
Sun et al., Sci. Adv. 2020; 6 : eaay2378     31 January 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 7

A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

One-step regression and classification with cross-point 
resistive memory arrays
Zhong Sun, Giacomo Pedretti, Alessandro Bricalli, Daniele Ielmini*

Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous 
sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial 
intelligence processing of such data. These requirements challenge the current metal-oxide-semiconductor tech-
nology, which is limited by Moore’s law approaching its end and the communication bottleneck in conventional 
computing architecture. Novel computing concepts, architectures, and devices are thus strongly needed to accelerate 
data-intensive applications. Here, we show that a cross-point resistive memory circuit with feedback configuration can 
train traditional machine learning algorithms such as linear regression and logistic regression in just one step by com-
puting the pseudoinverse matrix of the data within the memory. One-step learning is further supported by simulations 
of the prediction of housing price in Boston and the training of a two-layer neural network for MNIST digit recognition.

INTRODUCTION
Resistive memories, also known as memristors (1), including resistive 
switching memory (RRAM) and phase-change memory (PCM), are 
emerging as a novel technology for high-density storage (2, 3), neuro-
morphic hardware (4, 5), and stochastic security primitives, such as 
random number generators (6, 7). Thanks to their ability to store 
analog values and to their excellent programming speed, resistive 
memories have also been demonstrated for executing in-memory 
computing (8–17), which eliminates the data transfer between the 
memory and the processing unit to improve the time and energy 
efficiency of computation. With a cross-point architecture, resistive 
memories can be naturally used to perform matrix-vector multipli-
cation (MVM) by exploiting fundamental physical laws such as the 
Ohm’s law and the Kirchhoff’s law of electric circuits (8). Cross-point 
MVM has been shown to accelerate various data-intensive tasks, such 
as training and inference of deep neural networks (11–14), signal and 
image processing (15), and the iterative solution of a system of linear 
equations (16) or a differential equation (17). With a feedback circuit 
configuration, the cross-point array has been shown to solve systems 
of linear equations and calculate matrix eigenvectors in one step (18). 
Such a low computational complexity is attributed to the massive 
parallelism within the cross-point array and to the analog storage 
and computation with physical MVM. Here, we show that a cross-point 
resistive memory circuit with feedback configuration is able to ac-
celerate fundamental learning functions, such as predicting the next 
point of a sequence by linear regression or attributing a new input to 
either one of two classes of objects by logistic regression. These oper-
ations are completed in just one step in the circuit, in contrast to 
the iterative algorithms running on conventional digital computers, 
which approach the solution with a polynomial time complexity.

RESULTS
Linear regression in one step
Linear regression is a fundamental machine learning (ML) model for 
regressive and predictive analysis in various disciplines, such as 

biology, social science, economics, and management (19–21). Logistic 
regression, instead, is a typical tool for classification tasks (22), e.g., 
acting as the last classification layer in a deep neural network (23, 24). 
Because of their simplicity, interpretability, and well-known prop-
erties, linear and logistic regressions stand out as the most popular 
ML algorithms across many fields (25). A linear regression model is 
described by an overdetermined linear system given by

	​ Xw  =  y​	 (1)

where X is an N × M matrix (N > M), y is a known vector with a size 
of N × 1, and w is the unknown weight vector (M × 1) to be solved. 
As the problem is overdetermined, there is typically no exact solu-
tion w to Eq. 1. The best solution of Eq. 1 can be obtained by the 
least squares error (LSE) approach, which minimizes the norm of 
error  = Xw − y, namely, ‖‖ = ‖Xw − y‖2, where ‖∙‖2 is the Euclidean 
norm. The vector w minimizing ‖‖ is obtained by the pseudoin-
verse (21, 23, 24) [or Moore-Penrose inverse (26)] X+, given by

	​ w = ​X​​ +​ y = ​​(​​​X​​ T​ X​)​​​​ 
−1

​ ​X​​ T​ y​	 (2)

where XT is the transpose of matrix X.
To obtain the solution in Eq. 2, we propose a cross-point resist

ive memory circuit in Fig. 1A, where the matrix X is mapped by the 
conductance matrix GX in a pair of cross-point arrays of analog re-
sistive memories, the vector y corresponds to the opposite of the 
input current vector i = [I1; I2; …; IN], and w is represented by the 
output voltage vector v = [V1; V2; …; VM] (M = 2 in Fig. 1A).

For a practical demonstration of this concept, we adopted arrays 
of RRAM devices composed of a HfO2 dielectric layer sandwiched 
between a Ti top electrode (TE) and a C bottom electrode (BE) (27). 
This type of RRAM device can be programmed to any arbitrary 
analog conductance within a certain range, thus allowing to repre-
sent the matrix elements Xij of the matrix X with sufficient accuracy 
(18). Representative analog conductance levels were programmed 
by controlling the compliance current during the set transition, as 
shown in fig. S1. The cross-point arrays are connected within a 
nested feedback loop (28) by N operational amplifiers (OAs) from 
the left array to the right array and M OAs from the right array 
to the left array. Briefly, the first set of OAs gives a negative transfer 
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of the current, while the second one gives a positive transfer, resulting 
in an overall negative feedback, hence stable operation of the circuit 
with virtual ground inputs of all OAs. A detailed analysis of the cir-
cuit stability is reported in text S1.

According to Ohm’s law and Kirchhoff’s law in Fig. 1A, the in-
put currents at the OAs from the left cross-point array are GXv + i; 
thus, the output voltages applied to the right cross-point array 
are ​​v​ r​​  =  − ​(​G​ X​​ v + i) _ ​G​ TI​​

  ​​, where GTI is the feedback conductance of tran-
simpedance amplifiers (TIAs). The right cross-point array operates 
another MVM between the voltage vector vr and the transpose 
conductance matrix GX

T, resulting in a current vector ​− ​​G​ X​​​​ T​ ​(​G​ X​​ v + i) _ ​G​ TI​​
  ​​, 

which is forced to zero at the input nodes of the second set of OAs, 
namely

	​​ ​G​ X​​​​ T​(​G​ X​​ v + i ) = 0​	 (3)

The steady-state voltages v at the left array are thus given by

	​ v  =  − ​​(​​ ​​G​ X​​​​ T​ ​G​ X​​​)​​​​ 
−1

​ ​​G​ X​​​​ T​ i​	 (4)

which is Eq. 2 with GX, i, and v representing X, −y, and w, respec-
tively. The cross-point array circuit of Fig. 1A thus solves the linear 
regression problem in just one step.

The circuit of Fig. 1A was implemented in hardware using RRAM 
devices arranged within a cross-point architecture on a printed circuit 
board (see Materials and Methods and fig. S2). As a basic model, 
we considered the simple linear regression of points (xi, yi), where i = 
1,2, …, N, to be fitted by a linear model w0 + w1xi = yi, where w0 and 
w1 are the intercept with axis y and the slope, respectively, of the 
best fitting line. To solve this problem in hardware, we encoded the 
matrix X

	​​ X  = ​
⎡
 ⎢ 

⎣
​​​
​1​ 1​

​ 
​​x​ 1​​​ ​x​ 2​​​

​ 
​ ⋮​ 
1

​
​ 

​  ⋮​ ​x​ N​​​
​​
⎤
 ⎥ 

⎦
​​​​	 (5)

in the cross-point arrays. A column of discrete resistors with G = 
100 S was used to represent the first column of X in Eq. 5, which is 
identically equal to 1. The second columns of both arrays were im-
plemented with reconfigurable RRAM devices. A total number of 
N = 6 data points were considered, with each xi implemented as a 
RRAM conductance with unit 100 S. The unit of conductance was 
chosen according to the range of linear conduction of the device 
(18), thus ensuring a good computation accuracy. Other aspects 
such as the current limit of the OAs and the power consumption 
should also be considered to select the best memory devices in the 
circuit. Although the conductance values in the two cross-point arrays 
should be identical, some mismatch can be tolerated for practical 
implementations (text S2). A program/verify technique was used to 
minimize the relative error (less than 5%) between the values of X in 
the two cross-point arrays (fig. S3). The data ordinates −y were in-
stead applied as input currents. The input currents should be kept 
relatively small so that the resulting output signal is low enough to 
prevent disturbance of the device states in the stored matrix.

Given the matrix X stored in the cross-point arrays and an input 
current vector y, the corresponding linear system was then solved 
by the circuit in one step. Figure 1B shows the resulting dataset for 
an input current vector i = [0.3; 0.4; 0.4; 0.5; 0.5; 0.6]I0 with I0 = 100 A 
to align with the conductance transformation unit. Figure 1B also 
shows the regression line, obtained by the circuit output voltages 
representing weights w0 and w1. The comparison with the analytical 
regression line shows a relative error of −4.86 and 0.82% for w0 and 
w1, respectively. The simulated transient behavior of the circuit is 
shown in fig. S4, evidencing that the linear regression weights are 
computed within about 1 s. By changing the input vector, a different 
linear system was formed and solved by the circuit, as shown in 
Fig. 1C for i = [0.3; 0.3; 0.5; 0.4; 0.5; 0.7]I0. The result evidences that 
a more scattered dataset can also be correctly fitted by the circuit.

The cross-point circuit also naturally yields the prediction of the 
value y* in response of a new point at position x*. This is obtained 
by adding an extra row in the left cross-point, where an additional 
RRAM element is used to implement the new coordinate x* (fig. S5). 
The results are shown in Fig. 1C, indicating a prediction by the cir-
cuit, which is only 1% smaller compared to the analytical predic-
tion. Figure S6 reports more linear regression and prediction results 
of various datasets. Linear regression with two independent variables 
was also demonstrated by a cross-point array of three columns, with 
results shown in fig. S7. These results support the cross-point circuit 
for the solution of linear regression models in various dimensions. 
The linear regression concept can also be extended to nonlinear 
regression models, e.g., polynomial regression (29), to better fit a 
dataset and thus make better predictions. By loading the polynomial 
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Fig. 1. Linear regression circuit and experiments. (A) Schematic illustration of 
the cross-point circuit for solving linear regression with the pseudoinverse method. 
The conductance transformation unit is G0 = 100 S. The feedback conductance GTI of 
TIA is equal to G0. A representative matrix X for simple linear regression of six data 
points is also shown. (B) Linear regression of a six-point dataset defined by the 
second column of X in (A) on the x axis and the input currents on the y axis. The 
figure also shows the analytical and experimental regression lines, and the latter 
being obtained as the measured voltages v in the cross-point circuit as regression 
weights. (C) A second six-point regression experiment with the same vector X in (A) 
and a different set of input currents. A new input value x* = 4.91 was stored in an 
additional line of the left cross-point array, thus enabling the one-step prediction 
along a sequence. The measured prediction y* = 0.727 is consistent with experi-
mental and analytical regression lines.
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terms in cross-point arrays, the circuit can also realize polynomial 
regression in one step (text S3 with fig. S8).

Logistic regression
Logistic regression is a binary model that is extensively used for object 
classification and pattern recognition. Different from linear regres-
sion, which is a fully linear model, logistic regression also includes a 
nonlinear sigmoid function to generate the binary output. A logistic 
regression model can be viewed as the single-layer feed-forward 
neural network in Fig. 2A. Here, the weighted summation vector s of 
input signals to the nonlinear neuron is given by

	​ s  =  Xw​	 (6)

where X is the matrix containing the independent variable values of 
all samples and w is the vector of the synaptic weights. The neuron 
outputs are thus simply given by the vector y = f(s), where f is the 
nonlinear function of the neuron. To compute the weights of a lo-
gistic regression model with a sample matrix X and a label vector y, 
the logit transformation can be first executed (30). By applying the 
inverse of sigmoid function, the label vector y is converted to a sum-
mation vector s, namely, s = f −1(y). As a result, the logistic regression 
is reduced to a linear regression problem, where the weights can be 
obtained in one step by the pseudoinverse concept

	​ w  = ​ X​​ +​ s​	 (7)

For simplicity, we assumed that the nonlinear neuron function is 
instead a step function and that the summation vector s in Fig. 2A is 
binarized according to

	​​ ​s​ i​​  = ​ {​​​ 
a, if ​y​ i​​  =  1

​ 
− a, if ​y​ i​​  =  0

​​​	 (8)

where a is a positive constant for regulating the output voltage in 
the circuit. After this transformation, the weights can be computed 
directly with the pseudoinverse circuit of Fig. 1A.

Figure 2B shows a set of six data points with coordinates (x1, x2) 
divided into two classes, namely, y = 0 (open) and y = 1 (full). Figure 2C 
shows the matrix X where the first column is equal to 1, while the 
other columns represent the coordinates x1 and x2 of the dataset. 

The sample matrix X was mapped in the two cross-point arrays of 
Fig. 1A, and input current was applied to each row to represent s 
with a = 0.2, according to Eq. 8. The circuit schematic is reported in 
fig. S9 together with experimental results and relative errors of lo-
gistic regression. The simulated transient behavior of the circuit is 
shown in fig. S10, with a computing time around 0.6 s. The output 
voltage yields the weights w= [w0; w1; w2] with s = w0+w1x1 + w2x2 = 
0 representing the decision boundary for classification, where s ≥ 0 
indicates the domain of class “1” and s < 0 the domain of class “0”. 
This is shown as a line in Fig. 2B, displaying a tight agreement with 
the analytical solution. The cross-point circuit enables a one-step 
solution of logistic regression with datasets of various dimensionalities 
and sizes accommodated by the cross-point arrays. Similar to linear 
regression, the circuit can also provide one-step classification of any 
new (unlabeled) point, which is stored in a grounded additional row 
of the left cross-point array. The current flowing in the row yields 
the class of the new data point. Although here we consider two cases 
containing only positive independent variable values for linear/
logistic regression, datasets containing negative values can also be 
addressed by simply translating the entire data to be positive, as ex-
plained in fig. S11.

Linear regression of Boston housing dataset
While the circuit capability has been demonstrated in experiment 
for small models, the matrix size is an obvious concern that needs to 
be addressed for real-world applications. To study the circuit scal-
ability, we considered a large dataset, namely, the Boston housing 
price list for linear regression (31, 32). The dataset collects 13 attri-
butes and the prices of 506 houses, 333 of which are used for training 
the linear regression model, while the rest are used for testing the 
model. The attributes are summarized in the text S4. We performed 
linear regression with the training set to compute the weights with 
the cross-point circuit and applied the regression model to predict 
house prices of the test set.

Figure 3A shows the matrix X for the training set, including a 
first column of 1, the other columns recording the 13 attributes, 
and the input vector y, representing the corresponding prices. The 
matrix X was rescaled to make the conductance values in cross-point 
arrays uniform, and the vector y was also scaled down to prevent 
excessive output voltage w (see fig. S12). We simulated the linear 
regression circuit with SPICE (Simulation Program with Integrated 
Circuit Emphasis; see Materials and Methods), where the RRAM 
devices were assumed to accurately map the matrix values within 
8-bit precision. Figure 3B shows the calculated w obtained from the 
output voltage in the simulated circuit, with the relative errors re-
maining within ±1%, thus demonstrating the good accuracy and 
scalability of the circuit.

Figure 3C shows the obtained regression results compared with 
the real house prices of the training set. A standard deviation 
(SD) P of $4733 is obtained from SPICE simulations, which is in 
line with the analytical solution P′ = $4732. Figure 3D shows the 
predicted prices of the test set compared with the real prices. The 
SD from the circuit simulation is P = $4779, in good agreement 
with the analytical results P′ = $4769. The resulting SD is only 
slightly larger than the training set, which supports the ability for 
generalization of the model. One-step price prediction for test 
samples is possible by storing the unlabeled attributes in additional 
rows of the left cross-point array and measuring the corresponding 
currents, as indicated in fig. S13.
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Fig. 2. Logistic regression experiments. (A) Illustration of a logistic regression 
model, consisting of the summation of weighted input signals being processed by 
a nonlinear activation function such as the sigmoid function (dash line) or the step 
function (solid line). The backward logit transformation is indicated by the bottom 
arrow. (B) A logistic regression of six data points divided in two classes. The input 
matrix X is also shown, including a first column of discrete resistors and a second 
and third columns storing the independent variables x1 and x2. The regression lines 
obtained from analytical and experimental results are also shown. The line provides 
the boundary line for data classification.
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Two-layer neural network training
Logistic regression is widely used in the last fully connected classifi-
cation layer in deep neural networks. The cross-point circuit thus 
provides a hardware acceleration of the computation of the last-layer 
weights for training of a neural network. To test the cross-point cir-
cuit as an accelerator for training neural networks, we considered 
the two-layer perceptron in Fig. 4A, where the first-layer weights 
are set randomly (33, 34), while the second-layer weights can be 
obtained by the pseudoinverse method in the cross-point circuit. 
Note that a standard technique to train a two-layer neural network 
is the backpropagation algorithm which reduces the squares error 
iteratively (35). In contrast to iterative backpropagation, the pseudo-
inverse approach can reach the LSE solution in just one step, thus 
providing a fast and energy-efficient acceleration of network training.

As a case study for neural network training, we adopted the 
Modified National Institute of Standards and Technology (MNIST) 
dataset (36). To reduce the circuit size in the simulations, we used 
only 3000 of 50,000 samples to train the neural network. Also, to 
provide an efficient fan-out (for instance, four) for the first layer 
(34), the image size was down-sampled to be 14 × 14, resulting in a 
network of 196 input neurons, 784 hidden neurons, and 10 output 
neurons for the classifications of the digits from 0 to 9. The training 
matrix T is with a size of 3000 × 196 and the first-layer weights W(1) 
were randomly generated in the range between −0.5 and 0.5 with a 
uniform distribution (fig. S14). The matrix X can thus be obtained by

	​​ X  =  f ​(​​ ​TW​​ (1)​​)​​​​	 (9)

while the weights of the second layer W(2) can be obtained by the 
pseudoinverse model of Eq. 2, with Y containing all the known labels 
of training samples transformed according to Eq. 8 with a = 0.05. 
For each training sample, the neuron corresponding to the digit is 
labeled 1, while the other nine neurons are 0. Note that the matrix X 
results from the output of a sigmoid function of hidden neuron and 
is restricted in the range between 0 and 1 (fig. S15).

Figure 4B shows the second-layer weights W(2) obtained by the 
simulation of the cross-point circuit, where X was stored in the 
RRAM devices, and each column of matrix Y was applied as input 
current. The weights were obtained in 10 steps, one for each classi-
fication output (from digit 0 to digit 9). With the computed weights 
W(2), the network can recognize 500 handwritten digits with accuracy 
of 94.2%, which is identical to the analytical pseudoinverse solution. 
For the whole test set (10,000 digits), the recognition accuracy is 
92.15% using the simulated W(2), compared to 92.14% using the ana-
lytical solution. The cross-point array can thus be used to accelerate 
the training of typical neural networks with ideal accuracy. The 
computed weights can then be stored in one or more open-loop 
cross-point array for accelerating the neural network in the infer-
ence mode by exploiting in-memory MVM (fig. S16) (8, 11, 12).

Figure 4B also shows the LSEs obtained from both the circuit 
simulation and analytical study. Note that the LSEs are different 
among the 10 digits due to the dependence of LSE on weight values 

Test set

A B

C D

Training set

Fig. 3. Linear regression of the Boston housing dataset. (A) Matrix X including 
the 13 attributes for the 333 houses in the training set and input vector y of house 
prices. The same color bar was used for clarity, while the conductance and current 
units are assumed equal to 10 S and 10 A, respectively. (B) Calculated weights of 
the linear regression obtained by simulation of the cross-point circuit and the relative 
errors with respect to the analytical results. (C) Correlation plot of the regression 
price of the training samples obtained by the simulated weights, as a function of 
the real dataset price. The small SD P = $4733 supports the accuracy of the regression. 
(D) Same as (C), but for the test samples. A slightly larger SD P = $4779 is obtained.

A B

C

Fig. 4. Training of a two-layer neural network for MNIST digit recognition. 
(A) Illustration of the two-layer neural network, where the first-layer weights are 
random, while the second-layer weights are computed by the pseudoinverse 
method in circuit simulations. (B) Color plot of the second-layer weight matrix W(2) 
obtained by circuit simulations. Each column contains the weights of synapses 
connected to an output neuron and was computed in one step by the cross-point 
circuit. As a result, only 10 operations were needed to train the network. The LSEs 
of simulated and analytical weights are also shown for each neuron. (C) Correlation 
plots of the simulated weights as a function of the analytical weights for each of 
the 10 output neurons. Only the bias weight w0 shows a deviation from the analytical 
results, although not affecting the recognition accuracy.
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(text S5). Figure 4C shows the simulated weights as a function of the 
analytical values for each output neuron, showing a good consistency 
except for the bias weight w0. The bias acts as a regulator to the 
summation of an output neuron; thus, the deviated bias weight 
guarantees that the simulated LSE is close to the analytical one in 
Fig. 4B. It should be noted that, although a random W(1) was as-
sumed in this study, W(1) can be further optimized by gradient descent 
methods (37) to improve the accuracy. The same approach might 
be applied to pretrained deep networks by the concept of transfer 
learning (38), thus enabling the one-step training capability for a 
generalized range of learning tasks.

DISCUSSION
Although the cross-point circuit is inherently accurate and scalable, 
the imperfections of RRAM devices such as conductance discretiza-
tion and stochastic variation (18) might affect the solution. To study 
the impact of these issues on the solution accuracy, we assumed a 
RRAM model with 32 discrete conductance levels, including 31 uni-
formly spaced levels and one deep high-resistance state, which is 
achievable in many resistive memory devices (39–41). The ratio be-
tween the maximum conductance Gmax and the minimum conduc-

tance Gmin is assumed to be ​​​G​ max​​ _ ​G​ min​​ ​  = ​ 10​​ 3​​, in line with previous reports 

(42, 43). To describe conductance variations, we assumed an SD  = 
∆G/6, ∆G/4, or ∆G/2, where ∆G is the nominal difference between 
two adjacent conductance levels. The simulation results for the Boston 
housing benchmark (fig. S17) shows that the resulting regression 
and prediction remain accurate for all cases. For the worst case ( = 
∆G/2), the SD P of training set is equal to $4756 compared with the 
ideal result of $4732. The P of test set for prediction is even closer 
to the ideal one, namely, $4765 compared with $4769. These results 
highlight the suitability of the cross-point resistive memory circuit 
for ML tasks, where the device variations can be tolerated for re-
gression, prediction, and classification.

Another concern for large-scale circuits is the parasitic wire re-
sistance. To study its impact on the accuracy of linear regression for 
Boston housing dataset, we adopted interconnect parameters at a 
65-nm technology obtained from the International Technology 
Roadmap for Semiconductors table (44), together with the RRAM 
model. The results in fig. S18 show an increased P for both regres-
sion and prediction, with the latter being less notable, which is 
consistent with the impact of device variation. Specifically, the P 
of prediction becomes merely $4809 compared with the ideal $4769, 
thus supporting the robustness of the linear regression circuit for 
predictive analysis.

The circuit stability analysis in text S1 reveals that the poles of the 
system all lie in the left half plane; thus, the circuit is stable, and 
the computing time is limited by the bandwidth corresponding to 
the first pole, which is the minimal eigenvalue (or real part of eigen-
value) min (absolute value) of a quadratic eigenvalue problem (45). 
As min becomes larger, the computation of the circuit gets faster, 
with no direct dependence on the size of the dataset. To support 
this scaling property of the circuit speed, we have simulated the 
transient dynamics of linear regression of the Boston housing 
dataset and its subsets for increasing size of the training samples 
(fig. S19). The results show that the computing time may even 
decrease as the number of samples increases, which can be explained 
by the different min of the datasets (fig. S20). These results evidence 

that the time complexity of the cross-point circuit for linear regres-
sion substantially differs from its counterparts of classical digital 
algorithms, with a potential of approaching size-independent time 
complexity to hugely speed up large-scale ML problems. Note that 
as the circuit size increases, a larger current is also required to 
sustain the circuit operation, which might be limited by the capa-
bility of the OAs. To control the maximum current consumption 
in the circuit, the memory element should be carefully optimized by 
materials and device engineering (46) or by advanced device con-
cepts such as electrochemical transistor (47, 48) to provide a low-
conductance implementation. The impact of device variations and 
the energy efficiency of the circuit are studied for the two-layer 
neural network for MNIST dataset training (text S6 with fig. S21). 
The results support the robustness of the circuit against device 
variations for classification applications, and an energy efficiency 
of 45.3-tera operations per s per Watt (TOPS/W), which is 19.7 and 
6.5 times better than the Google’s tensor processing unit (49) and 
a highly optimized application-specific integrated circuit system (50), 
respectively.

In conclusion, the cross-point circuit has been shown to provide 
a one-step solution to linear regression and logistic regression, which 
is demonstrated in experiments with RRAM devices. The one-step 
learning capability relies on the high parallelism of analog comput-
ing by physical Ohm’s law and Kirchhoff’s law within the circuit 
and physical iteration within the nested feedback architecture. The 
scalability of the cross-point computing is demonstrated with large 
problems, such as the Boston housing dataset and the MNIST data-
set. The results evidence that in-memory computing is remarkably 
promising for accelerating ML tasks with high latency/energy per-
formance in a wide range of data-intensive applications.

MATERIALS AND METHODS
RRAM device fabrication
The RRAM devices in this work used a 5-nm HfO2 thin film as the 
dielectric layer, which was deposited by e-beam evaporation on a 
confined graphitic C BE. Without breaking the vacuum, a Ti layer 
was deposited on top of the HfO2 layer as TE. The forming process 
was operated by applying a dc voltage sweep from 0 to 5 V, where 
the voltage was applied to the TE and the BE was grounded. After 
the forming process, the set and reset transitions took place under 
positive and negative voltages applied to the TE, respectively.

Circuit experiment
For all the experiments, the devices were arranged in the cross-point 
configuration on a custom-printed circuit board (PCB; see fig. S2), 
and an Agilent B2902A Precision Source/Measure Unit was used to 
program the devices to different conductance states. Linear and 
logistic regression experiments were carried out on a custom 
PCB with OAs of model AD823 (Analog Devices) for the negative-
feedback amplifiers (NFA) and OP2177 (Analog Devices) for 
positive-feedback amplifiers (PFA). RRAM devices of left matrix 
were connected with the BE to the NFAs’ inverting input nodes and 
with the TE to the PFAs’ output terminals. RRAM devices of right 
matrix were connected with the BE to the PFAs’ non-inverting input 
nodes and with the TE to the NFAs’ output terminals. A BAS40-04 
diode is connected between every amplifier and ground to limit 
the voltages within ±0.7 V, avoiding conductance changes of RRAM 
devices.
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All the input signals were given by a four-channel arbitrary 
waveform generator (Aim-TTi TGA12104) and applied to fixed 
input resistors, which were connected between the input and the 
NFAs’ inverting-input nodes. The PFAs’ output voltages were moni-
tored by an oscilloscope (LeCroy Wavesurfer 3024). The board was 
powered by a BK Precision 1761 dc power supply.

SPICE simulation
Simulations of the cross-point circuit for Boston housing case and 
MNIST training were carried out using LTSPICE (www.linear.com/
solutions/1066). Linear resistors with defined conductance values 
were used to map a matrix in the cross-point arrays. A universal 
op-amp model was used for all OAs, while PFA and NFA have dif-
ferent parameters.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/5/eaay2378/DC1
Text S1. Analysis of circuit stability
Text S2. Analysis of twin matrices mismatch
Text S3. Polynomial regression
Text S4. Introduction to Boston housing dataset
Text S5. Analysis of least squares
Text S6. Computing performance benchmarking
Fig. S1. Current-voltage characteristics of the Ti/HfO2/C RRAM device.
Fig. S2. Cross-point resistive memory circuit on a printed circuit board.
Fig. S3. Device programming.
Fig. S4. Convergence analysis of the linear regression experiment.
Fig. S5. Extended circuit for one-step prediction.
Fig. S6. More linear regression results.
Fig. S7. Linear regression with two independent variables.
Fig. S8. Polynomial regression result.
Fig. S9. Logistic regression results.
Fig. S10. Convergence analysis of the logistic regression experiment.
Fig. S11. Solution of linear/logistic regression with negative independent variable values.
Fig. S12. Rescaling the attribute matrix X and price vector y.
Fig. S13. One-step prediction circuit schematic for Boston housing dataset.
Fig. S14. Random first-layer weight matrix W(1).
Fig. S15. The hidden-layer output matrix X.
Fig. S16. Training and inference of the two-layer neural network.
Fig. S17. Linear regression of Boston housing dataset with a RRAM model.
Fig. S18. Impact of wire resistance.
Fig. S19. Linear regression of Boston housing dataset and its representative subsets.
Fig. S20. Scaling behavior of computing time of linear regression.
Fig. S21. Analysis of device variation impact and computing time.
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