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ABSTRACT: We use state-of-the-art NMR experiments to
measure apparent pKa values in the native protein environment
and employ a cutting-edge combination of enhanced sampling
and constant pH molecular dynamics (MD) simulations to
rationalize strong pKa shifts. The major timothy grass pollen
allergen Phl p 6 serves as an ideal model system for both methods
due to its high number of titratable residues despite its
comparably small size. We present a proton transition analysis
as intuitive tool to depict the captured protonation state ensemble
in atomistic detail. Combining microscopic structural details from
MD simulations and macroscopic ensemble averages from NMR
shifts leads to a comprehensive view on pH dependencies of
protonation states and tautomers. Overall, we find striking
agreement between simulation-based pKa predictions and experiment. However, our analyses suggest subtle differences in the
underlying molecular origin of the observed pKa shifts. From accelerated constant pH MD simulations, we identify immediate
proximity of opposite charges, followed by vicinity of equal charges as major driving forces for pKa shifts. NMR experiments on
the other hand, suggest only a weak relation of pKa shifts and close contacts to charged residues, while the strongest influence
derives from the dipolar character of α helices. The presented study hence pinpoints opportunities for improvements
concerning the theoretical description of protonation state and tautomer probabilities. However, the coherence in the resulting
apparent pKa values from simulations and experiment affirms cpH-aMD as a reliable tool to study allergen dynamics at varying
pH levels.

■ INTRODUCTION

The pH level is well known to be a critical environmental
determinant of protein function and stability.1−3 Small changes
in solution pH can be sufficient to completely destabilize a
protein or change its activity profile.4,5 Proteins react to pH
changes via protonation or deprotonation of titratable residues,
thereby changing their charge distribution. The nature and
strength of this effect depends on the number of affected
titratable residues, on their structural environment, and on
possible compensation of introduced charges. The acidity of a
titratable group is represented by its pKa value and directly
dependent on its electrostatic surroundings.6,7 Thus, while for
isolated amino acids in solution these pKa values are easily
measurable, they can be drastically perturbed and challenging
to measure within the context of a protein.8 Yet, an accurate
representation of protonation states and tautomers is para-
mount for reliable experimental and especially computational
studies of protein structures.9

An additional challenge arises from the dynamic nature of
proteins.10 The free-energy surface of proteins in solution is
vast and rugged, where each minimum represents a different
conformational state.11,12 From the multitude of constantly
interchanging conformational states of a protein, each exhibits

individual solvent accessibility, charge distribution, etc.,
resulting in variations of the according microscopic pKa

values.13,14 The ensemble average of these microscopic pKa

values is then represented as the macroscopic or apparent pKa

value. NMR spectroscopy offers the unique possibility of
directly measuring such apparent pKa values experimentally.
Numerous homonuclear and heteronuclear approaches can be
employed for monitoring protonation probabilities of titratable
groups in pH titrations and extracting their pKa values in a
native, dynamic protein environment.8,15

Similar to NMR experiments, molecular dynamic (MD)
simulations also capture an ensemble of protein conforma-
tions.16,17 While the accuracy of simulations is restricted by the
accuracy of the applied force field and the captured sampling
time, they provide a time-resolved representation of the
configurational ensemble of proteins in atomistic detail.
However, classic MD simulations do not allow the breaking
of bonds and are thus not able to simulate changes in
protonation states. Hence, the protonation states of each
amino acid must be chosen during the structure preparation
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steps and cannot change during the simulation. Choosing an
appropriate protonation state can be very challenging and
requires either available experimental pKa values of the studied
system or reliable means to predict the unknown pKa values.

9

Over the last decades, a plethora of pKa prediction tools
have been developed.18 Most commonly, static methods like
PROPKA19 or H++20 are applied, which estimate pKa values
from a single input structure and employ an implicit solvent
model, making the calculation relatively fast and the input
preparation straightforward. However, as discussed above,
proteins do not occur as one single static structure. Hence,
dynamic methods were developed, like the family of constant
pH molecular dynamics (cpH-MD) methods, which rely on an
ensemble of structures to estimate pKa values. In contrast to
static methods, these approaches are capable of capturing the
interplay of changes in pKa and changes in structure, yet at a
higher computational cost.9

In the following, we will only briefly discuss the key points of
cpH-MD; for more in-depth discussions, the reader is pointed
to the respective works.21−34 There are mainly two different
approaches to cpH-MD: using continuous28 or discrete
protonation states.22,27 In the first, originally implemented in
the software package CHARMM,35 the protonation states are
sampled along a continuous titration coordinate employing the
λ-dynamics approach. In contrast to that, discrete protonation
states are sampled via Metropolis Monte Carlo (MC36) moves,
which happen at defined intervals over the course of the
simulation. While originally implicit solvent models37 were
used, both methods have seen further adaptations to also make
use of explicit solvent models.30,32,33,38 In this study, we
employed the discrete protonation state approach, as
implemented in the AMBER39 simulation package.27,32 To
achieve faster pKa convergence as well as higher pKa prediction
accuracy, combinations of cpH-MD and enhanced sampling
techniques like replica exchange (REMD40) and accelerated
MD (aMD41) have been reported.31,32,42,43 Especially, the
coupling with aMD showed that an extensive conformational
sampling significantly increased the accuracy of the predicted
pKa values.

43 In this study, we perform a detailed investigation
on how the conformational states from cpH-aMD simulations
and their respective microscopic pKa values relate to
macroscopic pKa values from NMR experiments.
We employ the major timothy grass pollen allergen Phl p 6

as a model system for this study. Phl p 6 is one of the most
important grass allergens with over 75% of grass pollen allergic
patients having IgE antibodies recognizing Phl p 6.44,45 As it is
the case for many allergen proteins, the biological function of
Phl p 6, as well as the source of its allergenicity, is unknown.
Phl p 6 excels as a model system for our study on the one

hand, because with 111 residues it is a rather small protein,
which facilitates efficient sampling of its conformational space.
On the other hand, based on major antigen processing
pathways, pH stability is considered a decisive factor for a
protein’s allergenicity.46,47 In general, after uptake, e.g., by
inhalation in the case of pollen allergens, the allergen enters an
antigen-presenting cell via endocytosis. In the endosome, the
proteins are proteolytically processed into peptides, which are
then loaded onto class II major histocompatibility complex
(MHC) molecules. The MHC peptide complexes are trans-
ported to the cell surface and presented to naiv̈e T-cells.
Recognition of the linear T-cell epitope then triggers the
immune response.48,49 The digestion of the proteins is tightly
coupled to a strong acidification of the endosome during its

maturation, i.e., a drop in pH from around 7 to around 4. The
higher the stability of the protein, the harsher the condition in
terms of pH that is needed to digest the protein.46,47,50 As
discussed by Scheiblhofer et al., the fold stability of a protein
during this process determines the associated immune
response. As already discussed above, a protein’s reaction to
pH changes is determined by its titratable, i.e., charged
residues. With 28 residues, including histidines, out of the 104
residues present in the X-ray structure (PDB code 1NLX51),
Phl p 6 shows a rather large number of charged residues for its
small size. In Figure 1, all glutamic, aspartic, and histidine

residues, which we consider titratable in the acidic pH range
up to a pH of 8.0, are shown as sticks. Thus, predicting the
redistribution of protonation states upon acidification is far
from trivial.
Combining cpH-aMD simulations and NMR experiments,

we present a strategy for detailed studies on the titration
behavior of proteins. We envisage our approach as a reliable
foundation to investigate the structural stability of antigens
during endolysosomal degradation.

■ METHODS
Simulation Setup. The starting structure for the

simulation was prepared from the wildtype X-ray structure of
Phl p 6 (PDB code 1NLX, chain A51) with the program MOE
(molecular operating environment52). Of the 111 residues,
only 104 residues were resolved in the crystal structure.
Specifically, four residues on the C-terminus and three residues
at the N-terminus of the protein are missing, including the
starting methionine. However, the missing residues did not
include any aspartates, glutamates, or histidines. In the NMR
experiments, all 111 amino acids were present.

Figure 1. Crystal structure of the Phl p 6 allergen (PDB code
1NLX).51 Aspartic, glutamic, and histidine residues are shown as
orange, red, and blue sticks, respectively. With 28 charged residues
out of 111 residues in total (104 residues resolved in crystal
structure), the protein has a very high ratio of charges relative to its
small size. Of the 28 charged residues, the 18 residues shown in the
picture were allowed to titrate in the simulation.
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The protein shows exclusively α-helical structure elements,
connected by short loops (see Figure 1). Notably, the C-
terminal residues 96−104 are not part of a helix but in fact
adopt a looplike conformation.
The LEaP module of AmberTools 1739 was used to add

missing hydrogens, as well as create topology and starting
coordinate files. The AMBER ff99SB force field53 was used,
along with the necessary force field modifications for constant
pH simulations.27,32 The GB radii of the aspartate and
glutamate oxygens were reduced to 1.3 Å, as suggested by
Swails et al.32 The protein was soaked in a truncated
octahedral TIP3P water box with a minimum wall distance
of 10 Å.54

Before production simulations were carried out, the systems
were minimized and relaxed with an elaborate protocol
previously developed in our group.55

All simulations were performed with the graphics processing
unit implementation of the pmemd module of AMBER 17.56

The Berendsen barostat57 with a relaxation time of 2 ps was
used to maintain atmospheric pressure, as well as the Langevin
thermostat with a collision frequency of 5 ps−1 to keep the
system at 300 K.58 The SHAKE59 algorithm was used to
restrain all bonds involving hydrogens, allowing the use of a 2
fs timestep. Long-range electrostatics were treated with the
particle-mesh Ewald method,60 and a nonbonded cutoff of 8 Å
was used. Simulations were performed from pH 2.5 to 8.0 with
a 0.5 spacing. Protonation state changes were performed every
200 steps, followed by 200 steps of solvent relaxation after a
successful exchange. For the GB calculations a salt
concentration of 0.1 was used. Acceleration was achieved
with the dihedral boost algorithm of AMBER 17, appropriate
boosting parameters were calculated according to the work of
Pierce et al. from short classical MD simulations and can be
found in the Supporting Information.61 Frames were collected
every 1000 steps. All simulations were run for 1 μs, resulting in
a total simulation time of 12 μs.

Analysis. All analyses were performed using the programs
cpptraj and pytraj from the AmberTools 17 package,62 as well
as inhouse python scripts. All structural visualizations were
produced with PyMol.63

For all analyses, the trajectories were reweighted using a
McLaurin series to the 10th order.61,64

Titration data from constant pH simulations were collected
with the program cphstats from AmberTools.39 The modified
Hill equation was used to estimate pKa values. Histidine
tautomer distributions were calculated directly from the
simulation output. The δ-tautomer will be denoted as HID
in the following sections, ε-tautomer as HIE and the doubly
protonated, i.e., positively charged form as HIP. Shifts in pKa
were calculated using the pKa values for free tripeptides of the
form acetyl-GXG-amide (N- and C-terminally blocked
tripeptides), as measured by Platzer and McIntosh as
references.8 Convergence of the calculated pKa values was
monitored by computing the cumulative averages with
cphstats.
Distance histograms were calculated between titrated

residues and nontitrated basic residues. We used the heavy
atom centers of mass of the titratable head groups of
glutamate, aspartate, and histidine, as well as for the
guanidinium group of arginine as reference points. For lysine
only, the position of the side-chain nitrogen was used.
Furthermore, distances to helix termini were measured for all
titrated residues. Reference points for helix termini were
defined as the center of mass of the Cα carbon atoms of the
first three residues of the respective helix. Angles between the
titrated residues and the helix were calculated by calculating
the angle between the helix axis, defined as the vector from the
C- to the N-terminal end of the helix, and the distance vector
from the center of the helix to the titrated residue.
To analyze the transition probabilities between strongly

coupled protonation states, we calculated transition matrices
for all pH values. For this, we focused on the close interaction
of residues GLU81, ASP82, and GLU85. We defined 8 states

Figure 2. Experimental titration curves with chemical shifts of side chain 13C′ for ASP and GLU, 15Nδ1 for HIS77 and HIS90 and 15Nε2 for
HIS105.
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based on the titration state of these residues, as shown in Table
2. For this purpose, we considered all 4 protonated states of
glutamate and aspartate as one state. The transition matrices
were visualized as network plots, in which the circle size relates
to state populations and arrow sizes to transition probabilities.
State positions were chosen so that transitions on the edges
correspond to single protonation state changes, diagonal
transitions encode a double transition, and finally a transition
over the main diagonal relates to a change in all three
protonation states at the same time.
NMR Spectroscopy. Phl p 6 (residues 1−111) was

recombinantly expressed in Escherichia coli BL21(DE3) Star
cells using M9 minimal media supplemented with 13C6-D-
glucose and 15NH4Cl as carbon and nitrogen sources,
respectively. The protein was purified by hydrophobic
interaction and size exclusion chromatography employing
HiTrap Phenyl FF and HiLoad 16/600 Superdex 75 columns
(GE Healthcare). NMR samples contained 1 mM protein, 10
mM citrate-phosphate buffer, and 10% D2O. All NMR
experiments were performed at 25 °C on 500 MHz Agilent
DirectDrive 2 and 700 MHz Bruker Avance Neo spectrom-
eters. Backbone amide resonance assignment was obtained by
use of two-dimensional 1H−15N-HSQC and three-dimensional
HNCACB, CBCA(CO)NH experiments at pH 7.0.
Side-chain pKa values of Asp and Glu were determined using

two-dimensional spectra that correlate side-chain C′ and
backbone amide 1HN chemical shifts as reported.65 For His
side chains, 15N chemical shifts were recorded in two-
dimensional 1H15N HSQC spectra where the INEPT transfer
delay was adjusted to 2JHN couplings. Histidine Hδ2 assign-
ments were obtained from a HBCBCGCDHD experiment,66

and the corresponding Hε1 were identified in the two-
dimensional 1H15N HSQC spectra. In titration experiments,
pH values were adjusted between pH 2.2 and 8.5 by adding
small aliquots of HCl or NaOH. All pH values were measured
using 15N imidazole and formic acid 13C chemical shifts as
internal pH references in two-dimensional 1H15N and 1H13C
correlation spectra as described.67 Side-chain 13C′ (Asp, Glu)
and 15N (His) chemical shift data were fit by standard
equations for a single ionizable group15 to obtain pKa and
limiting chemical shift values (fitting equations are shown in
the Supporting Information). Tautomeric distributions of His
side chains were determined from the so-obtained 15Nδ1 and
15Nε2 limiting chemical shifts and pKa values as described.

68

■ RESULTS
pKa Values. Side-chain pKa values of all six aspartates, all

nine glutamates, and the three histidines in Phl p 6 were
determined experimentally using heteronuclear two-dimen-
sional NMR spectroscopy (Figure 2). The data reveal pKa
values for aspartates and glutamates between 2.4 and 4.8, while
for histidines, experimental pKa values are in the range between
6.5 and 7.4. In cpH-aMD simulations, pKa values for all 18
titratable residues were calculated. The respective titration
curves can be found in the Supporting Information (Figure
S1). To estimate the accuracy of the simulation-derived
protonation state ensemble, we benchmarked these pKa values
against the experimental (NMR) pKa values (see Table 1). The
correlation between both methods is visualized in Figure 3
with a root mean square error of 0.89 and a Pearson
correlation coefficient of 0.81. Out of 18 titrated residues, 11
predictions lie within an error of 1 pKa unit, visualized as gray
lines in Figure 3.

In both experiment and simulation, we identified residues
with pKa values strongly deviating from reported pKa values of
the corresponding tripeptides.8 Figure 4 shows the absolute
deviations of the measured and predicted pKa values from the
reference values for free tripeptides. Notably, ASP52 shows the
largest negative pKa shift of all titratable residues, i.e., a strong
acidification, consistently in both experiment and simulation.
Other notable acidic (GLU8 and ASP14) and basic shifts
(GLU39, HIS77 and GLU85) were identified with acceptable
agreement between simulation and NMR. However, some
shifts seen in the experiment were significantly mispredicted in
the simulation (GLU13, GLU81, ASP82, HIS90) in the
opposite direction. The strongest disagreement is shown by
ASP82 with an unsigned error of 1.75 pKa units. Also, its
neighboring residue GLU81 shows a significant prediction
error of 1.24 pKa units. Of the three titrated histidines, HIS90
shows a notable prediction error of 1.30, while HIS77 only

Table 1. Comparison of the pKa Values Measured by NMR
and Predicted by Simulation with Absolute Differences

ResID NMR simulation difference

GLU7 4.25 4.20 0.05
GLU8 3.19 3.70 0.51
GLU13 3.80 4.83 1.03
ASP14 3.50 3.06 0.44
ASP33 3.38 4.37 0.99
GLU39 4.84 6.04 1.20
ASP52 2.4 2.30 0.10
ASP65 4.80 3.92 0.88
GLU66 4.06 5.25 1.19
ASP76 3.50 3.48 0.02
HIS77 7.4 6.96 0.44
GLU81 3.52 4.76 1.24
ASP82 3.06 4.81 1.75
GLU85 4.59 5.30 0.71
HIS90 7.3 6.00 1.30
GLU93 4.21 4.27 0.06
GLU103 3.65 4.66 1.01
HIS105 6.5 6.52 0.02

Figure 3. Correlation plot between the pKa values measured by NMR
and predicted by simulation. Pearson and Spearman correlation
coefficients and RMSE are shown. The black line denotes the ideal
correlation and gray lines denote the prediction error margin of ±1
pKa unit, as typically reported in the literature.
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shows a moderate error of 0.44 pKa units and HIS105 is in
almost perfect agreement with experiment.
Transition Analysis. A generally poor pKa prediction can

be seen for residues GLU81, ASP82 (both mispredicted), and
GLU85 (shift strongly overestimated). For both ASP82 and its
flanking residue GLU85 the fit to the Hill equation is not
optimal (see Supporting Information). The structural interplay
of these residues is visualized in Figure 5A, which shows that
all three residues are oriented in the same direction, pointing
into the solvent. To ensure that our sampling of the
protonation state space is sufficient and to investigate the
correlation of protonation states of spatially close residues, we
performed a protonation state transition analysis. For this, we
focused on the close arrangement of GLU81, ASP82, and
GLU85. We defined eight states based on the titration state of
these residues, as shown in Table 2. To this end, we considered
all four protonated states of glutamate and aspartate as one
state. The transition matrices were visualized as network plots,
in which circle sizes relate to state populations and arrow sizes,
to transition probabilities. State positions were chosen so that
transitions on the edges correspond to single protonation state

changes, diagonal transitions encode a double transition, and
finally a transition over the main diagonal relates to a change in
all three protonation states at the same time.
We found a distinct, pH-dependent pattern in their

protonation states as well as in the transitions between the
states we defined in Table 2. The transition count matrices
show high numbers of transition between the different states
across all pH values. At extreme pH values, i.e., 2.5 and 8.0, the
completely protonated and completely unprotonated states,
respectively, are populated almost exclusively. However, a few
transitions to sparsely populated states are still visible. As the
pH value starts to increase from 2.5, state populations start to
shift, with states 1 (GLU85 protonated) and 5 (GLU81 and
GLU85 protonated) being the prominent ones at moderate pH
values (between 4.0 and 5.5). As the pH further increases, the
populations shift first to the monoprotonated states 1 and 2
and finally almost completely to the unprotonated state 0 at
pH 8. An exemplary visualization of the data of pH 5.0 is
shown in Figure 5B. Visualizations for all pH values can be
found in the Supporting Information (Figure S2).

Tautomer Estimation. From both the experimental as well
as the simulation data, we calculated the tautomer distribution
of the histidines at each measured and simulated pH value
(Figure 6). Clearly, the prediction is poor for HIS77 and
HIS90. In both cases, the fraction of the δ-tautomer is
significantly overestimated in the simulations, whereas in the
experiment, a nearly 1:1 ratio of δ- and ε-tautomer is observed.

Figure 4. Deviations of measured and predicted pKa values from the
respective tripeptide pKa values. Reference values are 3.86 for ASP
and 4.34 for GLU and 6.45 for HIS as published by Platzer et al.8

Black and white bars represent experiment and simulation
respectively.

Figure 5. (A) Interaction and spatial vicinity of the residues GLU81, ASP82, and GLU85 in Phl p 6 the crystal structure, which was used as input
for the simulations. (B) Analysis of protonation state population and transitions of the 3-residue model system. Analysis at pH 5 is shown as
representative. States denoted as 0−7 (see Table 2), circle size denotes state population, and arrow thickness indicates transition probability from
one state to the other (cutoff at 0.01). At pH 5, states 0 and 7, i.e., fully deprotonated and fully protonated, are predicted to be least populated, with
high transition probabilities to different states. No transitions over a diagonal, i.e., 2 protonation state change, can be observed at this pH within the
cutoff.

Table 2. State Definition of the Model System for the
Protonation State Transition Analysis

state GLU81 ASP82 GLU85

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

aProtonation states of the residues are denoted as 0 (deprotonated,
negatively charged) or 1 (protonated, neutral). State number
represents binary encoding of the protonation of the three residues.
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As shown above, also the pKa prediction for these two residues

is not optimal (see Table 1), especially for HIS90. However,

for HIS105, we find perfect agreement between simulation and

experiment for both the pKa value (see Table 1) and the
tautomer ratio.

Distance Analysis. To elucidate the origin of pKa
perturbances, we analyze the microscopic chemical environ-

Figure 6. Tautomer distributions for all three histidines in the system were calculated for experiment (top) and simulation (bottom). Clear
overestimation in the prediction of the δ-tautomer for HIS77 and HIS90 can be observed, whereas a good agreement can be seen for HIS105.

Figure 7. Normalized histograms of the distances between the carboxyl group of selected acidic residues and the head groups (amino and
guanidinium group for LYS and ARG, respectively) of near positively charged residues. Analysis at pH 5.0 is shown representatively. Vertical lines
denote the median of the respective distance distribution.
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ment of each titratable acidic residue. We calculated distance
histograms of nearby positively charged residues. We find that
a few of the acidic residues show strong and close interactions
with nearby positively charged residues with the medians of the
distributions below 5 Å across all pH values. The histogram of
ASP52 at pH 5.0 is shown in Figure 7A as an example. A close
interaction with LYS56 with the median (vertical lines) of the
distance distribution at 3.5 Å is visible. Another, more distant
contact is formed with ARG48 with a distance median of 5.8 Å.
On the other hand, we also find residues that only form less
pronounced and more distant interactions; exemplary histo-
grams are shown in Figure 7B−D.

■ DISCUSSION
In the presented work, we use NMR experiments and MD
simulations to profile protonation probabilities within the
folded protein environment of the major timothy grass allergen
Phl p 6. The interplay of both methods not only unveils the
molecular origin of several strongly shifted residue pKa values
but also outlines the current limitations of protonation state
predictions.
As can be seen from Figure 3, we find a remarkable overall

correlation between experiment and simulation in terms of pKa
values indicating that both approaches capture similar
protonation state ensembles. For 11 out of the 18 titrated
residues, the difference between experiment and simulation is
less than 1 pKa unit, an error margin typically reported in the
literature. Also, the predicted pKa values of the remaining
residues do not exceed this margin substantially, with the
exception of ASP82.
Furthermore, the convergence analysis of the predicted pKa

values (see Figure S3) suggests that while a few residues reach
a converged pKa value within 50 ns of simulation time, other
residues need significantly longer to reach a converged pKa
value, with the most prominent example being ASP52, which
reaches a converged pKa value after about 800 ns. The majority
of the residues show converged pKa values after about 100−
200 ns of simulation time. Moreover, we generally see an
improvement in the pKa prediction with longer simulation
times.
As highlighted in Figure 4, both methods identify strong pKa

shifts, i.e., large deviations of pKa values within the protein
from the pKa values of the respective tripeptides. This analysis
further illustrates the overall remarkable consistency between
the predicted pKa shifts and the NMR experiments. Notably,
the strong acidic shift of ASP52 was found with both
approaches with near perfect agreement. Also, the basic shift
of GLU39 was found with both techniques but was
overestimated in the simulationan effect that has been
reported previously.32 Despite the overall agreement between
NMR and cpH-aMD in terms of pKa values, we can note a few
residues with significant prediction errors. In the following text,
we will discuss in detail analyses and hypotheses rationalizing
potential driving forces for the observed inaccuracies.
The strongest discrepancy is found for ASP82 with an

unsigned error of 1.75 pKa units. With a measured pKa value of
3.06, the residue is found to be distinctly more acidic than the
free tripeptide (pKa of 3.86

8). However, in the simulation the
opposite is the case, in that a more basic pKa value of 4.81 is
predicted. In the crystal structure (visualized in Figure 5A),
ASP82 is flanked by two other acidic residues GLU81 and
GLU85, packed closely together with the side chains oriented
in the same direction. Unintuitively, the pKa of ASP82 is

experimentally determined to be the most acidic one of these
three residues. The pKa of the flanking residue GLU81 is also
measured to be considerably more acidic than that of the free
tripeptide (3.52 vs 4.348), while the pKa of GLU85 (4.59)
shows no strong perturbation. As can clearly be seen from
Table 1, the simulation fails to predict the pKa values for all
three residues.
To evaluate the ability to capture the correct titration

behavior of strongly coupled residues, we performed a
protonation state-based transition analysis for the GLU81,
ASP82, and GLU85 residue pack. This method allowed a very
detailed yet intuitive representation of the protonation state
probabilities and exchange rates between them at each
simulated pH level. From the high numbers of transitions
between the states across all pH levels, we conclude that at no
pH level the simulation gets trapped in a protonation state
configuration. Also, the shifts in the state probabilities and
correlation of protonation states in dependence of the change
in pH value appear to be conclusive. On the basis of these
observations, we can exclude insufficient sampling of
protonation states as a cause of the large prediction error.
As mentioned above, the transition analysis additionally

provided us with insights into the underlying kinetics of the
protonation state changes. From the transition probabilities
(Figure 5B), we can clearly see that within our cutoff of 0.01
no transitions occur at any pH value over the principal
diagonal, i.e., all protonation states change at the same
constant pH step. Also, other diagonal transitions, i.e., 2-
proton transitions are very rare. The fact that transitions occur
almost exclusively by changing one protonation state at a time,
despite the fact that multititrations would be possible, suggests
that a short local structural equilibration of the new
protonation state is necessary to adapt to the new electrostatic
potential and to make the next change possible.
While we surmise that the reason for the prediction error of

the three discussed residues is not an inefficient protonation
state sampling, we do see a few other possible reasons for the
disagreement of experiment and simulation.
First, the correct description of tightly packed acidic residues

is a known issue of implicit solvent models.69,70 Paired with the
lack of counter ions in the simulations, this might lead to
mispredicted pKa values. Furthermore, the acidification of
GLU81 and ASP82 coupled with their exposed position in a
loop between two helices in contrast to GLU85 indicates that
they are stabilized by a cation during the experiments and
GLU85 is not. This effect would be completely missed in the
simulations since they are not considered in the implicit
solvent steps.
Secondly, although the protonation state space is well

covered, the sampled conformational ensemble might still be
insufficient. Limited conformational sampling in turn also
limits the protonation state ensemble and hence affects the
accuracy of apparent pKa values estimated from this limited
ensemble.
This assessment is supported by the pKa and tautomer

predictions of the histidines. As can be seen in the crystal
structure in Figure 1, HIS77 and HIS90, for which both the
pKa and the tautomer estimation are quite poor (Table 1 and
Figure 6), are located within stable α-helices. In contrast,
HIS105, for which both estimations are in perfect agreement
with experiment, is located in the highly flexible C-terminal
loop. We surmise that the conformational sampling of HIS77
and HIS90 will be hindered compared to that of HIS105,
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which, in turn, limits the sampled protonation state ensemble.
This is supported by a H-bond analysis (see Supporting
Information, Table S2), which shows, that both HIS77 and
HIS90 form a frequent H bonds with the backbone amide
oxygen of neighboring residues, thereby locking the residue in
this position and in consequence also in the tautomeric form.
Clearly, despite boosting the dihedral angle energy in our aMD
approach, the histidine side chains could not escape from this
conformation. A change to the other tautomer during a
constant pH step would break the hydrogen bond and thereby
render it highly unfavorable in the Metropolis evaluation. As
with the mispredictions of residues GLU81, ASP82, and
GLU85 discussed above, this limitation in conformational
sampling will lead to a limited protonation state ensemble and
thereby to inaccuracies in the estimated apparent pKa values.
Besides a general evaluation of the computational method-

ology for studying allergen dynamics at low pH, our scope was
to illuminate the molecular determinants causing the observed
pKa shifts. As an initial approximation for the electrostatic
environment, we measured distances from the titratable
residues to the closest charged residues. The strongest acidic
shift and also the strongest overall shift of all titrated residues is
found for ASP52. From the conducted simulations, we indeed
find that the strong perturbation of the pKa value of ASP52 can
be explained by the formation of an ion pair with LYS56
(Figure 7A). The stability of this ion pair is underlined by the
sharp peak of the distance distribution of the positively charged
side-chain amine group of LYS56.
Following this concept, we can consistently also explain less

pronounced and also negligible pKa perturbations shown in
Figure 4. For example, ASP76 shows a moderate acidic shift of
about 0.5 pKa units in both experiment and simulation. The

respective distance histogram (Figure 7B) shows that there is
indeed no ion pair formation; the closest stable contact is
found with LYS83 at a distance of 5 Å. Also, the rather small
perturbations of GLU7 or GLU93 are reflected by broad and
less pronounced distance distributions during the simulations
(GLU7 shown in Figure 7C). GLU39 shows a basic shift,
which is in agreement with the respective histograms (Figure
7D) showing no pronounced ion pair or even close contact
with a positively charged residue (closest median 10.0 Å).
Moreover, we neither find close interactions of GLU39 with
negatively charged residues throughout the entire simulation.
GLU39 is indeed surrounded by hydrophobic residues,
rendering the uncharged form of GLU39 more favorable in
this position and thereby raising the pKa value. Figure 8A
summarizes the observed correlation of charge proximity and
shifts in the predicted pKa values. However, while this
connection seems to be a major determinant in the
simulations, the correlation is less pronounced with the
NMR-derived pKa values (Figure 8B). As we assume that the
underlying cause for the perturbed pKa values has to be rooted
in their electrostatic environment, we explored less obvious
effects which could explain the experimentally observed shifts.
It has been reported previously that titratable residues located
at α-helix termini show perturbed pKa values due to the dipole
moment of the helix, whereby the N-terminus was shown to
lead to an acidification and the C-terminal end to more basic
pKa values.

7,71 In our system, five residues are located at N-
termini of α-helices. As shown in Figure 4, both GLU7 and
GLU8 show an acidic shift in their pKa, where the perturbation
is much stronger for GLU8. However, since both residues are
located near the protein’s N-terminus, their pKa value will most
likely also be influenced by the proximity to its positive charge.

Figure 8. (A, B) Smallest medians of the distance histograms to positive and negative residues, respectively. Colors indicate pKa shift from
simulation (A) and NMR (B). (C, D) Smallest medians of distances to the nearest N-terminal helix end against respective angle between titrated
group and helix axis. Colors indicate the pKa shift of the residue, as predicted by simulation (A, C) and measured by NMR (B, D).
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However, ASP33, which is also located at the N-terminus of a
helix, was found to be acidified in the NMR experiments, yet
the simulation fails to predict this shift. Similar coherence is
found for the experimentally determined acidification of
GLU81 and ASP82, both close to the N-terminal helix dipole.
Also, here, the simulation fails to predict the acidification of
both residues, as can clearly be seen from Figures 4 and 8.
Since the treatment of polarization is a known weakness of
classical force fields, we expect to be prone to entirely miss its
effects with the applied simulation setup.69,72 We further
illustrate the impact of the helix dipole by defining distinct
observables representing the dipolar character of the helices,
i.e., the smallest distances of the titrated group to the closest
N-terminal helix end and the angle between the titrated group
and the helix axis. Figure 8D depicts the striking concurrence
of acidification in all residues that show small distances as well
as small angles, yet only for the NMR pKa values. As
anticipated, however, this trend is not reproduced for pKa
values predicted from the cpH-aMD simulations. We surmise
that the incorporation of polarizable force fields might allow
for proper treatment of this effect.
However, there are numerous other and maybe more severe

shortcomings we face with our simulation approach. First and
foremost, the utilization of implicit solvent models at the
constant pH step, coupled with the necessary removal of water
molecules and ions, excludes the incorporation of ionic
stabilizations and thereby distorts the predicted pKa values,
as already discussed above. This limitation might be overcome
with the use of continuous cpH techniques, as they allow a
fully explicit solvent approach, including ions.
Furthermore, as already stated above, the pKa values

measured in experiments correspond to a much higher
timescale compared to our simulations, which, in turn, could
mean that the conformational ensemble behind the measured
pKa values could be much broader and diverse than the
simulated one.
Nevertheless, despite the discussed shortcomings, the overall

agreement in predicted and experimentally measured proto-
nation state probabilities is strongly convincing for the Phl p 6
pollen allergen.

■ CONCLUSIONS
The combination of structural as well as dynamical information
from the cpH-aMD simulations and NMR experiments
allowed us to unveil the sources of the observed perturbations
in the protonation state ensembles. In particular, we identify
formation of ion pairs to cause the strongest acidifications.
Persistent hydrogen bonds between charged residues as well as
the N-terminal dipole moment of α-helices lead to weaker but
still notable perturbations. However, the effect of the helix
dipole on the pKa values was only captured in our NMR
experiment and not in our simulations. We surmise that this is
due to the use of classical force fields and might be resolved
with the use of polarizable force fields. Our results concerning
the tautomer distribution of the three histidines in the system
underlines the importance of conformational sampling to
obtain a reasonable protonation state distribution.
The reliable modeling of protonation state probabilities at

varying pH levels is specifically crucial for allergen proteins and
will be essential for further studies on their dynamics and
endolysosomal degradation mechanism. However, the pre-
sented processing and interpretation of NMR and cpH-aMD
data is designed to find a broad applicability.
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