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Multidrug resistance (MDR) is the resistance of cells toward
various drugs commonly used in tumor treatment. The mech-
anism of drug resistance in oral cancer is not completely under-
stood. Melatonin is an endogenously produced molecule
involved in active biological mechanisms including antiprolif-
eration, oncogene expression modulation, antitumor invasion
and migration, and anti-inflammatory, antioxidant, and anti-
angiogenic effects. Despite these functions, the effects of mela-
tonin on vincristine (VCR)-resistant human oral cancer cells
remain largely unknown. This study analyzed the role of mela-
tonin in VCR-resistant human oral cancer cells along with the
underlying mechanism. We determined that melatonin
induced the apoptosis and autophagy of VCR-resistant oral
cancer cells; these actions were mediated by AKT, p38, and
c¢-Jun N-terminal kinase (JNK). Melatonin inhibited ATP-
binding cassette B1 (ABCB1) and ABCB4 expression in vitro
and in vivo. Melatonin reduced the drug resistance and pro-
moted the apoptosis of VCR-resistant oral cancer cells through
the upregulation of microRNA-892a (miR-892a) and miR-34b-
5p expressions. The expression of miR-892a and miR-34b-5p
was related to melatonin-induced apoptosis, but not auto-
phagy. Therefore, melatonin is a potential novel chemothera-
peutic agent for VCR-resistant human oral cancer cell lines.

INTRODUCTION

Oral cancers are highly aggressive malignancies with high mortality
rates globally. Approximately 95% of all oral cancers emerge from
the squamous epithelium lining the oral cavity." Patients with a
5-year survival rate of <50% in the later stages of the disease may
be treated with a combination therapy comprising clinical surgery,
drug chemotherapy, and radiotherapy. Meta-analyses have reported
that chemotherapy is highly beneficial for overall survival in locally
advanced oral cancer.”” However, many patients respond unfavor-
ably to a combination chemotherapy; thus, drug resistance remains

a primary challenge and improving the response and survival of pa-
tients with cancer is necessary.*

Multidrug resistance (MDR) is the resistance of cells toward different
drugs used in cancer treatments.” P-glycoprotein (P-gp), MDR-asso-
ciated protein (MRP1), and the breast cancer resistance protein
(BCRP) are widely known for MDR.® The overexpression of drug
efflux transporters may reduce drug influx, leading to MDR
phenotypes.”

Low extracellular pH in oral cancer inhibits the effect of clinical
chemotherapy drugs, thereby reducing the antitumor effects.” Oral
cancer is highly resistant to various drugs with different structures
and cytotoxic action mechanisms. Generally, this cancer recurs within
several months of chemotherapy completion. Patients often respond
less favorably to drugs on repeating the chemotherapy,” indicating
that oral cancer may be intrinsically chemoresistant. Specific mole-
cules, such as V-ATPases, may play crucial roles in such a phenom-
enon.'” Ralhan et al.'' observed that P-gp expression increased
with increasing dysplasia severity and tumor recurrence, indicating
that differential P-gp level may act as a prognostic marker in oral can-
cer. Moreover, in various cell lines exposed to therapeutic vincristine
(VCR; vinca alkaloid antineoplastic drug), MDRI1 expression in-
creases P-gp levels, suggesting that P-gp-induced MDR in oral cancer
is a critically acquired phenotype caused by the genetic induction
of P-gp.° The accumulation of the genetic alterations of tumor
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cer.'” A clear association between P-gp expression and MDR in
various tumors is well known;'® however, the mechanism of drug
resistance in oral cancer has not been completely studied. Therefore,
elucidating the association between the mechanism of carcinogenesis,
cancer progression, and MDR development is crucial.

Melatonin (N-acetyl-5-methoxy tryptamine) is synthesized and
secreted by the pineal gland and among its many actions regulates
the sleep-wake rhythm.'*"> Melatonin also attenuates the oxidative
damage caused by doxorubicin.''® It
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hances cell cytotoxicity and apoptosis in 5-fluorouracil-resistant and
cisplatin-resistant colorectal and cervical cancer cells.>*~*! However,
the effects of melatonin on VCR-resistant human oral cancer cells
have not been studied in detail and clearly understood so far.

The objectives of this work were to understand the effect of melatonin
on VCR-resistant human oral cancer cell and discuss its possible
mechanisms. Melatonin was observed to be a potential novel chemo-
therapeutic agent for VCR-resistant human oral cancer cell lines.
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Melatonin Inhibited VCR-Resistant Oral Cancer Cell Survival and
Proliferation

Oral cancer cell lines (SAS and SCC9) and VCR-resistant oral cancer
cells (SASV16, SASV32, SCC9V16, and SCCIV32) were treated with
varying melatonin concentrations (0.5-2 mM). The 3-(4, 5-dime-
thylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay
revealed that even after a treatment of 72 h with the highest concen-
tration of melatonin, the viability of SAS and SCC9 cell lines remained
the same. Notably, four VCR-resistant oral cancer cells were evidently
inhibited by the melatonin treatment (Figure 1A). Furthermore, to
determine the anti-cell proliferative ability of melatonin for VCR-
resistant oral cancer cells, colony-formation data were arranged to
investigate the influence of melatonin on VCR-resistant oral cancer
cells during a long-term treatment. Figures 1B and 1C illustrate
that melatonin (0.5 mM) significantly suppressed the colony-forming
ability of four VCR-resistant oral cancer cells. Thus, melatonin in-
hibited VCR-resistant oral cancer cell survival and proliferation.

Melatonin Induced the Apoptosis of VCR-Resistant Oral Cancer
Cell and Reduced Mitochondrial Membrane Potential

We further investigated the reason for the inhibition of VCR-resistant
oral cancer cell survival and proliferation by melatonin. First, apoptosis
induction was identified. As presented in Figure 2A, the chromatin
condensation of VCR-resistant oral cancer cell lines gradually
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Figure 2. The Influence of Melatonin on Cell Apoptosis in VCR-Resistant Oral Cancer Cells

(A) Four VCR-resistant oral cancer cells were treated with melatonin (2 mM) for 24 h, and then DAPI staining. (B) Apoptosis cells were measured by Muse Cell Analyzer Assays.
(C) Mitochondrial membrane potential was performed by Muse Cell Analyzer Assays. (D) The expression change of cleaved caspase-3, —9, and PARP were analyzed by
specific primary antibody, respectively. (E) Bar graphs represent the relative density of each band normalized to B-actin. The experiments were repeated at least three times.
Values are presented as the mean + SE of three independent experiments. “p < 0.05, compared with the control group.

increased after melatonin treatment. Membrane phosphatidylserine
translocation and late apoptosis were observed in melatonin-treated
VCR-resistant oral cancer cell lines (Figure 2B). Flow cytometry data
indicated that melatonin induced the depolarization of the transmem-
brane potential (Am) in VCR-resistant oral cancer cell lines (Fig-
ure 2C). In addition, the expression of activated apoptotic caspase-3,
caspase-9, and cleaved poly (ADP-ribose) polymerase (PARP) was
significantly upregulated (Figures 2D and 2E). Thus, melatonin
induced the apoptosis of VCR-resistant oral cancer cells.

Melatonin-Induced Autophagy in VCR-Resistant Oral Cancer
Cells

Studies have indicated that autophagy is involved in cell survival and
programmed death.”>**> As shown in Figure 3A, LC3-II reflected a
melatonin-induced autophagic activity, which was detected using
the immunofluorescence and immunoblotting of VCR-resistant
oral cancer cell lines (Figures 3C and 3D). The formation of autopha-

gic vacuoles that was detected using specific fluorescent dyes, such as
acridine orange (AO), confirmed melatonin-induced autophagy. The
melatonin treatment increased acidic vesicular organelle (AVO) for-
mation in VCR-resistant oral cancer cell lines (Figure 3B). Moreover,
SQSTMI and beclin-1 were upregulated in melatonin-treated VCR-
resistant oral cancer cell lines (Figures 3C and 3D). To further explain
the relationship between melatonin-induced apoptosis and auto-
phagy, we combined the melatonin treatment with one of the pre-
treatments using z-VAD-FMK, wortmannin, or baﬁlornycin A. As
illustrated in Figures 3E and 3F, living cells were slightly affected after
melatonin treatment with wortmannin or bafilomycin A group. Thus,
melatonin induced autophagy in VCR-resistant oral cancer cells.

Melatonin Reduced the Expression of MDR Proteins ABCB1 and
ABCB4 in VCR-Resistant Oral Cancer Cells

To explain the molecular mechanism, we measured the melatonin-
induced inhibition of cell viability in VCR-resistant oral cancer
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Figure 3. Melatonin Causes Autophagy in VCR-Resistant Oral Cancer Cells

(A) Four VCR-resistant oral cancer cells were treated with vehicle or melatonin (2 mM) for 24 h, and then cells were stained with Cell Meter Autophagy Assay Kit fluorescent
dye. After staining, cells were observed under a fluorescence microscope, which is an indicator of autophagosome formation. (B) After treatment, cells were stained with
acridine orange (AO) for acidic vesicular organelles (AVOs) formation, which was examined under a fluorescence microscope. The amount of AVOs (orange-red fluorescence)
can be used as a marker of autophagosomes. (C) A representative western blot for expression of LC3-I/Il, SQSTM1, and Beclin-1 in cells were treated with increasing
concentrations of melatonin. (D) Bar graphs represent the relative density of each band normalized to B-actin. (E) SASV16 and SASV32 oral cancer cells were pretreated with
z-VAD-FMK (20 pM), wortmannin (50 uM), or bafilomycin A (1 nM) for 2 h followed by treatment with or without melatonin (2 mM) for 24 h. (F) SCC9V16 and SCC9OV32 oral
cancer cells were pretreated with z-VAD-FMK (20 uM), wortmannin (50 uM), or bafilomycin A (1 nM) for 2 h followed by treatment with or without melatonin (2 mM) for 24 h.
Cell viability was analyzed by MTT assay. The experiments were repeated at least three times. Results are shown as mean + SEM. *p < 0.05, compared with the control group.

#p < 0.05, compared with the only melatonin group.

cell-conditioned medium with and without VCR. Although melatonin
treatment alone also inhibited cell survival in the conditioned medium
without VCR, a more pronounced effect was observed in the condi-
tioned medium with VCR (Figures 4A and 4B). The gene-expression
array analysis and real-time PCR data of ATP-binding cassette (ABC)
transporter superfamily revealed that the expression of ABCBI,
ABCB4, and ABCG2 genes in oral cancer cells and VCR-resistant oral
cancer cells was significantly different (Figures 4C-4E). Immunoblot
data confirmed that the expression of ABCB1, ABCB4, and ABCG2
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significantly increased in VCR-resistant oral cancer cells (Figures 4F
and 4G). To further clarify the gene expression of ABCB1, ABCB4,
and ABCG2 in melatonin-treated VCR-resistant oral cancer cell lines,
we treated cells with melatonin in a conditioned medium with VCR
for 24 h. As illustrated in Figures 4H and 41, ABCB1 and ABCB4 expres-
sion decreased in melatonin-treated VCR-resistant oral cancer cell lines.
In the conditioned medium without VCR, the gene expression of
ABCBI, ABCB4, and ABCG2 gradually decreased within 24 h (Figures
4] and 4K). Thus, we confirmed that the expression of ABCB1, ABCB4,
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Figure 4. The Influence of Melatonin on ABCB1 and ABCB4 Expression in VCR-Resistant Oral Cancer Cells

(Aand B) (A) SASV16 and SASV32 and (B) SCC9OV16 and SCCIV32 oral cancer cells were treated with/without melatonin (2 mM) in conditioned medium (with/without VCR)
(16 nM or 32 nM), and then analyzed by MTT assay. (C) Heatmap depiction of ABC transporter superfamily gene differentially expressed between SCC9 cells versus
SCC9V16 cells, analyzed by gene-expression array plates. (D) Average expression fold change in ABC transporter superfamily gene expression. (E) Quantified PCR validation
of differentially expressed genes between oral cancer cells and VCR-resistant oral cancer cells selected from the microarray analysis. (F) The expression of ABCB1, ABCB4,
and ABCG2 between oral cancer cells and VCR-resistant oral cancer cells. (G) Bar graphs represent the relative density of each band normalized to B-actin. (H) The
expression of ABCB1, ABCB4, and ABCG2 was treated with melatonin (0.5-2 mM). () Bar graphs represent the relative density of each band normalized to B-actin. (J) Cells
were incubated with melatonin (2 mM) for the indicated time intervals and the expression levels of ABCB1, ABCB4, and ABCG2 were examined by western blot. (K) Bar
graphs represent the relative density of each band normalized to B-actin. All experiments were repeated at least three times. Results are shown as mean + SEM. *p < 0.05,
compared with the control group. #p < 0.05, compared with the only melatonin group.

and ABCG2 gradually decreases without VCR. Therefore, melatonin not
only suppressed VCR-resistant oral cancer cell line survival but also up-
regulated the susceptivity of VCR-resistant oral cancer cell line toward
VCR, reducing the expression of ABCB1 and ABCB4.

Significant Antitumor Proliferative Effects of Melatonin in a VCR-
Resistant Oral Orthotopic Graft Model

To investigate the influence of melatonin on antitumor growth, we
investigated antitumor activity of this molecule in vivo. In SASV32 can-
cer cell models, tumor size progressively increased, as observed in con-
trol animals. On day 28, both the average tumor volume and weight in
melatonin-treated (200 mg/kg) mice were lower than those in vehicle-
treated mice (Figures 5A and 5B). Average body weight was no
different (Figure 5C). Cell proliferation detected using the immunohis-

tochemistry (IHC) analysis indicated that the number of Ki67-positive
tumor cells decreased in melatonin-treated mice (Figures 5D and 5E).
Moreover, ABCB1 and ABCB4 expression decreased in the melatonin-
treated tumor specimens (Figures 5F and 5G). Thus, melatonin treat-
ment exhibited an antitumor proliferative effect and inhibited
ABCBI and ABCB4 expression in SASV32 cancer cells in mice.

Melatonin Reduced Drug Resistance and Promoted VCR-
Resistant Oral Cancer Cell Apoptosis through Induction of miR-
34b-5p and miR-892a Expression

Some microRNAs (miRNAs) have been reported to adjust drug-resis-
tance gene expression or induction.**** ABCBI1 was the immediate
target of miR-34b; miR-34b upregulated apoptosis induction and
enhanced the anticancer drug susceptibility of cancer cells."” CYP1A1

Molecular Therapy: Nucleic Acids Vol. 19 March 2020 881
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was the goal of miR-892a.>" To clarify the molecular mechanism for the
melatonin-induced inhibition of ABCB1 and ABCB4, we analyzed the
expression of miRNA genes associated with ABC transporter proteins.
miRNA gene expression array and real-time PCR results revealed that
the expression level of miR-34b-5p and miR-892a apparently decreased
in VCR-resistant oral cancer cells (Figure 6A). miR-34b-5p and miR-
892a levels were elevated in melatonin-treated VCR-resistant oral can-
cer cell lines (Figures 6B and 6C). miR-34b-5p and miR-892a were
repressed in melatonin-treated VCR-resistant oral cancer cell lines
with specific miRNA inhibitors (Figures 6D and 6E). The expressions
of ABCB1 and ABCB4 decreased in miR-34b-5p and miR-892a in mela-
tonin-treated VCR-resistant oral cancer cell lines (Figures 6F and 6G).

Expression of miR-34b-5p and miR-892a Was Associated with
Melatonin-Induced Apoptosis, but Not With Autophagy

To investigate the association between melatonin-induced miR-34b-5p
and miR-892a expression, apoptosis, and autophagy, we analyzed the

882 Molecular Therapy: Nucleic Acids Vol. 19 March 2020

expressions of related proteins. The expression of cleaved PARP and
cleaved caspase-3 decreased under the combination treatment of mela-
tonin and miR-34b-5p or miR-892a inhibitors (Figures 7A and 7B).
However, autophagosomal markers, LC3-II and SQSTM1, were unaf-
fected by the combination treatment of melatonin and miR-34b-5p or
miR-892a inhibitors (Figures 7C and 7D). Moreover, chromatin
condensation in nuclei significantly decreased with the combination
treatment of melatonin and miR-34b-5p or miR-892a inhibitors (Fig-
ures 7E and 7F). The autophagosomal marker LC3-II detected using
immunofluorescence indicated that the melatonin-induced autophagic
activity was unaffected by the combination treatment of melatonin and
miR-34b-5p or miR-892a inhibitors (Figure 7G).

Melatonin-Induced Apoptosis and Autophagy in VCR-Resistant
Oral Cancer Cells Were Regulated by AKT, p38, and JNK

The mitogen-activated protein kinase (MAPK) pathway was used to
adjust various cell reactions including cell survival, proliferation,
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differentiation, and death.”’ The phosphorylation of phosphatidylino-
sitol 3-kinase (PI3K), ERK1/2, and JNK1/2 was upregulated in mela-
tonin-treated VCR-resistant oral cancer cell lines (Figures 8A and
8B). In addition, the activation of AKT and p38 was significantly in-
hibited in a concentration-dependent manner. The expression of
cleaved PARP increased after combination treatment with melatonin
and LY294002 inhibitors, whereas it decreased after combination treat-
ment with melatonin and SP600125 inhibitors. Moreover, LC3-1I
expression was increased by the combination treatment of melatonin
and SB203580 inhibitors, whereas it was reduced by the combination
treatment of melatonin and SP600125 inhibitors (Figures 8C and
8D). LY294002 or SP600125 inhibitors in combination with the mela-
tonin treatment influenced cell viability in VCR-resistant oral cancer
cell lines (Figure 8E). Apoptotic cells improved with the combination

treatment of melatonin and LY294002, a selective PI3K inhibitor (Fig-
ures 8F and 8G). In addition, autophagy induction ratios increased with
the combination treatment of melatonin and SB203580, which is a spe-
cific inhibitor targeting the p38-MAPK pathway. However, both
apoptotic cells and the autophagy induction ratio decreased after com-
bination treatment with melatonin and SP600125.

DISCUSSION

Because patients often respond unfavorably to combination chemo-
therapies, drug resistance is a major challenge in improving drug
response and overall survival among patients with cancer. In this pa-
per, MDR refers to the resistance of cells to numerous drugs used in
cancer treatment. The main mechanism causing MDR phenotype is
the overexpression of drug efflux transporters. Li et al.”> reported
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Figure 7. Relationship of miR-34b-5p and miR-892a with Melatonin-Induced Apoptosis and Autophagy

(A) After transfection with miR-34b-5p inhibitor (1 uM) or miR-892a inhibitor (1 uM) for 24 h, melatonin (2 mM) treatment for an extra 24 h. Protein expression were detected by
specific primary antibody, respectively. (B) Bar graphs represent the relative density of each band normalized to B-actin. (C) Cells were transfected with miR-34b-5p inhibitor
(1 uM) or miR-892a inhibitor (1 uM) for 24 h, and then melatonin (2 mM) treatment for an extra 24 h. Protein expression was detected by specific primary antibody,
respectively. (D) Bar graphs represent the relative density of each band normalized to B-actin. (E) After treatment, cells were fixed and stained with DAPI solution. Nuclear
fragmentation and condensation were observed under fluorescence microscope. (F) Bar graphs represent the relative density of nuclear fragmentation and condensation. (G)

Results were examined under a confocal microscope. All experiments were repeated at
control group. #p < 0.05, compared with the only melatonin (2 mM) group.

that ethyl lucidenates A, a pure compound of Ganoderma lucidum,
inhibits efflux transport and increases the intracellular accumulation
of VCR. Hyperin, a flavonoid compound found in Ericaceae, Gutti-
ferae, and Celastraceae, treated with VCR markedly reduces P-gp
expression in VCR-resistant colon cells.”” Reducing the P-gp perfor-
mance upregulates the susceptivity of drug-resistant cancer cell lines
to chemotherapeutic drugs and promotes death.
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least three times. Results are shown as mean + SEM. *p < 0.05, compared with the

Melatonin is an indoleamine synthesized by the mitochondria and
chloroplasts of both animals and plants. Melatonin-protective
leukocyte apoptosis depends on the antioxidant action of mela-
tonin, and the protection is melatonin-receptor independent.’
Melatonin treatment significantly reduced both hydrogen peroxide
and superoxide anion levels due to free-radical scavenging proper-
ties and enhanced leucocyte viability.”® It also was considered a
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Figure 8. The Effect of Melatonin-Induced Apoptosis and Autophagy on Activation of AKT and MAPKs in VCR-Resistant Oral Cancer Cells

(A) The expression change of PI3K, AKT, p38, ERK1/2, and JNK1/2 in cells. (B) Bar graphs represent the relative density of each band normalized to B-actin. (C) Cells were
pretreated with LY (LY294002), U (U0126), SB (SB203580), or SP (SP600125), and then treated with melatonin for 24 h. Effects of the inhibition of AKT, ERK1/2, p38, and
JNK1/2 were assessed by specific primary antibody, respectively. (D) Bar graphs represent the relative density of each band normalized to B-actin. (E) Living cells were
detected by MTT assay. (F and G) Apoptosis cells (F) and autophagy induction (G) ratio were detected by Muse Cell Analyzer Assays. All experiments were repeated at least
three times. Results are shown as mean + SEM. *p < 0.05, compared with the control group. #p < 0.05, compared with the only melatonin (2 mM) group.

potential tool against oxidative damage and apoptosis.”” The ef-
fects of melatonin on MDR human cancer cells remain largely un-
known. To date, few studies have discussed the relationship be-
tween melatonin and MDR. Fan et al.>* indicated that melatonin
increased C/EBP homologous protein (CHOP) expression and
improved the cellular cytotoxic effects of doxorubicin, reducing
the survival of cancer cells. Melatonin increased the ABCG2/
BCRP expression, function, and promotor methylation.”> Mela-
tonin-induced acetylation caused high clofarabine-induced cyto-
toxicity in drug-resistant cells.”® Melatonin sensitized cervical can-
cer cells to cisplatin-induced cytotoxicity and apoptosis.*’
Melatonin increased the sensitivity of colorectal adenocarcinoma
cells toward 5-fluorouracil (FU) treatment.*’ Moreover, Xiang
et al."® reported that doxorubicin resistance was driven by the
disruption of melatonin signal in breast cancer. Our study deter-
mined the effect of melatonin on VCR-resistant oral cancer cells
and its mediation mechanism.

SASV16, SASV32, SCCIV16, and SCCIV32 represented cell lines
with different degrees of tolerance to VCR concentrations. In our
study, melatonin inhibited cell survival and proliferation under
low-concentration and long-term treatment (0.5 mM, 72 h). Howev-
er, melatonin did not alter the viability in SAS and SCC9 cell lines
(Figure 1). These results are in accordance with those of studies on
the association between melatonin and other cancer cells.”* >’
Melatonin caused VCR-resistant oral cancer cell apoptosis and auto-
phagy (Figures 2 and 3). Autophagy is involved in cancer cell survival,
maintenance, and death.”>”” Autophagy is defined as a mechanism of
programmed cell death (PCD).*° Our study indicated that melatonin-
induced autophagy plays a cell-survival role in melatonin-induced
VCR-resistant oral cancer cell death.

Melatonin treatment alone also inhibited cell survival in the condi-

tioned medium without VCR (Figures 4A and 4B). ABCBI,
ABCB4, and ABCG2 expression decreased gradually for 24 h in the
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conditioned medium without VCR (Figures 4] and 4K). Therefore,
melatonin can inhibit VCR-resistant oral cancer cell line survival.
Moreover, melatonin treatment in the conditioned medium with
VCR exhibited a more pronounced effect. Thus, melatonin upregu-
lated the susceptivity of VCR-resistant oral cancer cell lines by inhib-
iting ABCBI and ABCB4 expression (Figures 4H and 4I). Similarly,
an antitumor proliferation effect and the inhibition of ABCB1 and
ABCB4 expression were observed in melatonin-treated SASV32 can-
cer cells in vivo (Figure 5).

miRNAs are potential druggable targets for MDR cancer chemo-
therapy.®' ®® Some miRNAs have been reported to adjust drug-resis-
tance gene expression or induction.**"** ABCB1 was reported as the
immediate target of miR-34b; miR-34b upregulation apoptosis induc-
tion enhanced the anticancer drugs susceptibility of the cancer cells.*’
Moreover, miRNAs exerted deep cellular influences on the adjust-
ment of the cytochrome P450 (CYP) family. CYP1A1 was reported
as the goal of miR-892a.”° miR-34b-5p and miR-892a were downre-
gulated in VCR-resistant oral cancer cell lines more than they were
downregulated in SAS and SCC9 cell lines (Figure 6). Melatonin-
induced miR-34b-5p and miR-892a expression influenced ABCB1
and ABCB4 expression, and these proteins were the direct targets
of miR-34b-5p and miR-892a. The expression of cleaved PARP and
cleaved caspase-3 decreased on combination treatment with mela-
tonin and miR-34b-5p or miR-892a inhibitors. However, LC3-II
and SQSTMI remained unaffected (Figure 7). These findings indi-
cated that melatonin exhibited the ability to promote apoptosis and
increased VCR drug sensitivity by increasing miR-34b-5p and miR-
892a expression in VCR-resistant oral cancer cell lines.

In conclusion, the results determined that miR-34b-5p and miR-892a
perform a crucial regulating task in the VCR drug resistance of MDR-
resistant oral cancer cell lines. In vivo and in vitro findings suggested
that melatonin increases miR-34b-5p and miR-892a expression, re-
duces ABCB1 and ABCB4 expression, promotes apoptosis, and in-
creases drug sensitivity. Melatonin was observed to be a potential
novel chemotherapeutic agent for VCR-resistant oral cancer cell lines.

MATERIALS AND METHODS

Chemicals

Melatonin (purity >99%) was obtained from Santa Cruz Biotech-
nology (Santa Cruz, CA, USA). It was dissolved in dimethyl sulfoxide
(DMSO) and diluted with culture medium to the aimed concentra-
tion on experimental day. The final concentration of DMSO for all
treatments was consistently less than 0.1%. Cell culture reagents
were obtained from Invitrogen (Carlsbad, CA, USA). The VCR, Coo-
massie brilliant blue, MTT, 4',6-diamidino-2-phenylindole (DAPI)
dye, protease inhibitor cocktail, phosphatase inhibitor cocktail, and
AO were purchased from Sigma-Aldrich (St. Louis, MO, USA). Nega-
tive inhibitor (miRNA inhibitor negative control), miRNA-34b-5p
inhibitor, and miRNA-892a inhibitor were purchased from Clontech
(CA, USA). Antibody against cleaved PARP, cleaved caspase-3, -9,
LC3, SQSTM1, Beclin-1, ABCBI1, ABCG2, p-AKT, AKT, p-ERK1/2,
ERK1/2, p-p38, p38, p-JINK1/2, JNK1/2, and B-actin were purchased
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from Cell Signaling Technology (Danvers, MA, USA). Antibody
against ABCB4 was obtained from MyBioSource (San Diego, CA,
USA). Specific inhibitors for AKT inhibitor (LY294002), ERK1/2
(U0126), p38 MAPK (SB203580), JNK (SP600125), wortmannin, ba-
filomycin Al (Baf A1), and z-VAD-FMK were obtained from Santa
Cruz Biotechnology (Santa Cruz, CA, USA).

Cell Culture

Oral cancer cell lines (SAS and SCC9) were purchased from American
Type Culture Collection. SAS cells were cultured in Dulbecco’s modi-
fied Eagle medium (DMEM)/F12 medium supplemented with 10%
fetal bovine serum (FBS), 1 mM glutamine, 1% penicillin/strepto-
mycin (10,000 U/mL penicillin and 10 mg/mL streptomycin),
25 mM HEPES (pH 7.4), 1.5 g/L sodium bicarbonate, and 1 mM so-
dium pyruvate (Sigma, St. Louis, MO, USA). SCC9 cells were cultured
in DMEM/F12 medium supplemented with 10% FBS, 0.1 mM non-
essential amino acids (NEAA), 1% penicillin/streptomycin, 1 mM
glutamine, 1.5 g/L sodium bicarbonate, hydrocrostine (0.4 mg/L),
25 mM HEPES (pH 7.4), and 1 mM sodium pyruvate. Drug-resistant
oral cancer cell lines were established as previously described.”* The
VCR-resistant subline kept at 16 nM VCR represents SAS/V16 and
SCC9/V16. The VCR-resistant subline kept at 32 nM VCR represents
SAS/V32 and SCC9/V32.

Cell Cytotoxicity

Cells were seeded into 96-well plates at a density of 0.5 x 10° cells/mL
and grown overnight. After melatonin treatment, MTT (5 mg/mL)
was treated in conditioned medium followed by incubation in cell cul-
ture box (4 h, 37°C). The supernatant was discarded, and DMSO was
added to restore the formazan crystals. Finally, data were calculated
by measuring the absorbance (595 nm wavelength).

Colony-Formation Assays

As previously described.®® Cell lines were seeded at a concentration of
5 x 10? cells in 6-well cell culture plates in appropriate media. Cells
were assigned and incubated, and media contained melatonin at
0.5, 1, and 2 mM. Incubation medium changed every 3 days. After
2 weeks, medium was removed and colonies were fixed with formalin,
stained with 0.5% crystal violet, and counted using a stereomicro-
scope. Colonies of greater than 50 cells were counted.

DAPI Staining

As previously described.®® Cells (1 x 10*) were grown in 8-well glass
coverslips followed by treatment with melatonin (2 mM) for 24 h.
Cells were morphologically fixed for 20 min (4% paraformaldehyde)
and then DAPI dye (50 ng/mL) was stained for 20 min. The nuclear
morphological changes related to apoptosis were assessed in at least
500 cells. The images were instantly visualized by confocal micro-
scope (Olympus FluoView FV 1200 Confocal Microscope).

Annexin V/Pl Double Staining

As previously described,®® cells (1 x 10°) were harvested and sus-
pended in 100 pL PBS with 2% BSA after treatment. Cells were
then stained with Muse Annexin V & Dead Cell Reagent (100 pL)
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for 20 min at room temperature in the dark. The signals were
analyzed by the Muse Cell Soft V1.4.0.0 Analyzer Assays (Millipore).

Mitochondrial Membrane Potential Assay

As previously described,”” cells were harvested and collected (300 x g,
5 min). Treatment cell precipitates were stained with Muse MitoPo-
tential dye (20 min, 37°C), and then 7-AAD was added for 5 min. The
experiment signals were analyzed by the Muse Cell Soft V1.4.0.0
Analyzer Assays (Millipore).

Western Blot Analysis

As previously described.®” Cells were harvested and lysed in radio-
immunoprecipitation assay (RIPA) buffer (with protease/phospha-
tase inhibitor) (Rocho). Equal 20-40 pg of total protein were
analyzed by SDS-PAGE, following transfer to 0.22 or 0.45 pm pol-
yvinylidene fluoride (PVDF) membranes (Millipore, Bedford, MA)
as previously described.®” Blocking with skim milk (3%-5%) or
0.1% BSA. After appropriate primary antibodies (antibody against
cleaved PARP, cleaved caspase-3, -9, LC3, SQSTM1, Beclin-1,
ABCBI, ABCG2, p-AKT, AKT, p-ERK1/2, ERK1/2, p-p38, p38,
p-JNK1/2, JNK1/2, B-actin, and ABCB4; dilutions ratio 1:1,000)
incubation (4°C, overnight), membranes were washed and incu-
bated for 1 h at room temperature with the appropriate secondary
antibodies (anti-rabbit, anti-mouse; dilutions ratio 1:5,000) conju-
gated to horseradish peroxidase (HRP). Membranes were visual-
ized using a chemiluminescence (ECL) detection kit (Millipore).
The signals were examined and the relative photographic density
was quantitated by ImageQuant LAS 4000 mini (GE Healthcare
Life Sciences).

Detection of Autophagosomes and AO

As previously described,”” cells were grown in 8-well glass coverslips
followed by treatment with DMSO (vehicle) or indicated concentra-
tions of melatonin for 24 h. Cells were stained with Cell Meter Auto-
phagy Assay Kit (green fluorescence) (AAT Bioquest) or 1 pg/mL AO
(30 min, 37°C). Autophagosomes and AO images were observed un-
der confocal microscope (Olympus FluoView FV 1200 Confocal
Microscope).

Gene-Expression Analysis

Total cellular RNA and cDNA were prepared with the TagMan
Reverse Transcription Reagents as previously described.”® Quantita-
tive PCR reactions were run by assaying each sample in triplicate
using the TagMan Gene Expression Assays (Applied Biosystems,
Carlsbad, CA) or 96-well TagMan Array plates with StepOne Real-
Time PCR System. Levels of mRNA expression were normalized to
GAPDH mRNA levels, and differences between samples were
analyzed using the delta-delta-Ct (ddCT) method. For quantitative
RT-PCR assessment of miRNAs, RNA was extracted from cell lines
using Quick-RNA MiniPrep Kit, following the manufacturer’s in-
struction (Integrated Sciences), and gene expression was assessed us-
ing Mir-X miRNA First-Strand Synthesis Kit (Clontech, CA, USA).
Normalization was performed using U6 as
following PCR primer sequences were used: has-miR-892a,

controls. The

5'-CACTGTGTCCTTTCTGCGTAG-3’; has-miR-34b-5p, 5'-d TA
GGCAGTGTCATTAGCTGATTG-3'.

In Vivo Anti-Tumor Growth Effects on Xenograft Transplantation
As previously described.®® 5-week-old C57BL/6 mice (18-22 g) were
used (National Taiwan University Animal Center, Taiwan).%®
SASV32 cells injected subcutaneously (s.c.) into mice right flank
(2 x 10°/PBS). As previously described,”” melatonin was adminis-
tered 1 h before switching off the room lights. The mice were
kept in a pathogen-free environment at the Laboratory Animal
Unit (temperature 22°C, humidity 30%~70%, 5 mice/cage). The
control group (5 mice/group) received an equal volume of 0.5% car-
boxymethyl cellulose vehicle. 7 days after injection, the mice were
orally fed melatonin (200 mg/kg) or vehicle three times per week.
All animal experiments were conducted in accordance with the
institutional animal welfare guidelines of the IACUC of the Chan-
ghua Christian Hospital.

Tumor IHC

As previously described,’® slides were deparaffinized, rehydrated, and
blocked. The antigen was retrieved in 10 mM pH 6.0 citrate buffers
(100°C, 20 min). After primary and secondary antibodies were incu-
bated, and HRP (1 mg/mL)/Fab polymer conjugate (30 min); H&E
stain which was used as a light counterstain.

miRNA Inhibitor Transfection

Based on the manufacturer’s protocol, cells were distributed under a
concentration of 1 x 10* (96-well) or 5 x 10° cells (6 cm dish) as pre-
viously described.”’ After 12 h of incubation, negative inhibitor
(miRNA inhibitor negative control; 1 pM), miRNA-34b-5p inhibitor
(I uM), or miRNA-892a inhibitor (1 M) was transfected by Xfect
RNA Transfection Reagent (Clontech, CA, USA). After 24 h of trans-
fection, cells were treated with vehicle or melatonin (2 mM) for 24 h.
Cell lysates were harvested and protein expressions were determined
by western blot analysis.

Statistical Analysis

Statistical analysis was performed by one-way ANOVA. Tukey’s post
hoc test was used when more than three groups were analyzed. Stu-
dent’s t test (Sigma-Stat 2.0, Jandel Scientific, San Rafael, CA, USA)
was arranged for comparison among two different groups. In all cases,
p value < 0.05 was considered as statistically significant. All results are
shown as mean + SEM. *p < 0.05, compared with the control. #p <
0.05, compared with the only melatonin (2 mM).
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