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Introduction
Advancements in developmental biology and regenerative medicine 
have helped produce cell-based therapies to treat retinal degen-
eration, neurodegeneration, cardiopathies, and other diseases by 
replacing damaged or degenerative native tissue with a new func-
tional implant developed in vitro. Induced pluripotent stem cells 
(iPSCs) have extended the potential of cell therapies to permit trans-
plantation of autologous tissues (1). However, as these autologous 
cell therapies are translated from the laboratory to the clinic, barriers 
to large-scale biomanufacturing have become evident (2). Often, cell 
function is determined in the laboratory using sophisticated assays, 
including electrophysiology, ELISAs, immunolabeling, small mol-
ecule quantification, and DNA/RNA-based assays. These assays 
require a trained user, are low throughput, expensive, endpoint, and/
or are time consuming. Thus, they are challenging to implement 
under current good manufacturing practices (cGMP) which are 
required to produce any cell-therapy product (3). Therefore, clinical 
translation of any iPSC-based therapy is made more challenging due 
to the scarcity of noninvasive, automated, fast, and robust assays (2).

Here, a methodology was developed that uses quantitative 
bright-field absorbance microscopy (QBAM), which is an auto-

mated method of capturing images that are reproducible across 
different microscopes, and neural networks to noninvasively pre-
dict tissue function. Clinical-grade iPSC-derived retinal pigment 
epithelial cells (iPSC-RPE) from age-related macular degenera-
tion (AMD) patients and healthy donors were used as a model sys-
tem to determine whether tissue function could be predicted from 
bright-field microscopy images.

The RPE is a cellular monolayer, and RPE are of clinical interest, 
as shown by the fact that at least 11 investigational new drug–enabling 
(IND-enabling) or phase I clinical trial stage studies are using RPE to 
treat AMD (4). Additionally, the appearance of RPE cells within the 
monolayer is known to be critical to RPE function (5–7) and recently a 
phase I clinical trial used visual inspection of RPE by an expert tech-
nician as a biomanufacturing release criterion for implantation (8). 
RPE cell appearance is largely dictated by the maturity of junctional  
complexes between neighboring RPE cells and the characteristic 
pigmented appearance from melanin production (9). The junctional  
complex is linked to tissue maturity and functionality, including 
barrier function (transepithelial resistance [TER] and transepithe-
lial potential [TEP]  measurements) (10) and polarized secretion of 
growth factors (ELISA) (9). Thus, cell appearance and function are 
correlated and may be predictive of each other.

The variability of transmitted light microscopy images makes 
them challenging to use for automated cell analysis and segmen-
tation (11, 12). Thus, the methodology developed in this study 
consists of 2 components. The first is QBAM. The second compo-
nent is artificial intelligence, which uses QBAM images to predict 
multicellular function. The artificial intelligence techniques were 
split into the categories of deep neural networks (DNNs)  and tra-
ditional machine learning (TML). These techniques were chosen 
because of the high accuracy achieved in recent biomedical classi-
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org/10.1172/JCI131187DS1). In this study, 3 different band-pass 
filters were used for imaging, but the method scales to any num-
ber of wavelengths. QBAM imaging was implemented as a plugin 
for Micromanager (for microscopes with available hardware) or 
a modular python package (for microscopes not supported by 
Micromanager), so that the user needed to only push a few buttons 
to obtain QBAM images.

Analysis of QBAM images was performed at the field of view 
(FOV) scale or the single-cell scale (Figure 1B). At both scales, 
DNNs were used for analysis, but for different purposes. The 
DNNs at the FOV scale were designed to directly predict 2 things: 
the outcome of functional/maturity assays (DNN-F, Supplemental 
Figure 2, A and B) or whether 2 sets of QBAM images came from the 
same donor (DNN-I). No image processing was performed prior  
to feeding images into DNN-F or DNN-I.

Single-cell analysis began with a DNN that identified cell bor-
ders in QBAM images (DNN-S) (Supplemental Figure 2C). Next, 

fication (13) and regression applications (14), their computational 
speeds for industrial scalability (15, 16), and their robustness to 
noise/variability (17, 18). We anticipate that the speed, reproduc-
ibility, and accuracy of these noninvasive, automated methods 
will aid in scaling the biomanufacturing process as cell therapies 
translate from the laboratory to the clinic.

Results
Methodology overview and test case description. QBAM was devel-
oped to achieve reproducibility in bright-field imaging across dif-
ferent microscopes. QBAM converts pixels from relative intensity 
units to absorbance units, an absolute measure of light attenuation 
(Figure 1A). To improve reproducibility of imaging, QBAM calcu-
lates statistics on images in real time as they are captured to ensure 
that the absorbance value measured at every pixel has a 95% CI 
of 10 milli-absorbance units (mAU)  (Supplemental Figure 1; sup-
plemental material available online with this article; https://doi.

Figure 1. Methodology for image acquisition and image analysis. (A) An overview of QBAM imaging. The method converts pixel values in bright-field 
images to absorbance values. (B) Methods of analyzing QBAM images of human iPSC-RPE to predict function, identity and developmental outliers. Three 
DNNs were constructed for this study: (a) Predicts function (TER and VEGF-ratio) from QBAM images (DNN-F) using entire FOVs from microscopes, (b) 
identifies whether QBAM images from different clones came from the same donor (DNN-I), (c) segments individual iPSC-RPE cells in absorbance images 
(DNN-S). QBAM images of iPSC-RPE that were segmented with DNN-S also had individual cell image features extracted with the WIPP, and these features 
were used to predict cell function, cell identity, and whether cells were developmental outliers. More information on QBAM imaging is presented in Supple-
mental Figure 1, and the DNN architectures are presented in Supplemental Figure 2. Features extracted by WIPP are listed in Supplemental Table 1.
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albinism disorder (OCA), and AMD. The iPSC-RPE from healthy 
donors were imaged as they matured, while cells from AMD and 
OCA donors were imaged at a terminal time point once they had 
reached maturity. These 2 experimental designs were used to 
address 2 different use cases for the platform: (a) Noninvasively  
predicting iPSC-RPE function throughout the long culture to 
reduce the total number of replicates needed and provide more 
comprehensive/continuous assessment of samples and (b) non-
invasively providing assurance of tissue function, tissue identity, 
and determination of whether tissue is an outlier from all other 
replicates on the implant that is being placed into patients on the 

visual features of individual cells were extracted from the QBAM 
images using the web image processing pipeline (WIPP, extracted  
features in Supplemental Table 1 and ref. 19). The extracted visual  
features were then used to train TML algorithms to predict a 
variety of tissue characteristics, including function, origin of 
the donor the cells, and developmental outliers (abnormal cell 
appearance). TML algorithms were then used to identify critical 
cell features that contributed to the prediction of tissue character-
istics. To demonstrate the effectiveness of the imaging and anal-
ysis method, a proof of principle study was carried out on iPSC-
RPE from the following donor types: healthy, oculocutaneous 

Figure 2. Assessment of QBAM reproducibility, accuracy, and robustness. (A) ND filters were analyzed with a spectrometer and compared with absor-
bance values from QBAM images. n = 3 replicates per point; error bars = 3 SD (smaller than size of data point). (B) Three different ND filters were imaged 
on 3 different microscopes using different color filters to determine the comparability of absorbance values between different configurations (e.g., filters, 
cameras, etc.). n = 3 replicates per point[ error bars = 3 SD (smaller than size of data point). (C) iPSC-RPE from 2 healthy patients were imaged over time 
with QBAM (n = 12 wells per donor) to observe changes in pigmentation as iPSC-RPE mature. Each data point represents the mean of 12 images captured 
from 1 well. Shaded region represents 95% SEM. (D) iPSC-RPE from patients with OCA were imaged to determine whether QBAM was able to recapitulate 
clinical presentation (OCA patients have iPSC-RPE with low pigment). Each data point represents 1 FOV of each sample. Whiskers represent 3 times the 
inner quartile range; boxes show 25% and 75% quantiles. n = 9 replicates for severe; n = 10 replicates for moderate; and n = 8 replicates for mild. A linear 
mixed effect model controlling for multiple images being taken per well was performed for albino cells.
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ent patients with OCA (a disease known to reduce iPSC-RPE pig-
mentation). Mutant loci in OCA iPSC-RPE were sequenced to con-
firm the albinism type (OCA1A or OCA2) and the disease severity. 
OCA1A iPSC-RPE produced no melanin (OCA8 and OCA26) and 
thus had the lowest image absorbance. OCA2 patients had a 
range of phenotypes from moderate (OCA103 and OCA9) to mild 
(OCA71), which corresponded with absorbance measures made 
by QBAM (Figure 2D). Despite iPSC-RPE from OCA1A patients 
producing low levels of pigment, the absorbance values were 
2× higher than the lowest sensitivity of QBAM (10 mAU). Taken 
together, these data demonstrate the accuracy, reproducibility, 
and sensitivity of QBAM imaging.

Methodology to predict iPSC-RPE function from absorbance 
images. iPSC-RPE from healthy donors (healthy-1, healthy-2) were 
imaged to determine whether QBAM imaging affected cell matu-
ration and could measure a large range in variation of iPSC-RPE 
pigmentation. This was done using 3 culture conditions: (a) con-
trol iPSC-RPE (no treatment), (b) iPSC-RPE treated with a known 
inducer of RPE maturation (aphidicolin), and (c) iPSC-RPE treated  
with a known inhibitor of RPE maturation (hedgehog pathway 
inhibitor-4 [HPI4]) (21).

Control and aphidicolin-treated iPSC-RPE were found to 
mature as expected with increasing absorbance over the 8-week 
culture, while HPI4-treated iPSC-RPE had a decreasing trend in 
absorbance over time (healthy-2 is shown in Figure 3, A and B, and 
healthy-1 in Supplemental Figure 3, A and B). Higher mRNA and 
protein expression of maturation markers were found in control 
and aphidicolin-treated iPSC-RPE than in HPI4-treated iPSC-RPE 
(Figure 3C and Supplemental Figure 3, D–F). The baseline electrical 
response (TEP and TER) and its change to physiological treatments 
of 5 mM to 1 mM potassium (K+) or 100 μM adenosine triphos-
phate (ATP) on the apical side was significantly greater in aphid-
icolin-treated iPSC-RPE and significantly lower in HPI4-treated 
iPSC-RPE relative to control (Figure 3D and Supplemental Figure 
3C). Further, iPSC-RPE maturation was evident from the presence 
of dense, native-like apical processes (Supplemental Figure 3, G 
and H, and ref. 21). From this set of experiments, it was concluded  
that (a) iPSC-RPE produced in clinical grade conditions had a 
mature epithelial phenotype, (b) weekly QBAM imaging did not 
affect iPSC-RPE maturation, and (c) differences in pigmentation 
between mature (control and aphidicolin) and immature (HPI4) 
iPSC-RPE could be quantified with QBAM imaging.

The capacity to predict iPSC-RPE monolayer function and 
phenotype from QBAM images of iPSC-RPE was assessed next. 
For healthy donor iPSC-RPE, mean QBAM pixel value had little 
correlation with TER (Figure 3F, R2 = 0.19). However, the TER 
predictions by DNN-F highly correlated with actual TER values 
for the same samples (Figure 3G, R2 = 0.97) and these predictions 
had a RMSE of 70.6 Ω·cm2. To incorporate this methodology into 
a biomanufacturing setting, a TER of 400 Ω·cm2 was used as a 
stringent threshold to classify iPSC-RPE monolayers as immature 
(<400 Ω·cm2) or mature (>400 Ω·cm2). Red-shaded regions in 
Figure 3F indicate TER values associated with immature iPSC-
RPE, and red-shaded regions in Figure 3G indicate false posi-
tives and negatives. Based on this TER threshold, the DNN-F was 
94% accurate, sensitivity was 100%, and specificity was 90% for 
classifying iPSC-RPE maturity. Similar trends were observed for 

day that it will be implanted. The assessment of cells was done 
using TML algorithms and DNNs (rather than traditional statis-
tical approaches) due to the large heterogeneity of cells across 
scales (within a well, across replicates, between cultures, across 
clones, and across donors). To both assess and incorporate this 
heterogeneity, high-dimensional models were needed for accu-
rate prediction of cell function, identity, and determination of 
whether cells were outliers.

iPSC-RPE from 5 different OCA patients and 2 healthy donors 
were imaged using QBAM to determine the sensitivity of the 
imaging method to biological variation and naturally low levels of 
melanin in OCA iPSC-RPE. In addition to weekly imaging, iPSC-
RPE from healthy donors were assessed for TER and polarized 
VEGF secretion. TER is a measure of RPE maturity that increases  
as tight junctions form between neighboring cells. Polarized 
VEGF secretion is a measure of RPE function, where more VEGF 
is secreted on the basal side relative to the apical side of the cell 
monolayer (VEGF-ratio). Finally, 8 iPSC-RPE clones were derived 
from 3 AMD donors using clinical-grade protocols. Here, clinical 
grade refers to production of cells using xenogeneic free reagents 
and cGMP compliant production processes. QBAM imaging was 
carried out on AMD iPSC-RPE once they had reached maturity.

Accuracy, reproducibility, and sensitivity of QBAM. QBAM imag-
ing was validated with a combination of reference neutral density 
(ND) filters and biological samples. ND filters with known absor-
bance values were used as a reference to validate QBAM imaging 
by comparing absorbance measured on a UV Vis spectrometer to 
absorbance measured using QBAM imaging. Absorbance mea-
sured with QBAM imaging strongly correlated with absorbance 
measured by the spectrometer across the visible spectrum (Figure 
2A, R2 > 0.999). To further validate the method, reproducibility of 
QBAM on ND filters was determined across 3 additional micro-
scopes, each equipped with different filters, objectives, and light 
sources. The root mean squared error (RMSE) across all filters and 
microscopes was 66 mAU or approximately 4.4% at the highest 
absorbance value measured (Figure 2B).

QBAM imaging was then tested on live, progressively matur-
ing iPSC-RPE derived from 2 different healthy donors. As expected  
from published literature (20), a general trend of increasing mean 
absorbance as time progressed was found (Figure 2C). To deter-
mine how sensitive QBAM imaging was with respect to iPSC-RPE 
pigmentation, QBAM was used to image iPSC-RPE from 5 differ-

Table 1. Analysis of all feature histograms to determine the 
difference between cell features in hand-corrected images 
compared with DNN segmented images

Summary for all features
Error (%) KSS (P value) F-1 F-2

Mean 7.94 0.31 0.66 0.71
SD 4.42 0.32
Minimum 3.32 <0.001
Maximum 18.47 0.996

F-1 and F-2 are pixel level accuracy measurements of the DNN relative to 
the hand-corrected images.
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Figure 3. Prediction of healthy-2 iPSC-RPE function from QBAM images. (A) Plot of the mean absorbance from 12 images collected in each well over 
time. Shaded region represents 95% SEM. (B) Representative QBAM images of live iPSC-RPE prior to treatment (week 1, top row) and after 8 weeks of 
maturation (bottom row) in the presence of a maturation promoter (aphidicolin), a maturation inhibitor (HPI4), or neither (control). Color calibration bar 
shows units in mAU. (C) Fluorescent labeling of a control sample from healthy-2 iPSC-RPE after 8 weeks of culture, where blue shows cell nuclei (DAPI), 
green shows cell borders (ZO-1), and red shows an RPE-specific maturation marker (RPE65). Scale bars: 100 μm (B); 50 μm (C). (D) Evaluation of iPSC-RPE 
TEP  in response to an ATP challenge. ***P < 0.005. Whiskers represent 4 times the inner quartile range, and boxes show 25% and 75% quantiles. (E) Plot 
of TER over time for every replicate starting at week 3. Shaded region represents 95% SEM. (F) Plot of TER against mean image absorbance (R2 = 0.19, blue 
dashed line shows linear regression). (G) Plot of TER predictions from a DNN (DNN-F) against the measured TER (R2 = 0.97, black line represents a perfect 
prediction from the DNN). See also Supplemental Figure 3 for additional functional testing, and Supplemental Figure 4 for DNN-F prediction of VEGF 
secretion. n = 12 replicate wells per treatment and 12 images per replicate for all graphs. Linear mixed effect models controlling for repeated measures 
from a single well over time and for multiple images being taken per well were performed for A, D, and E.
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VEGF-ratios, where the polarized release of VEGF did not cor-
relate well with QBAM mean pixel value (Supplemental Figure 
4, A and B), but DNN-F predictions correlated highly with VEGF- 
ratio measurements (R2 = 0.89) and the RMSE of the VEGF-ratio 
predictions was less than 1.0 (Supplemental Figure 4C). The accu-
racy, sensitivity, and specificity of the VEGF-ratio were all 100% 
(Supplemental Figure 4C; samples with VEGF-ratio < 3.0 were 

considered immature). From these experiments, we conclude 
that (a) QBAM images of living cells can be used to predict TER 
and VEGF-ratios with high fidelity and (b) QBAM imaging could 
be used as a noninvasive means of functional validation of cells in 
lieu of measuring TER and/or VEGF-ratio.

Extraction of single-cell features from live QBAM images of 
iPSC-RPE monolayers. DNNs are known to have superior pre-

Figure 4. DNN segmentation of iPSC-RPE in QBAM images. (A) A DNN (DNN-S) was constructed to segment iPSC-RPE cells in absorbance images. To train 
the DNN, iPSC-RPE monolayers were fluorescently labeled for cell borders (ZO-1) and registered to absorbance images for hand labeling of cell borders. 
Scale bar: 25 μm. (B–D) A comparison of 3 of 42 cell feature histograms for hand segmented (green) and DNN segmented (red) images, where yellow is the 
overlap in the histograms. (E) Time course of the average number of cells bordering each cell for an entire well. Shaded region represents 95% SEM. Twelve  
wells per time per treatment are shown. (F) A scatterplot of mean cell area and mean intensity (absorbance) for each treatment group assessed for each 
microscope FOV. Each dot represents 1 of 864 fields of view (12 wells per treatment, 12 images per well, 6 time points). (G) Minimum intensity (absorbance) 
found for individual cells as a function of treatment. Whiskers represent 3 times SD and single dots behind the violin represent individual cells measured. 
n = 3,871,106 cells for control; n = 3,831,362 cells for aphidicolin; n = 4,146,927 cells for HPI4. A complete set of feature histogram comparisons is presented 
in Supplemental Figure 5, and results of statistical tests are in Supplemental Table 2. Red diamond indicates the mean.
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dictive power relative to other machine-learning algorithms, 
but it is difficult to determine what image features DNNs use 
to make predictions. To understand which cell image parame-
ters of iPSC-RPE predict monolayer function, image features of 
individual iPSC-RPE cells in QBAM images were calculated and 
used to train TML algorithms to predict iPSC-RPE function. A 
DNN was created to segment individual living iPSC-RPE cells 
in QBAM images (DNN-S; Figure 4A). The DNN-S segmenta-
tion was validated by comparing cell features calculated from 
12,750 iPSC-RPE with the same cell features calculated from 
ground-truth hand segmentations (Figure 4B; histograms show 
cell features from hand corrected and DNN-S segmentations). 
A comparison of 44 different features for DNN-S versus hand- 
corrected segmentations (Supplemental Figure 5 and Supple-
mental Table 2) showed a difference of 7.94% ± 4.42% (mean ± 
SD) between the feature histograms with good pixel-wise agree-
ment (F-2 = 0.71) (Table 1).

QBAM imaging and live-cell segmentation allow for hun-
dreds of cell-image features to be measured and tracked nonin-
vasively on individual cells throughout iPSC-RPE maturation. 
Thus, the trained DNN-S was used to segment QBAM images of 
living iPSC-RPE (healthy-1 and healthy-2 donors) treated with 
aphidicolin, HPI-4, or nothing (control). Previously published 
cell image features (22–24) and intensity metrics (20) known to 
correlate to RPE maturation and health were then assessed for 
significance. Figure 4C shows the average number of neighbors 
(22, 23) each iPSC-RPE cell had as a function of drug treatment 

and shows that HPI4 had a significantly lower (P < 0.001) mean 
number of neighbors across all time points. Importantly, this 
method allows for unprecedented hierarchical granularity to the 
data; enabling not just whole well “bulk” tissue measurements 
(Figure 4C), but also as a function of FOV, as shown in Figure 
4D, or at an individual cell level, as shown in Figure 4E. Figure 4F 
shows clustering of treatments based on 2 features known to be 
important to RPE maturation and health, cell area (22, 24) and 
mean cell intensity (20). Figure 4Gshows cell minimum inten-
sity, a new metric related to iPSC-RPE function identified using 
TML in Figure 4G. These results demonstrate (a) the accuracy 
of the DNN-S segmentation with respect to hand-drawn seg-
mentations of individual cells and show that (b) the differences  
between iPSC-RPE treated with different molecules can be 
determined from discrete cell features.

Single-cell image features can predict iPSC-RPE maturation 
and function. Five different TML methods (multilayer percep-
tron [MLP]; linear support vector machine [L-SVM]; random 
forest [RF]; principle least squares regression [PLSR]; and ridge 
regression [RR]) were used to predict TER and VEGF-ratios from 
the healthy-2 donor iPSC-RPE using cell features obtained from 
cell-border segmentations of QBAM images. Figure 5A shows 
TER predictions for the MLP, the most accurate TML approach 
(RMSE = 84.7 Ω·cm2 and R2 = 0.94). The red shaded regions 
represent false positives/negatives when using 400 Ω·cm2 as 
a quality assurance (QA) or quality control (QC) threshold. The 
MLP had an accuracy of 94%, sensitivity of 100%, and specific-

Figure 5. Traditional machine-learning algorithms’ ability to predict iPSC-RPE function (healthy-2) from cell-image features isolated by segmenta-
tions of QBAM images. (A) Plot of TER predictions from MLP against the measured TER (R2 = 0.94, black dashed line represents a perfect prediction from 
the MLP). Red regions indicate areas that would be less than 400 Ω·cm2, which was set as the lot release criteria for these cells. n = 12 replicate wells per 
treatment and 12 images per replicate. (B) Heatmap of all cell images feature importance sorted by mean importance across all features. (C) Top 10 most 
important features from the heatmap in B enlarged so that individual classes of features could be identified. Red indicates most important features for 
predicting cell TER, while blue indicates the least important features. See also Supplemental Figure 6.
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Supplemental Figure 6B), but DNN-F had a 1.4× lower RMSE 
(Supplemental Figure 6C).

The benefit of predicting iPSC-RPE monolayer function from 
cell features is the ability to determine single-cell characteristics 
that indicate tissue-level function. For each TML method, cell fea-

ity of 90% (Supplemental Figure 6A). However, a comparison 
of all algorithms (Table 2 and Supplemental Figure 6A) showed 
the DNN-F was the most accurate predictor of TER, with the 
MLP’s RMSE being 14.1 Ω·cm2 higher than DNN-F (Table 2). 
For VEGF-ratio predictions, RF was the best TML method (RF, 

Table 2. RMSE of each TML algorithm as compared with actual measures of the cells

Summary of algorithm regression error
DNN-F MLP PLSR L-SVM RR RF

RMSE (Ω•cm2) 70.6 84.7 100.1 102.7 109.6 116.4

DNN-F, deep learning network shown in Figure 2.

 

Figure 6. Prediction of cell TER from 8 AMD iPSC-RPE cell lines derived from 3 separate donors. (A) Representative QBAM image and SEM image of day-75 
iPSC-RPE from 1 clone from each donor. (B) Mean absorbance as assessed by QBAM imaging versus TER for n = 8 clones (3 replicate measures) across the last 
5 days of cell maturation; blue dotted line represents linear best fit for these cells. (C) RF prediction of iPSC-RPE function across 3 clones that the algorithm 
had not seen previously. The black dashed line represents a perfect prediction. A 95% CI is shown as the blue region. (D) Heatmap of the important cell image 
features for predicting iPSC-RPE TER across 18 different clone combinations sorted by mean feature importance across all clone combinations. The top 10 cell 
image features of 315 analyzed are shown. Red indicates most important features, while blue represents least important features. Scale bars: 100 μm (A, top 
panels); 5 μm (A, bottom panels). Color calibration bar is shown in milli-absorbance units. See also Supplemental Figure 7 and Supplemental Table 4.
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RPE monolayers. A total of 18 unique training image subsets were 
formed, where each image subset contained test data that had 
images of 1 iPSC-RPE sample from each donor (Supplemental 
Table 4 shows all combinations in detail). The mean TER RMSE 
was 86.9 Ω·cm2 ± 14.3 Ω·cm2 (Supplemental Table 4) across all 
clone subsets, showing that the prediction error was similar when 
scaled to a larger donor subset (8 AMD-iPSC-RPE samples; Figure 
6) as compared with a single sample (healthy-2; Figure 5). From 
the measured and predicted values, a 95% CI was constructed and 
is shown as the blue regions in Figure 6C and Supplemental Figure 
7C. iPSC-RPE falling outside of this region could be considered 
as “out of specification” in a biomanufacturing environment and 
would be recommended for further testing. 

Finally, the most important cell features for predicting AMD-
iPSC-RPE monolayer TER (Figure 6D) and VEGF-ratio across all 
donor/sample combinations were assessed to determine whether  
features used to predict AMD-iPSC-RPE function were simi-
lar to those of healthy-2 (Figure 5). Interestingly, only 4 features 
overlapped between these 2 groups: Zernike n4-m0 polynomial 
(shape 1), mass displacement (intensity 2), and the third inverse 
difference moment at 135° (texture 2) and at 45° (texture 1). Over-
all, the models derived from the clinical grade iPSC-RPE images 
were able to predict iPSC-RPE phenotype across multiple donors/
samples and to determine the common cell-image features of liv-
ing cells across multiple donors that predict iPSC-RPE monolayer 
function. Further, the differences in the feature importance from 
healthy-2 and the AMD-iPSC-RPE suggest there might be both 
donor-specific features for predicting function and features that 
are common to multiple donors.

Classification of developmental outliers and identity of iPSC-
RPE donors using QBAM. QBAM images were used to determine 
whether there were any developmental outliers based on cell- 
image features in the 8 clinical grade iPSC-RPE samples from 3 
AMD patients. Developmental outliers are defined as an intra-
donor comparison in which iPSC-RPE monolayers that are dif-
ferent from other iPSC-RPE monolayers based on cell image 
features may warrant additional analysis to determine whether 
the monolayer developed properly. Figure 7A shows the princi-
ple component analysis of cell-image features from the QBAM 
images of the AMD donor/sample preparation. iPSC-RPE derived 
from a given donor clustered well together based on cell-image 
features, except AMD1 clone A (1A) and AMD3 clone A (3A), as 
identified in the hierarchical dendrogram of the PCA shown in 
Figure 7B. Analysis of clone 1A iPSC-RPE showed 894 changes 
in the oncoexome as compared with the starting donor material  
as shown by Sharma et al. (25). Clone 3A iPSC-RPE was found 
to have a lower pigment level than its “sibling” iPSC-RPE (Fig-
ure 6B). When the cell-image features were analyzed, the cell 
pigmentation and shape were found to be the 2 most dominant 
feature classes in identifying these iPSC-RPE as outliers; a full 
description of features can be seen in the online dataset (http://
isg.nist.gov/deepzoomweb/data/RPEimplants).

For each iPSC-RPE monolayer, the cell donor identity was 
predicted from QBAM images using multiple TML models. Addi-
tionally, a new DNN (DNN-I) was developed to determine whether 
2 different iPSC-RPE images had the same identity (Tables 3 and 
5). Donor identity is defined as an interdonor comparison to deter-

tures were ranked by importance. When comparing all TML mod-
els, there was similarity in the most important features for pre-
dicting TER (Figure 5, B and C) or VEGF-ratio regardless of which 
TML method was used. Interestingly, key cell image features for 
predicting TER were spread across intensity, texture, and shape of 
cells (Figure 5B) Of the 10 most important features, 3 related to 
the shape of cells, 3 to the intensity of pigment within cells, and 4 
described the distribution of pigment within RPE (texture). Sup-
plemental Table 3 and the online data (see details in regarding 
data and software availability in the Methods section) shows what 
metrics specifically these features represent and their 95% CI for 
each time point and drug treatment.

Taken together, the above indicates that using live-cell 
segmentation, feature extraction, and TML, tissue TER, and 
VEGF-ratio can be predicted with a level of accuracy approach-
ing the prediction accuracy of DNNs to analyze QBAM images. 
The benefit to TML methods compared with DNNs is that TML 
models can identify discrete cell features that indicate iPSC-RPE 
monolayer function. This allows manufacturers and clinicians to 
better understand the models, determine why a culture has been 
predicted to have low function, and perhaps develop mitigation 
strategies based on the parameters that have shown to be predic-
tive of the phenotype.

Accuracy of function predictions is robust across multiple clinical- 
grade AMD patient–derived iPSC-RPE. To determine whether the 
methodology was robust across multiple donors and multiple 
preparations, DNN-F and TMLs were used to predict TER and 
VEGF-ratios of clinical grade iPSC-RPE from 3 AMD patients 
across 8 iPSC clones. Figure 6A shows representative absorbance 
images of 1 iPSC-RPE sample from each of the AMD donors and 
corresponding SEM images of iPSC-RPE apical processes, con-
firming iPSC-RPE polarized phenotype. Monolayer maturation 
was assessed by TER (Figure 6B) and VEGF-ratio (Supplemen-
tal Figure 7A) as well as the assays shown in Sharma et al. (25). 
Mean QBAM pixel values of iPSC-RPE were measured for fully 
mature AMD-iPSC-RPE. As with the healthy donors, mean absor-
bance did not correlate well with TER (Figure 7B, R2 = 0.015) or 
VEGF-ratio (Supplemental Figure 7A, R2 = 0.50). However, the 
RF model was able to predict TER to a similar degree of accuracy 
(RMSE = 70.9 Ω·cm2, R2 = 0.92) as seen with healthy donors (Table 
2). DNN-F was also used to model TER, and the predicted versus 
actual values correlated well (R2 = 0.91, Supplemental Figure 7B).

To further assess the robustness of the methodology, TML 
models were trained on different combinations of AMD-iPSC-

Table 3. Classifying DNN (DNN-I) binary classification 
performance when determining whether 2 images were from the 
same donor or not

DNN-I classification of donor
Donor Not donor

Donor 19.8% 9.9%
Not donor 4.6% 65.6%

Columns represent predicted classification, while rows represent actual 
classification.
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tions (Figure 7C) and consisted of features that were different from 
the features used to identify tissue function (compare Figure 5, B 
and C, with Figure 7C) and developmental outliers. A general dif-
ference between the top 50 features used in each application were 
as follows: shape features were important to identify clones as out-
liers (23 of the top 50 features); texture features were important for 
donor classification of clones (25 of the top 50 features); and shape 
and texture features were important to classify iPSC-RPE function 
(40 of the top 50 features).

Discussion
Absorbance imaging. Data inputs are critical to successful analy-
sis. Thus, the methodology developed here starts with a rigorous, 
reproducible absorbance imaging method using a bright-field 
microscope. Absorption imaging has been reported in the liter-
ature (26–28), but the QBAM technology developed here can be 
implemented on any standard  bright-field microscope, and it uses 
real-time, automated, statistically robust methods to provide high 
confidence in image quality and reproducibility. The advantage 
to using absorbance rather than raw pixel intensities is that absor-
bance is an absolute measure of light attenuation (29). Raw pixel 
intensities can vary with microscope configuration and settings 
(e.g., uneven lighting, bulb intensity and spectrum, camera, etc.) 
that make comparison of images difficult even when the images 
are captured on the same microscope. Converting to absorbance 
values overcomes many issues related to image reproducibility 
(explained in more detail in Methods). The combination of auto-
mation, converting pixel intensities to absorbance values, calcu-
lating absorbance confidence, and establishing microscope equi-
librium through benchmarking ensures the quality of image data 
captured with QBAM.

The robustness of QBAM was validated in 3 systems to ensure 
the measurement could be used in multiple circumstances: (a) 
synthetic standards (Figure 2, A and B), (b) healthy biological 
samples (Figure 2C and Supplemental Figure 3), and (c) drug- 
induced models of iPSC-RPE maturity (Figure 3 and Supplemental 
Figure 3). Analysis of the QBAM images showed absorbance val-
ues agreed with “known” synthetic standards and could assess the 
development of pigment in both healthy and diseased RPE. The 
results shown in Figure 2 and Supplemental Figure 3 also highlight 
the robustness of the measurement across multiple microscopes 
or imaging configurations. Errors between different microscope 
measurements of the same sample were within 4.4% of the signal 
as compared with an average error of 31% on reference standards 
for VEGF ELISAs (30) and 100% for TER measurements in epi-
thelium (31). This represents 1 to 2 orders of magnitude reduction 
in variability for a potential release assay for a cell-therapy product 
or when used in a drug screening methodology.

QBAM is optimized for determining absorbance for cell types 
that absorb light. However, results with nonpigmented (severe) albi-
nism cells indicate possible applications on other nonpigmented cell 
types. Due to the signal-to-noise ratio in these cells being over twice 
the lower limit of detection, we hypothesize that either absorbance 
or transmittance data could be broadly applicable to any cell type in 
culture. Therefore, it may be suitable for assays in which light absor-
bance is used, such as viable cell counting using trypan blue stain-
ing, histological staining, or analysis of light-absorbing biological 

mine which images came from which donor (TML models) or to 
identify whether 2 images were from the same donor (DNN-I). 
The TML algorithms took the features derived from QBAM images  
as an input and gave a donor identification as an output. In com-
parison, DNN-I took 2 QBAM images as an input and classified 
the images as coming from the same or different donors. The TML 
approach was able to classify the donor identity of RPE cells derived 
from new clones of a donor when it had been trained on images of 
RPE cells derived from other clones of that same donor; it was not 
able to classify “new” donors that were not present in the training 
data. The DNN-I strategy for binary classification of 2 images as 
“same” or “not same” gives the DNN-I the potential to classify  
“new” donors that were not used during training. L-SVM was  
found to have the highest accuracy of all TML algorithms tested  
(Supplemental Table 5), with an accuracy of 76.4% (2.3× random 
chance), a sensitivity of 64.6%, and a specificity of 82.3%. Across 
all donor/sample combinations, DNN-I had better performance 
with an accuracy of 85.4% (2.6× random chance), a sensitivity of 
80.9%, and a specificity of 86.8% (Tables 3 and 4). Interestingly, 
cell-image features that were key to distinguishing AMD iPSC-RPE 
from each other were similar across different iPSC-RPE combina-

Figure 7. Identification of iPSC-RPE monolayer developmental outliers 
and donor identity using only QBAM images and either DNNs or TML 
algorithms. (A) Principle component analysis of the first principle compo-
nent versus the second principle component of cell image features from 
QBAM images of all clones. (B) Hierarchical cluster of all clones to show 
similarity of clones from 3 donors; red boxes indicate the 3 least related 
groups from the total population. (C) Heatmap of all 18 clone combinations 
of all cell image features important for the L-SVM to classifying cell iden-
tity. The top 10 cell image features are shown (of 315); red indicates the 
features most important to predicted cell identity, while blue indicates the 
features least important. n = 8 clones with 3 replicate measures
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the prediction error of iPSC-RPE from multiple AMD donors. We 
hypothesize 2 reasons for this: (a) healthy-2 iPSC-RPE had a wider 
range of both TER and VEGF-ratio values due to the inclusion of 
positive and negative controls than did AMD-iPSC-RPE,  which 
were manufactured using a cGMP-based process with the goal 
of reproducibly manufacturing healthy mature iPSC-RPE mono-
layers. (b) The AMD-iPSC-RPE had a larger data set for training, 
as it included all healthy-2 data as well as the training data from 
the AMD-iPSC-RPE. In machine learning, more data generally 
leads to more accurate models; however, implementation of our 
methodology in any application should give special consider-
ation to ensuring a wide range of conditions (i.e.,  more donors 
and positive/negative controls) for training than presented in this 
proof-of-principle study to ensure the robustness of the model.

As expected, deep learning had a lower RMSE of prediction for 
both TER and VEGF-ratio as compared with the TML approaches. 
However, using TML approaches allowed discovery of important 
cell image features (Figure 5B and Figure 6D). These 2 approaches 
were chosen because we perceive 2 motivations for cellular prod-
uct manufacturers, regulators, clinicians, and/or researchers. Moti-
vation 1 is as follows: often in manufacturing, clinical settings, or 
high-throughput screens, time is a critical factor and a clear “go/
no-go” or simple readout is desired. In these cases, algorithms that 
provide the highest accuracy and are most robust to noise should be 
used, and deep learning is an excellent tool for this application (13, 
18). Motivation 2 is as follows: frequently in research, insight into 
underlying mechanisms of function are important. In these cases, 
more scrutable methods in which the importance of cell-image fea-
tures can be determined are necessary. For this motivation TML 
approaches are desirable because their underlying architecture is 
simple enough to be understood and the importance of factors (here 
cell image features) to predicting tissue function can be obtained.

Feature extraction from QBAM images led to hundreds of 
features based on the shape, intensity and texture of cells at both 
the single-cell level and across larger cell populations. Many of 
these features are mathematical abstractions that lack meaningful 
connection to cell function. Therefore, even though TML models 
may be more interpretable than DNNs, the features that com-
pose these models may not be relatable to the underlying biology 
(37–39). Nonetheless, for cell-manufacturing purposes, what these 
features are and how they relate to the underlying biology are less 
important than being able to identify their 95% CI and ensuring 
that future batches/clones from donors fall within this range, mak-
ing their use here in TML models relevant regardless of their rela-
tionship to the underlying biology.

Identification and clustering of iPSC-RPE from clinically relevant 
donors. Currently, there is a critical need to develop a noninvasive, 
clinically compatible assay to confirm the quality of cell-therapy 
products just prior to implantation. The PCA and cluster analy-
sis shown in Figure 7, A and B, could serve this unmet need. Using 
this approach, or similar clustering techniques, the similarity of the 
to-be-implanted article to other technical replicates (or previous 
successful manufactured batches) can be noninvasively assessed for 
the first time. Additionally, the donor identification work done using 
DNN-I or the L-SVM shown in Tables 3–5 and Figure 7C can serve 
as a QA/QC step to detect simple culture errors,  such as switched 
wells or a flipped plate,  and to match identity of this implant to  

specimens such as pigmented skin cells or dopaminergic neurons 
that express neuromelanin. In cases in which transmittance values 
may be preferred,  such as histology, the statistics can be modified 
to generate reproducible images of tissue sections. Also, this meth-
odology is generalizable to any multispectral modality, since none of 
the calculations are wavelength specific. Finally, we expect that the 
methods could be suitable for hyperspectral autofluorescent imag-
ing that can identify cell borders and subcellular organization in  
nonpigmented cells (32).

Prediction of iPSC-RPE function. Neural networks and 
machine-learning algorithms were trained with a full range of 
cell phenotypes by using healthy iPSC-RPE and drugs that were 
known to inhibit (HPI4) and promote (aphidicolin) iPSC-RPE 
maturation (21). Having diverse phenotypes in the training set 
enhanced the robustness of the algorithms, as was expected from 
the literature (18). Additionally, the method worked on 2 different 
donors, not only as an end-point assay of tissue health, but also 
as a noninvasive tool for tracking tissue development during the 
long maturation period (approximately 35 days) (33). Importantly, 
the accuracy of the algorithms in predicting both TER and VEGF- 
ratio was close to the measurement uncertainty for both TER (31) 
and VEGF (30, 34). The generalizability of such metrics across cell 
lines, regardless of donor, adds to the broad utility of this work, as 
here we show that even with a limited data set, strong predictive 
ability, regardless of donor and clone, was shown (Figure 5).

The cut-off ratios for biomanufacturing, 400 Ω·cm2 for TER 
and 3.0 for VEGF-ratio, were chosen according to the literature 
(33, 35, 36). However, it is important to note that similar accura-
cies, sensitivities, and specificities were found when assessing a 
range of TER values from 200 Ω·cm2 to 1000 Ω·cm2 or VEGF- 
ratio from 1 to 5 and that thresholds should be set according to the 
manufacturer’s specifications. In this study, we observed a higher 
prediction error for the iPSC-RPE from healthy-2 compared with 

Table 5. Summary of the performance of DNN-I and the L-SVM in 
donor classification

DNN-I L-SVM
Accuracy 85.4% 76.4%
Sensitivity 80.9% 64.6%
Specificity 86.8% 82.3%

See also Supplemental Table 5.

 

Table 4. L-SVM classification performance when determining 
which donor a QBAM image of an iPSC-RPE clone was from, 
having never seen images from that clone previously

L-SVM classification of donor
Donor Not donor

Donor 21.5% 11.8%
Not donor 11.8% 54.9%

Columns represent predicted classification, while rows represent actual 
classification.
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pixel in the image of the sample. To make the method microscope 
independent, it includes a protocol of benchmarking a microscope 
to ensure accuracy of the measurement. Statistical criteria were 
developed to ensure accurate measurements of absorbance based on 
metrics obtained from benchmarking. The statistical criteria define 
the number of images that must be captured to ensure an accuracy 
of 0.01 absorbance units and are calculated in real time as images 
are captured. If image data do not meet the criteria, then additional 
images are captured until there is sufficient information to obtain an 
accurate measurement. A thorough description of this method is pro-
vided in the Supplemental Methods.

Culture, assays, and imaging of iPSC-RPE. After differentiation, 
healthy-1 and healthy-2 iPSC-RPE were placed on fresh Transwell 
plates for maturation. Beginning 2 weeks or 1 week from the start of 
the culture, iPSC-RPE were exposed to aphidicolin, HPI4, or neither 
drug. On the same day that cells were exposed to 1 of the 3 experimen-
tal conditions, cells were imaged weekly using QBAM for the duration 
of cell culture (8 weeks of total culture). A total of 12 images were cap-
tured in each well (4 × 3 overlapping grid, 1%–15% overlap). On the 
same day that cells were imaged, TER was measured and supernatant 
was collected to measure cytokine release (VEGF).

DNNs. Three main DNNs were created for this work, and the 
development and training of each of them is described in detail in the 
Supplemental Methods. The first DNN (DNN-F) was trained to pre-
dict TER and VEGF release, where the input image was a 1024 × 1024  
pixel, 3-color QBAM image and the output was a TER value and a 
VEGF value. The second DNN (DNN-S) was trained to identify bor-
ders of cells in QBAM images, where the input of the network was a 
256 × 256 pixel, 3-color QBAM image and the output was a cell border 
segmentation. The third network (DNN-I) was trained to take 2 QBAM 
images of iPSC-RPE and determine whether the images came from 
the same donor. The training data for this network included iPSC-RPE 
from multiple donors prepared multiple times from iPSC reprogram-
ming to maturation, and the network learned to identify iPSC-RPE 
from different preparations of the same donor.

Feature extraction and TML. QBAM images segmented using 
DNN-S were used to extract cell features using the WIPP (19). A com-
plete list of features is provided in Supplemental Table 1. Features were 
then used as inputs to traditional machine-learning algorithms (MLPs, 
PLSR, L-SVMs, RF). Details on preprocessing and training parameters 
are described in detail in the Supplemental Methods. Each of the tra-
ditional machine-learning algorithms was used to predict the same 
metrics of the DNNs (TER, VEGF, donor identity, not segmentation). 
The advantage of traditional machine-learning algorithms is that it is 
easier to identify specific cellular features that correlate to predicting 
cell function or identity.

Quantification and statistical analysis. All significance between 
groups indicated for albino lines and for Figure 3, A, D, and E, was 
determined  using a linear mixed effect model controlling for repeated 
measures from a single well over time and for multiple images being 
taken per well. These models were assessed using the multicomp and 
the nlme packages in R. R2 values, CIs, and Kolmogorov–Smirnov, F-1, 
and F-2 statistics were calculated in base R. P values of 0.005 or less 
were considered significant.

Study approval. All iPSC lines were obtained from human subjects 
in IRB 11-EI-0245 protocol. A total of 15 iPSC-RPE cell lines, obtained 
from 10 different donors, were used in this paper. The iPSC-RPE 

other replicates from the same donor. This will be especially 
important in a facility that manufactures thousands of autologous 
therapeutics and must confirm the identity of each patient’s dose. 
However, to determine a donor’s identity (as with the L-SVM), a ref-
erence differentiation and image data set is needed for each patient 
line generated. This can be partially mitigated by using longitudi-
nal imaging sets during the first culture; however, these models will 
necessarily be less robust, as the training data will be limited.

The two most important features to identifying the develop-
mental outliers in Figure 7, A and B, can be seen in Supplemental 
Figure 7E and were the SD of the maximum intensity (intensity 8) 
of the iPSC-RPE and the Zernike n5-m3 polynomial (shape 10). 
The deviation of the max intensity parameter agrees well with 
absorbance results showing that AMD3 clone A–derived iPSC-
RPE had a lower absorbance than iPSC-RPE derived from other 
clones of AMD3. Zernike polynomials have been useful for detect-
ing invasive cancer cell shapes (40) and in classifying tumors (41), 
which leads us to hypothesize these polynomials are also critical 
to detecting a difference between AMD1 iPSC clone A RPE, which 
had 894 oncoexome sequence alterations (25), and iPSC-RPE 
derived from other AMD clones/donors. We acknowledge that the 
cluster analysis performed in Figure 7B is not a conclusive proof 
that the development of oncogene sequence alterations can be 
identified with only QBAM imaging. However, in a cell therapy 
manufacturing setting,  cluster analysis could be used to screen 
individual therapy replicates to determine whether there are outli-
ers that might need additional scrutiny. Also, because the assay is 
noninvasive, this information will provide surgeons with additional  
confidence in the quality of the actual transplant being delivered 
to the patient, which has not been possible previously.

In conclusion, the methodology presented here shows that 
QBAM imaging can be used to assess the pigmentation develop-
ment of healthy and diseased iPSC-RPE noninvasively. DNNs 
can analyze these images and accurately predict cell TER and 
VEGF-ratio across 10 different iPSC-RPE preparations. Addition-
ally, QBAM images contain sufficient information to allow DNNs 
to accurately segment cell borders of live RPE cells. Once seg-
mented, hundreds of features can be calculated per cell, and using 
these features, cell function can be predicted, outlier samples can 
be identified, and donor identity can be confirmed. All of this 
information can be obtained on the tissue that is being implanted 
into the patient with an automated bright-field microscope, with-
out the need for expertise from a clinician, in just minutes. Thus, 
QBAM has potential application in a biomanufacturing setting 
where thousands of manufactured RPE units could be noninva-
sively tested and qualified for clinical use by a technician.

Methods
A complete Methods section is provided in the Supplemental Materi-
als. Below is an abbreviated Methods section.

QBAM. We developed a method of determining absorbance 
values from bright-field images called QBAM. The basic principle 
of QBAM imaging is absorbance, which is an absolute measure-
ment of light attenuation. Absorbance is calculated using QBAM by 
capturing an image with the light off, then a second image with the 
light on but no sample on the stage, and finally an image of the sam-
ple. These 3 images are then used to calculate absorbance of every 
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lines were obtained from 3 types of patients: healthy, AMD patients, and 
OCA patients. The iPSC-RPE from healthy patients were derived from 
iPSC lines healthy-1 and healthy-2. The iPSC-RPE from AMD patients 
were referred to in the paper according to donor number and clone 
number. For example, AMD1A means the cells came from AMD donor 
no. 1 and clone A. The different clones for each donor were replicates, 
where each clone was completely replicated from generation of iPSCs 
to iPSC-RPE differentiation. The AMD clones were previously reported  
(25). A summary of the number of clones per donor is as follows: AMD1 
had clone A and clone B; AMD2 had clone A, clone B, and clone C; 
and AMD3 had clone A, clone B, and clone C. The iPSC-RPE obtained 
from OCA patients (also referred to as albino patients) came from 5 
different patients (a single clone each) and are indicated as OCA8, 
OCA26, OCA103, OCA9, and OCA71. All lines were provided via the 
NEI EYEGene intiative. No personally identifying information about 
patients was given from the EYEGene bank.

Data and software availability. All image data used in this study is 
available online from the National Institute of Standards and Tech-
nology at the following address: http://isg.nist.gov/deepzoomweb/
data/RPEimplants. The QBAM method of collecting images on a 
microscope was implemented as a Micromanager plugin, and the 
source code for the plugin is available on Github: http://github.com/
Nicholas-Schaub/SQuIRE. The QBAM method of converting bright-
field microscope images into absorbance values was implemented as 
an ImageJ plugin, and the source code is available on Github: http://
github.com/Nicholas-Schaub/CARPE.
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