
The role of CXCR2 in acute inflammatory responses and its 
antagonists as anti-inflammatory therapeutics

Xiaoyu Zhanga,b, Rongxia Guoc, Hiroto Kambaraa,b, Fengxia Mac, Hongbo R. Luoa,b

aDepartment of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, 
Boston, Massachusetts, USA

bDepartment of Lab Medicine, The Stem Cell Program, Boston Children’s Hospital, Dana-Farber/
Harvard Cancer Center, Boston, Massachusetts, USA

cThe State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood 
Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 
Tianjin, China

Abstract

Purpose of review—CXCR2 is key stimulant of immune cell migration and recruitment, 

especially of neutrophils. Alleviating excessive neutrophil accumulation and infiltration could 

prevent prolonged tissue damage in inflammatory disorders. This review focuses on recent 

advances in our understanding of the role of CXCR2 in regulating neutrophil migration and the 

use of CXCR2 antagonists for therapeutic benefit in inflammatory disorders.

Recent findings—Recent studies have provided new insights into how CXCR2 signaling 

regulates hematopoietic cell mobilization and function in both health and disease. We also 

summarize several CXCR2 regulatory mechanisms during infection and inflammation such as via 

Wip1, T-bet, P-selectin glycoprotein ligand-1, granulocyte-colony-stimulating factor, and 

microbiome. Moreover, we provide an update of studies investigating CXCR2 blockade in the 

laboratory and in clinical trials.

Summary—Neutrophil homeostasis, migration, and recruitment must be precisely regulated. The 

CXCR2 signaling pathway is a potential target for modifying neutrophil dynamics in 

inflammatory disorders. We discuss the recent clinical use of CXCR2 antagonists for controlling 

inflammation.
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INTRODUCTION

Chemokines are a large family of signaling proteins that mediate cellular migration, 

especially of immune cells. CXCR2 is mainly expressed on neutrophils, monocytes, natural 

killer cells, mast cells, and endothelial cells, and is the receptor for CXC chemokine ligands, 

especially CXCL8 [1]. CXCR2 mediates a G-protein-coupled receptor (GPCR) signaling 

cascade, with its activation starting with dissociation of the receptor from the G-protein, 

followed by release of the Gβ subunit from the Gα subunit [2]. It has been shown that 

CXCR2 is phosphorylated by GPCR kinases after activation, which triggers dynamin-

mediated and clathrin-mediated receptor internalization mediated by β-arrestin1/2 and AP-2 

[3]. Activated CXCR2 induces calcium release, activation of the Ras/MAPK, and PI3K 

signaling cascades, and it is involved in many immune responses including directed 

neutrophil migration [4]. Recently, Del Prete et al. [5■■] reported that CXCR2-mediated 

neutrophil recruitment to sites of inflammation can be regulated by CCRL2, a seven-

transmembrane domain receptor that shares structural and functional similarities with 

atypical chemokine receptors. CCRL2/CXCR2 heterodimerization regulates membrane 

CXCR2 expression and function, providing a novel mechanism for its regulation. For 

example, CXCR2-mediated signaling was impaired in CCRL2-deficient neutrophils.

Neutrophils express over 30 receptor types including pattern recognition receptors, cytokine 

receptors, adhesion receptors, and GPCRs [6]. They play a central role in innate immunity 

via sensing various stimuli through these receptors, acting as the first line of host defense 

against infection. Neutrophils migrate to sites of infection to then control bacterial burden. A 

recent study suggests that neutrophil recruitment during inflammation proceeds in two 

phases: an early phase, mediated by short-lived signals, followed by an amplification phase 

to prolong neutrophil recruitment and activation, which is mediated by signaling cascades 

through leukotriene-B4 and CXCL8-family chemokines [7,8]. Excess neutrophil infiltration 

can enhance the inflammatory response and prolong tissue damage [9-11]. Balancing 

pathogen control and inflammation-related tissue injury is largely dependent upon neutrophil 

homeostasis as well as the degree of neutrophil activation in the presence of various stimuli. 

Regulating neutrophil CXCR2 and its ligand expression are potential therapeutic targets for 

controlling neutrophil recruitment and function in inflammatory disorders.

THE EFFECT OF CXCR2 SIGNALING ON HEMATOPOIETIC CELL 

MOBILIZATION AND RECRUITMENT

CXCR2 is known to be involved in neutrophil recruitment from peripheral blood to inflamed 

tissue. Chou et al. illustrated the amplification stage of neutrophil recruitment in an 

inflammatory arthritis modal and showed that cytokines such as IL-1β and chemokines such 

as CXCL12 released by activated neutrophils activate synovial cells. These activated 

synovial tissues then produced ligands for CXCR1 and CXCR2 to further promote 

sequential neutrophil activation [12]. CXCR2 is also responsible for neutrophil migration to 

tumors in mouse cancer models. Significantly, CXCR2 expression was significantly lower in 

tumor-associated neutrophils than those in the bone marrow and peripheral blood [13], with 

endogenous IFN-β inhibiting CXCR2-induced neutrophil recruitment by reducing CXCR2 
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ligand expression and chemokine gradients. Bian et al. recently reported myeloid-derived 

suppressor cells (MDSCs) with high CXCR2 expression that promoted tumor progression. 

These G-MDSCs were functionally different to mature neutrophils and accumulated in 

tumors to immunosuppress T cells [14■].

The role of CXCR2 in neutrophil migration from bone marrow to peripheral blood has also 

been well explored. ELR+ chemokines such as CXCL8 stimulated neutrophil mobilization in 

a CXCR1-dependent and CXCR2-dependent manner [15]. In addition, neutrophils lacking 

CXCR2 have impaired emigratory capacity [16]. Eash et al. [17] showed that CXCR2 

signaling antagonized CXCR4 to regulate neutrophil release from the bone marrow. More 

recently, granulocyte-colony-stimulating factor (G-CSF) and CXCR2 have been shown to 

interact during inflammation. G-CSF is a well known neutrophil-mobilizing cytokine [18], 

and its mobilization function is believed to be mediated by CXCR2 ligands [19], as G-CSF 

failed to mobilize neutrophils in CXCR2-deficient mice. In an arthritis modal, anti-G-CSF 

receptor blockade not only significantly reduced cell adhesion in joints, but also reduced 

CXCR2-expressing circulating neutrophils [20■]. On the other hand, the activation of 

CRCR2 can also be modulated by G-CSF. Compared with G-CSF, CXCR2-induced 

neutrophil mobilization much more quickly [21,22], indicating a distinct mobilization 

mechanism. Bajrami et al. [23■■] revealed that Escherichia coli-induced G-CSF increases 

during the early stages of inflammation inhibited rapid CXCR2-mediated neutrophil 

mobilization. G-CSF was elevated after CXCR2 ligands macrophage inflammatory protein 2 

and keratinocyte chemoattractant were expressed, and this elevation inhibited CXCR2-

mediated neutrophil chemotaxis. Further, only CXCR2-induced neutrophil mobilization 

from the bone marrow was suppressed by G-CSF and not other chemoattractants such as 

leukotriene-B4, C5a, or fMLP. The regulatory function of G-CSF on CXCR2 signaling 

indicated that exaggerated neutrophil mobilization may be achieved by targeting G-CSF-

elicited pathways.

CXCR2 signaling has also been implicated in the mobilization of hematopoietic stem/

progenitor cells (HSPCs). Clinically, HSPCs are usually mobilized from the bone marrow to 

peripheral blood using a G-CSF regimen. The effect of CXCR2 on HSPC mobilization was 

first reported about 10 years ago [22]. More recently, Hoggatt et al. [24■■] reported an 

alternative HSPC mobilization regimen, a combination of GROb and AMD3100 (a CXCR2 

agonist and a CXCR4 antagonist, respectively), which increased HSPC mobilization by 

elevating matrix metalloproteinase 9. Importantly, the new regimen displayed better 

engraftment and greater donor chimerism compared with the G-CSF regimen.

THE ROLE OF CXCR2 IN INFECTION AND INFLAMMATION

As noted above, neutrophils can migrate and recruit to inflamed sites under the control of 

CXCR2 during infection to exert their antimicrobial function. CXCR2 expression on 

neutrophils is downregulated during sepsis. Significantly, disruption of phospholipase D2 

significantly upregulated CXCR2 expression in septic mice, increasing bactericidal activity, 

decreasing vital organ damage, and improving survival during experimental sepsis [25]. In 

another study, Shen et al. [26■] demonstrated that inhibition of wild-type p53-induced 

phosphatase 1 attenuated CXCR2 internalization and improved sepsis outcomes in mice. In 
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addition, a negative relationship between neutrophil CXCR2 and Wip expression has also 

been observed in septic patients. Although CXCR2 signaling is clearly required for host 

defense responses, in a modal of Staphylococcus aureus-induced septic arthritis, delayed 

CXCR1/2 blockade effectively controlled the articular inflammatory damage without 

compromising antibacterial responses [27■].

Inflammation, including neutrophil adhesion to lesional vascular endothelial cells, 

contributes to deep vein thrombosis. Yago et al.[28■■] demonstrated that synergy between 

P-selectin glycoprotein ligand-1 and CXCR2 on rolling neutrophils increased neutrophil 

adhesion and procoagulant neutrophil extracellular trap (NET) release, increasing thrombus 

frequency and size. Gollomp et al.[29■] investigated the molecular mechanism of NETs 

during thrombosis development in a heparin-induced thrombocytopenia model. They 

showed that neutrophils migrated via a CXCR2-dependent mechanism to accumulate in 

thrombi, and CXCR2 antagonist therapy reduced neutrophil counts in thrombi with clinical 

significance.

The role of CXCR2 signaling in other inflammatory diseases has also been investigated in 

recent years. CXCR2 has been considered as a potential pharmacological target in 

controlling inflammatory damage in the pathogenesis of chronic obstructive pulmonary 

disease (COPD) [30,31], asthma [32], arthritis [20■], and hepatitis [33,34]. Hoegl et al. 
[35■] reported that reduced CXCR2 chemokines were related to attenuated endotoxin-

induced lung injury in Tbet−/− mice. There are also intriguing associations between the 

microbiome and susceptibility to amebiasis infection, with dysbiosis increasing the 

susceptibility and severity of amebiasis infection, with fewer infiltrating cecal neutrophils 

and diminished CXCR2 expression [36■■]. These results suggest that the interaction 

between neutrophils and the microbiome may be a promising target in colitis treatment and 

emphasize the role of CXCR2 in regulating intestinal neutrophil recruitment.

CXCR2 BLOCKADE IN ACUTE INFLAMMATION

Several attempts have been made to regulate neutrophil migration and recruitment to control 

inflammatory diseases. The role of CXCR2 in regulating neutrophil recruitment is now 

better established, especially through the use of CXCR2 knockout strategies [37]. Hence, 

blocking CXCR2 signaling, including with CXCR2 antagonists, chemokine analogs, and 

CXCR2 receptor antibodies, has been applied to inflammatory diseases [37]. Several 

different CXCR2 antagonist structures exist: diarylurea and its analogs, compounds in which 

urea is replaced with squaramide, pyrimidine-based compounds, and bicyclic pyrimidine 

compounds. Of these, the diarylurea compounds were the first to be described. These 

different structures provide varying improvements in oral bioavailability, receptor selectivity, 

and tolerance [38].

Some popular CXCR2 antagonists are listed in Table 1, and those in clinical trials are 

summarized in Table 2. The types of CXCR2 blockers are wide with similarly diverse 

indications, including COPD, bronchiectasis, asthma, nephropathy, pancreatitis, and cancer. 

Taking respiratory inflammation as an example, AZD5069 has been reported to reduce 

airway neutrophilia [39■,40]. However, safety remains of concern, with clinical results 
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showing that even though neutrophil immunoprotection was not compromised during 

CXCR2 inhibition [39■], this neutrophil-targeted therapy still increased infection 

susceptibility.

CONCLUSION

It is now well established that CXCR2 is a crucial regulator of hematopoietic cell 

homeostasis, migration, and recruitment, and is implicated in a variety of inflammatory 

diseases and cancer. Therefore, CXCR2 and its related signaling pathways could be 

promising pharmacological targets in these diseases. Efforts still need to be made to fully 

understand the pathophysiological role of CXCR2 signaling in health and disease and to 

define optimal regimens with improved compounds with ideal pharmacokinetics, treatment 

timing, and clinical responses.
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KEY POINTS

• CXCR2 is a crucial regulator of hematopoietic cell homeostasis, migration, 

and recruitment, and is implicated in a variety of inflammatory diseases and 

cancer.

• CXCR2 expression and activation are tightly regulated during infection and 

inflammation.

• CXCR2 and the related signaling pathways could be promising 

pharmacological targets in various infections and inflammatory diseases.

• Efforts still need to be made to fully understand the pathophysiological role of 

CXCR2 signaling in health and disease and to define optimal regimens with 

improved compounds with ideal pharmacokinetics, treatment timing, and 

clinical responses.
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