, indicating that antigen processing was required for the proliferative 

effect [128]. Conversely, Mawhorter et al. did not observe proliferation of M. tuberculosis 
purified protein derivative (PPD)-specific CD4+ T cells during co-culture with PPD-pulsed 

eosinophils [127].

While eosinophils are indeed capable of responding to pathogenic bacteria (Figure 2), their 

exact functions during an active infection in vivo are yet to be elucidated. Since eosinophil 

recruitment in macrophage CD14 deficient allergic mice infected with IAV is stunted [129], 

it is possible that similar intercellular crosstalk predominates during bacterial infections in 

the lungs where eosinophils may help modulate immune responses and help in the reparative 

processes that follow neutrophilic inflammation.
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Conclusion

Eosinophils are multifunctional cells of the immune system equipped with an arsenal of 

specialized proteins with clear antihelminthic, antiviral, and antibacterial properties (Figure 

2). In addition, the storage of a plethora of cytokines and chemokines, neuropeptides, and 

growth factors provide them with the necessary tools to regulate the microenvironment 

including the leukocytes that may surround them in an inflamed tissue. Recent evidence 

strongly negates the antediluvian notion that the sole purpose of the eosinophil is to counter 

parasites. In contrast, the evolutionary conservation of these cells certainly suggests that they 

serve an important, albeit redundant, role in the pulmonary immune response both in 

sickness and in health.
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Figure 1. Functions of eosinophils during lung infections.
Eosinophil granule contents including granule proteins and cytokines promote direct defense 

strategies to counter pathogens in addition to enhancing the functions of surrounding 

immune cells. The expression of a variety of receptors on the eosinophil surface allows the 

cells to sense and respond to the environment in real-time.
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Figure 2. Anti-pathogen responses of eosinophils during lung infections.
Broad anti-pathogen functions of eosinophils are applicable to respiratory viruses and 

bacteria as well as the lung-phase of parasites.
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