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Abstract

Suzuki–Miyaura cross-couplings of amides offer an approach to the synthesis of ketones that 

avoids the use of basic or pyrophoric nucleophiles. However, these reactions require glovebox 

manipulations, thus limiting their practicality. We report a benchtop protocol for Suzuki–Miyaura 

cross-couplings of aliphatic amides that utilizes a paraffin capsule containing a Ni(0) precatalyst 

and NHC ligand. This methodology is broad in scope, is scalable, and provides a user-friendly 

approach to convert aliphatic amides to alkyl–aryl ketones.

Graphical Abstract

The conversion of carboxylic acid derivatives to ketones is a fundamental transformation in 

synthetic chemistry (Figure 1).1 A common strategy to achieve this conversion is the 

Weinreb ketone synthesis, in which a N-methoxy-N-methyl amide undergoes net 

substitution with an organometallic nucleophile.2 An alternative strategy lies in the 

development of transition-metal-catalyzed cross-couplings of acyl electrophiles,1c,3 which 

avoid the use of strongly basic and pyrophoric organometallic reagents. Our laboratory and 

others have shown that amides, which are well suited for multistep synthesis due to their 

pronounced stability, are particularly useful in this context.4 Specifically, Ni-5,6 and Pd-
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catalysis7 have enabled the mild activation of the amide C–N bond for cross-coupling with 

boronic acids and esters,8 as well as organozinc reagents.9

We recently reported a Ni-catalyzed Suzuki–Miyaura coupling of aliphatic amides to 

generate alkyl–aryl ketones (Figure 1, e.g. 1 + 2 → 3).10,11 This methodology is broad in 

scope, but requires the use of a glovebox, thus limiting its practical utility.12 We questioned 

if a paraffin-encapsulation strategy, analogous to that pioneered by Buchwald, could prove 

useful.13 In this approach, air-sensitive reagents are stored in paraffin capsules, ultimately 

providing a user-friendly means to perform air-sensitive transition-metal-catalyzed reactions. 

Previously, we showed the promise of this strategy for the Suzuki–Miyaura cross-coupling 

of a single benzamide-derived substrate utilizing paraffin–Ni(cod)2/SIPr capsules.14 

However, this precatalyst and ligand combination is ineffective in the coupling of amides 

derived from aliphatic carboxylic acids.10 Moreover, only a single example of a glovebox 

free arylation of an aliphatic amide derivative has been reported, which uses a bench-stable 

Pd(II) precatalyst.15 We report the realization of a paraffin encapsulation strategy to achieve 

the nickel-catalyzed Suzuki–Miyaura coupling of aliphatic amides on the benchtop.

Our studies were initiated by preparing the desired paraffin capsules, using a molding 

process analogous to one we had previously reported (Figure 2).14 These capsules were 

charged with Ni(cod)2 and Benz-ICy·HCl, as this precatalyst/ligand combination had proven 

effective in our original studies on the Suzuki–Miyaura coupling of aliphatic amides using a 

glovebox.10 Next, we assessed the utility of these capsules in the benchtop Suzuki–Miyaura 

coupling of amide 4 with N-methylpyrrole-2-boronic acid pinacol ester (5), using 5 mol% 

Ni. Unfortunately, the use of our literature conditions resulted in a poor yield of ketone 6.16 

Specifically, the coupling of 4 and 5 employing paraffin-encapsulated Ni(cod)2/Benz-

ICy·HCl, 2.5 equiv of 5, toluene as the reaction solvent, and a stir rate of 400 rpm for 16 h at 

120 °C provided ketone 9 in 28% 1H NMR yield.17 After extensive experimentation, it was 

found that employing higher equivalents of 5 (2.5 to 5.0), utilizing 1,4-dioxane as the 

reaction solvent, and extending the reaction time to 24 h proved beneficial. This provided 

ketone 6 in 91% yield on the benchtop. Additionally, these capsules displayed long-term air 

and moisture stability when stored outside of a glovebox. After two months of storage, a 

benchtop coupling of 4 and 5 generated 6 in comparable yield.16 These capsules are 

currently undergoing commercialization to enable their widespread use.18

Having validated our encapsulation approach and arrived at optimized reaction conditions, 

we evaluated the scope of this transformation with respect to the boronate ester coupling 

partner. A variety of aryl boronate esters were assessed in couplings with piperidinyl amide 

4 (Figure 3). The methodology was found to be tolerant of medicinally privileged N-

heterocyclic aryl boronates,19 as evidenced by the formation of ketones 6–8, in good to 

excellent yields. Additionally, electron-poor p-CF3 and sterically encumbered o-CH3 

substituted phenyl boronate esters could be employed in the coupling, providing ketones 9 

and 10 in 53% and 74% yields, respectively. Boronate esters featuring extended aromatic 

ring systems were also competent nucleophiles in the methodology, as demonstrated by the 

formation of naphthyl ketone 11 in 71% yield. Of note, in all cases, benchtop yields of the 

desired ketone products were comparable to those obtained when using literature conditions 
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requiring a glovebox (yields using the glovebox protocol are shown in parentheses in 

Figures 3 and 4).10

We next surveyed a range of amide substrates in the Suzuki–Miyaura coupling with 

pyrroloboronate 5 (Figure 4).20 An additional piperidine-derived amide substrate could be 

used in the coupling to furnish 12 in excellent yield. Furthermore, amides derived from 

isomeric 3- and 4-tetrahydropyran-carboxylic acids were competent substrates, giving rise to 

ketones 13 and 14 in 79% and 84% yields, respectively. We also evaluated the coupling of 

non-heterocyclic amides. Linear and carbocyclic amides underwent the reaction smoothly, as 

demonstrated by the formation of 15 and 16 in 83% and 89% yield, respectively. Notably, 

steric bulk adjacent to the amide carbonyl did not hinder the Suzuki–Miyaura coupling, as 

the use of a pivalamide substrate gave ketone 17 in 90% yield.

Finally, we assessed the Suzuki–Miyaura coupling of piperidine amide 1 with N-

methylindole-2-boronic ester 18 on gram-scale as shown in Figure 5. Using 5 mol% Ni, the 

coupling proceeded smoothly to deliver ketone 19 in 73% yield. We view this result as 

promising in the context of the scalable construction of biologically relevant bis-heterocyclic 

ketones19 where the enolizable alkyl–aryl ketone provides a valuable synthetic handle for 

further manipulation.

We have developed a benchtop protocol for the Suzuki–Miyaura cross-coupling of aliphatic 

amides to access alkyl–aryl ketones. Our strategy leverages mild Ni-catalyzed C–N bond 

activation to avoid the use of strongly basic and pyrophoric reagents typically employed in 

amide to ketone conversions. Additionally, the Ni(cod)2/Benz-ICy·HCl–paraffin capsules, 

which are currently undergoing commercialization,18 obviate the need to set up the reactions 

in a glovebox. Notably, this methodology enables the coupling of heterocyclic and aliphatic 

amides with a variety of aryl boronic esters for the formation of C–C bonds. Moreover, this 

transformation is scalable and, further, provides a valuable approach to the synthesis of 

alkyl–aryl ketones from amides, which benefits further from the use of base-metal catalysis 

and commercially available boronic ester nucleophiles. Thus, we hope these studies promote 

the use of Ni-mediated Suzuki–Miyaura couplings of aliphatic amides as a complement to 

traditional synthetic strategies.
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Figure 1. 
Methods for the conversion of amides to ketones, prior studies of Ni-catalyzed Suzuki–

Miyaura couplings that utilize a glovebox, and paraffin encapsulation strategy for benchtop 

delivery (present study).
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Figure 2. 
Preparation of Ni(cod)2/Benz-ICy·HCl–paraffin capsules and their use in the benchtop 

Suzuki–Miyaura coupling of piperidinyl amide 4 and pyrrole boronic ester 5 under 

optimized conditions. Yield was determined by 1H NMR analysis using 1,3,5-

trimethoxybenzene as an external standard.
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Figure 3. 
Scope of the boronic ester coupling partners. General conditions unless otherwise stated: 

substrate 4 (1.0 equiv, 0.4 mmol), K3PO4 (4.0 equiv), boronic ester (5.0 equiv), Ni(cod)2 (5 

mol%), Benz-ICy·HCl (10 mol%), and 1,4-dioxane (1.0 M) heated at 120 °C for 24 h in a 

sealed vial under an atmosphere of N2. Unless otherwise noted, yields reflect the average of 

two isolation experiments. Yields in parentheses were obtained by carrying out the reaction 

in a glovebox utilizing literature conditions without encapsulating Ni(cod)2 and Benz-

ICy·HCl in paraffin. a Yield was determined by 1H NMR analysis using 1,3,5-

trimethoxybenzene as an external standard.
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Figure 4. 
Scope of the amide substrate. General conditions unless otherwise stated: amide substrate 

(1.0 equiv, 0.4 mmol), K3PO4 (4.0 equiv), boronic ester 5 (5.0 equiv), Ni(cod)2 (5 mol%), 

Benz-ICy·HCl (10 mol%), and 1,4-dioxane (1.0 M) heated at 120 °C for 24 h in a sealed vial 

under an atmosphere of N2. Unless otherwise noted, yields reflect the average of two 

isolation experiments. Yields in parentheses were obtained by carrying out the reaction in a 

glovebox utilizing literature conditions without encapsulating Ni(cod)2 and Benz-ICy·HCl in 

paraffin. a Yield was determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an 

external standard.
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Figure 5. 
Gram-scale Suzuki–Miyaura coupling of amide 1 with boronate ester 18 to generate ketone 

19.
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