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Fast temporal dynamics and causal relevance of
face processing in the human temporal cortex
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We measured the fast temporal dynamics of face processing simultaneously across the
human temporal cortex (TC) using intracranial recordings in eight participants. We found
sites with selective responses to faces clustered in the ventral TC, which responded
increasingly strongly to marine animal, bird, mammal, and human faces. Both face-selective
and face-active but non-selective sites showed a posterior to anterior gradient in response
time and selectivity. A sparse model focusing on information from the human face-selective
sites performed as well as, or better than, anatomically distributed models when dis-
criminating faces from non-faces stimuli. Additionally, we identified the posterior fusiform
site (pFUS) as causally the most relevant node for inducing distortion of conscious face
processing by direct electrical stimulation. These findings support anatomically discrete but
temporally distributed response profiles in the human brain and provide a new common
ground for unifying the seemingly contradictory modular and distributed modes of face
processing.
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tudies using lesion methods!?, functional imaging tools3-6,

or scalp encephalography (EEG)” and magnetoencephalo-

graphy®® have offered invaluable causal, spatial, and
temporal information about the neural mechanisms of face pro-
cessing in the human brain. Work in non-human primates!0-1°
has also provided important and novel insights. However, despite
great progress, the long-lasting controversy between modular
versus distributed models of face processing has persisted in the
literature!®, Some studies have revealed face-selective responses in
anatomically discrete regions of the temporal cortex (TC)>, and
other observations have shown that the pattern of responses to
face stimuli can be discerned from sampled data from non-
selective regions of the TC!7, suggesting that face information is
anatomically distributed. Both theories have unfortunately relied
on the information with limited temporal resolution averaged
over multiple seconds or from methods using regions of interest
and averaging across subjects, or direct recordings from a single
or a pair of recording sites. Thus, the fast temporal dynamics of
face processing across a large extent of the cerebral cortex within
individual brains remains poorly explored.

Intracranial recordings in neurosurgical subjects with a large
number of electrodes spread over a relatively large extend of the
cortical surface—a method known as electrocorticography
(ECoG)!8—offers a new opportunity for acquiring fast temporal
information from precisely localizable sources of signal. This
method offers millisecond temporal resolution and millimeter
anatomical precision in the subject’s own native brain space.
Unlike the uniform spatial coverage of imaging methods, intra-
cranial EEG (iEEG) relies on sampling from a limited number of
implanted areas and leaves behind regions outside the coverage
zones. While this leads to limited anatomical sampling, it may
provide sufficient coverage for recording simultaneously from
many sites within each individual brain, in order to explore the
spatiotemporal dynamics of activity across different cortical areas.
In addition, the intracranial approach allows delivering electrical
pulses to discrete neuronal populations while causal changes in
the subjective experience of the participant can be probed.

Using simultaneous recording across a relatively large area of
the human brain one could test the hypothesis that face infor-
mation is first processed within the most face-selective sites that
are anatomically discrete and localizable within individual brains,
which then is distributed to less selective sites.

While recent intracranial recordings and stimulation studies
including our own2>28, have addressed the neurophysiological
underpinnings of face processing in the human brain, to our
knowledge, these studies have yet to address the notion of anato-
mical selectivity and temporal distribution of face information.
The current study was designed to rely on a multiprong approach
using univariate and multivariate methods of recording, as well
as causal probing with electrical stimulation to test our proposed
hypothesis.

We would like to emphasize here that the aim of the study was
not to decipher the complex computational code of face per-
ception in the human brain. Specifically, the study was not
designed to address the nature of face processing in face-selective
or non-selective sites. Studies in primate brains are perhaps better
suited for that purpose. The goal of our work was twofold: (1) to
explore the timing of response across different regions of the TC
and test if there is distribution of face information in time, and
(2) whether the stimulation of face-responsive sites cause the
same effect in conscious viewing of faces. Here and in the
remainder of the text, we will use the term “site” as the cortical
region underneath a given electrode (~2 mm diameter). We use
the term “face-selective site” to imply that neuronal responses in
that site are significantly higher to face stimuli than non-face
stimuli. We use the term “task-active site” to refer to sites in
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which visual objects induce significant activations compared to
baseline, but responses to faces are not significantly different than
responses to non-face stimuli.

Simultaneous recordings over a relatively large mantle of the
human TC allowed us to address our two overarching questions.
Here, we report that about half of recording sites show non-
selective responses to at least one category of stimuli and only
10% of the sites have selective activations to face stimuli.
Responses to face stimuli in the “task-active sites” are weak and
correlate to the face responses present in face-selective sites. Both
face-selective and task-active sites display a posterior to anterior
gradient of selectivity as well as timing, suggesting that face
information is distributed anatomically and in time. Finally, we
report that only the stimulation of the posterior fusiform site
(pFUS) region of the fusiform face areas (FFAs) appears to affect
face perception.

Results

Data and design. We recruited eight neurosurgical patients
implanted with ECoG electrodes as part of their presurgical
invasive evaluation for medication-resistant focal epilepsy.
Subjects had unilateral electrode implantation in the right (five
subjects) or left (three subjects) hemisphere (Supplementary
Table 1). Electrodes across all subjects (n = 357) provided suitable
coverage over the ventral and lateral TC.

We recorded from each of the 357 implanted electrodes with
high temporal resolution (>1000 samples per second) while the
subjects performed a visual task, in which they viewed images of
faces (human, mammal, bird, and marine), and non-faces,
including bodies without faces (same four categories), limbs
(human), objects, and places. Randomly, a red hashtag sign
appeared on the screen (without any other superimposing
images) at which time the subjects were instructed to press a key.

Encoding of face information in the TC. We quantified face
information (i.e., the ability to discriminate faces from non-faces
stimuli) in narrow bands of frequencies (6: 4-7 Hz, a: 8-12 Hz,
B1: 13-29 Hz, B,: 30-39 Hz, and y: 40-69 Hz) as well as High-
Frequency Broadband (HFB, 70-177 Hz) signals using univariate
tests and a multiple kernel learning (MKL)*® method configured
for iEEG signals’. Compared to the power of any other
frequency band, the signal in the HFB showed the strongest
univariate and multivariate changes in response to faces relative
to non-faces (Fig. 1b, Supplementary Table 2). Similarly, the
signal in the HFB was favored over evoked response potentials
(ERPs) in a multivariate analysis. Given these findings, we
focused further analyses on the HFB power and its profile of
response across anatomical sites and task conditions.

We are mindful that the richness of the intracranial
electrophysiological signal could have been explored by analyzing
the power or phase of slower frequencies, or their coupling with
higher frequencies!. However, the HFB signal is well suited for
the purpose of testing our predictions not only because of our
MKL findings, but also because of the large body of evidence from
other human32-37 and non-human3®-43 studies (as summarized
in ref. !8) that have confirmed HFB power as a reliable
correlate of hemodynamic signal and averaged single and
multiunit activity of a population of neurons in a given cortical
site. More importantly, HFB has a more precise anatomical
source compared to lower frequencies!8. The HFB signal hence
provides a suitable marker for the engagement of a given cortical
site in a given function. Similarly, the time of onset and the power
of HFB provide valuable information about the time and level of
engagement of a population of neurons adjacent to the recording
electrode*!42,
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Fig. 1 Effect of species on face coding. a Task-active and human face-selective sites across subjects in HFB. The coordinates of the electrodes from left
hemisphere subjects were mirrored such that all sites could be displayed on a single hemisphere. Among the 357 included TC sites (represented by black
diamonds), 190 were task active (represented by circles) as defined by permutation tests (i.e., presenting a significant response to at least one category).
The difference between their response to human faces and non-face stimuli are displayed as a color-coded fill. In total, 48 task-active sites were identified
as selective for human faces (represented with a pink contour). b HFB activity has the highest contribution in the discrimination between human faces and
non-faces, within and across subjects. The results of the MKL model are plotted as box plots of the frequency band contributions to the model across the
eight subjects, with the median represented by a red line. Similarly, HFB is favored over ERPs in an MKL model combining HFB power and ERPs. ¢ HFB
amplitude averaged within the [150 500]ms time window after onset for each of the four subcategories, in face-selective (left) and task-active sites (right).
Coloring and initials represent the face subcategories: human (H/pink), mammal (M/blue), bird (B/orange), and marine (Ma/green). For face-selective
sites, significant differences can be found (paired permutation tests, displayed by a black bracket) between the HFB responses to human faces and the
mammal, bird, and marine faces, as well as between the mammal and the bird and marine faces. There is no significant difference between the responses
to bird and marine faces. For task-active sites (i.e., active but not face selective), significant differences can be found between the bird faces and the human

and mammal faces.

Using HFB activity, we found a heterogeneous profile of
responses across recordings sites (Supplementary Table 3). Of the
recorded sites (n=357), 53.22% (n=190) had significant
responses to at least one category of stimuli relative to baseline
(i.e, “active” sites). A total of 13.45% recording sites (n =48)
showed selective activations to human faces compared to any
other stimuli (“human face-selective” sites, Fig. 1a). Only 10.64%
of the recording sites (n =38) showed face-selective responses
(comparing all subcategories of faces to all non-faces; i.e., “face-
selective” sites). The (human) face-selective sites were clustered in
the fusiform gyrus or lateral occipital gyrus. While the group-level
visualizations are presented in Montreal Neurological Institute
(MNT) space?, for our anatomical claims, we rely on the precise
location of the electrodes in each subject’s own brain space
(Supplementary Figs. 1 and 2). Interestingly, while there was clear
overlap between the “face-selective” and “human face-selective”
sites, a few sites (17 out of 357 sites) showed selective responses to
human faces while lacking significant responses to other face
stimuli. In further analyses, we refer to the sites that were assessed
as “active” and that were neither face nor human face selective as
“task-active” sites.

To explore whether biological similarity of the face stimuli
(humans and mammals versus birds or marine) influences
the neural responses in the face-selective sites, we compared
responses to faces of different categories. This analysis showed
that human faces induced the strongest activations on face-
selective sites (median = 5.21 dB, n = 1579) followed by mammal
faces (median = 4.06 dB, n = 1609), bird faces (median = 3.48 dB,

n=1666), and marine faces (median = 3.48 dB, n = 1706, Fig. 1c
left). All pairs of face subcategories showed a significant
difference in HFB power (permutation test, p<0.05 after
Bonferroni correction), except for the comparison of bird and
marine faces (human-mammal: p<0.0001, human-bird: p<
0.0001, human-marine: p <0.0001, mammal-bird: p=0.0012,
mammal-marine: p=0<0.0001, bird-marine: p =0.9896, per-
mutation tests). In comparison, the amplitude of responses to
subcategories of faces in the task-active sites showed lower HFB
power for the face categories (human faces =0.73 dB, n = 5761,
mammal faces =0.91dB, n=>5497, bird faces=0.67dB, n=
5837, marine faces = 0.79 dB, n = 5808, permutation tests, Fig. 1c
right). Only mammal faces elicited significantly higher responses
than did human and bird faces (mammal-human: p <0.001,
mammal-bird: p <0.0001). Other pairwise comparisons did not
show differences in terms of HFB amplitude across the four
subcategories of faces (permutation test, p>0.05 after false
discovery rate (FDR) correction). Please note that these univariate
results were not driven by physical differences in the stimuli
(Supplementary Table 4, Supplementary Discussion 4).

Decoding of face information in the TC. Given that the HFB
responses to human faces had the highest signal-to-noise ratio
(SNR), further analyses focused on the processing of human face
stimuli. To address the earlier imaging reports of distributed face
processing!’, we investigated the decoding of face information
across human face-selective and task-active (i.e., non-selective)
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sites. In particular, we investigated whether task-active sites
included face information that was not correlated with the face
information present on selective sites. Such information could be
too weak to be detected by our (stringent) univariate test or have
another pattern than the one we assume in our test (e.g., a
sinusoidal variation of the HFB signal for faces could lead to a
mean of 0dB over the considered time window). Instead of
relying solely on decoding performance, we referred to a recently
developed framework?®® to infer causal relationships between the
stimuli and the observed EEG activity in decoding (here machine
learning-based modeling) settings. This approach allows to isolate
the causal contribution of task-active sites following the pre-
sentation of face stimuli in face processing. Please note that in this
analysis, the term “causal” relates to the relationship between the
presentation of a stimulus (cause) and subsequent changes in
brain activity (effect), and as such may not imply causality in
terms of lesion studies or electrical stimulation experiments.
The considered framework assesses the “relevance” of both face
and task-active sites in discriminating between human face and
non-face epochs instead of referring to decoding performance.
A feature is assessed as “relevant” in decoding settings if, when
removed, the performance of the model is significantly affected.
This is similar to the procedure used in a recent publication, in
which the face information shared across regions of interest was
taken into account. Features assessed as (respectively not) rele-
vant in both encoding settings (corresponding to our univariate
tests) and decoding settings are (respectively not directly) causally
related to the stimuli.

To address face processing in face-selective versus task-active
sites, we ran three machine learning models discriminating
between human face and non-face (i.e., human, mammal, bird,
and marine body parts, places, objects, and human limbs pooled)
stimuli, using signals from different sets of sites. The results from
all models are displayed in Supplementary Table 5 and Fig. 2a.

For each subject, model I incorporated data from all TC sites. For
all subjects, model I was able to significantly discriminate between
human faces and non-faces (permutation test p <0.05, FDR
corrected). Model II used the same classification but excluding
the face-selective sites. Significant discrimination between faces
and non-faces was only observed in two subjects out of eight
(permutation test, p < 0.05 FDR corrected). In these two subjects,
the significant decoding accuracy suggests that at least one site
contains information about the discrimination at hand. This
could however be related to selective responses to non-face
stimuli, as we had not excluded sites selective to one or more
subcategories of non-face stimuli. This first result suggests that
face information on task-active sites is weak in the considered
time window. Comparing models I and II revealed that there is a
significant decrease in accuracy when excluding face-selective
sites from the classification across subjects (Wilcoxon signed-
rank test, p=0.0078, n = 8). This result suggests that face sites
are relevant in decoding settings for face processing*> and hence
causally related to face stimuli. To test whether random subsets of
task-active sites are relevant in decoding settings, we removed all
task-active sites from the classification model (model IIIa). This
led to an average decrease in model performance of 4.9%
(Supplementary Table 5, Fig. 2a), with a large variability across
subjects (min: +0.86%, max: —11.66%). While these results
display a significant effect of task-active sites on model
performance (Wilcoxon signed-rank test, p = 0.0234, n = 8), they
were built using only ~13.45% of the features. To disentangle a
decrease in feature space from a decrease in (face) signal, we built
499 models that included the same number of sites as model II by
randomly selecting task-active and face-selective sites, but
including at least one face-selective site. This means that across
the 499 models (referred to as “random set” models), the
proportion of face-selective sites varied, but was non-null. This
procedure guarantees the same number of features as in model II
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Fig. 2 Nature and amount of face information on TC sites in decoding settings. a Dark grey triangles represent the performance of model |, i.e., including
all TC sites. Performance of model Il is represented by red triangles. Red circles represent the performance of model llla. Each colored dot represents one of
the “random set” models (499 models per subject, model ), their color representing the proportion of face sites were included in the model (dark blue is
one face site, light green is all face sites). Violin plots represent the distribution of the “random set” model performances compared to models | and II.
b Sparse models perform as well as or better than distributed models. Bar plot representing the balanced accuracy for model | compared to the model
accuracy of the sparse model 1V, for each subject. ¢ Site contributions to the sparse model, plotted across subjects. The contribution of the site (in %) is
represented by a color-coded fill. Black diamonds have a perfectly null contribution to the model while circles had a positive contribution to the model. Sites
assessed as human face selective by the univariate analysis are highlighted by a pink rim.
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and asserts whether removing random subsets of task-active sites
affects performance. Across subjects, removing random sets of
task-active and face-selective sites did not affect the model
performance significantly (Wilcoxon signed-rank, p =0.5781,
Fig. 2a), nor did it within subjects for seven out of eight
(Supplementary Table 5). For subject 2, a multimodal distribution
is observed reflecting whether a specific face-selective site is
included in the model (leading to accuracies >79%) or not
(accuracy <70%, 83 models out of 499). There is a significant
difference in model performance when this site is included or
excluded from the model (p <0.0001). The results from models
IIIa and III suggest that task-active sites had a limited effect on
the decoding model and were at best weakly relevant. Notably, we
found a significant relationship between the proportion of face
sites included in the analysis (i.e., from one face site to all sites,
randomly selected in the 499 models) and the model performance
for six out of seven subjects (Supplementary Table 5, n =499).
This result could arise from two scenarios (or a combination of
the two): either face information on face sites is not redundant,
ie, each face site brings unique face information and/or
including more sites leads to better SNR of the face pattern. In
both cases, this result suggests that the pattern can be more easily
identified when more human face sites are included.

The degree of inter-subject variability (both for model II and
the “random set” model III) could not be explained by the
number of trials (p(model II—#trials) = 0.5073, p =0.1994, n =
8; p(median random sets—#trials) = 0.0068, p = 0.9872, n =8) or
of sites included in the analysis (p(model II—#sites) = —0.1221,
p =0.7734, n = 8; p(median random sets—#sites) = 0.00156, p =
0.9708, n=38). The inter-subject variability, however, could be
explained by various factors, such as SNR, amount of correlated
noise or placement of the electrodes, which are complex to
quantify. Please note that due to the limited numbers of trials per
subject, we were not able to perform the univariate and
multivariate analyses on different partitions of the data. See
additional analyses in Supplementary Table 6 and Supplementary
Discussion 6.

To further investigate face processing in task-active sites, we
performed the same classification as for model I, except that the
considered algorithm enforces sparsity at the site level, ie, it
automatically selects a subset of sites to perform the classification.
Comparing sparse and non-sparse modeling techniques is a
common machine learning strategy to investigate data properties:
Support Vector Machine (SVM) (i.e., model I) assumes that the
information is fully distributed across features, by construction. If
this assumption is correct, it should perform better than a sparse
model. In contrast, if the sparse model performs better than or as
well as model I while including only a subset of sites, it suggests
that the information contained in the selected subset of sites is
sufficient to perform the classification and that the non-selected
features do not bring further relevant information. As in previous
publications3%47, we used the simple MKL algorithm?® to
perform the sparse modeling. Please note that the basis algorithm
for the simple MKL is an SVM, hence the effect of implementa-
tion on the results is limited?®. The results are displayed in Fig. 2b
and Supplementary Table 7. Across all subjects, the sparse model
performs slightly better than the distributed SVM model
(Wilcoxon signed-rank test, p = 0.25, n =8, average increase in
performance of 2.28%). In five subjects out of eight, there is a
clear increase in performance, of up to 8.95% for subject S1. In
subjects 5, 6, and 8, the difference in model performance between
model I (SVM) and model IV (sparse MKL) is around —2%. Of
note, in two subjects the accuracy of the model was over 90%,
which left little room for improvement (S5 and S8). This accuracy
was reached with 35% of the sites being included, displaying that
most sites did not contribute to the model. We however preclude

from relating a contribution to the model to face processing as
some sites can act as “noise canceller”$. In addition, the sparse
model weight maps significantly overlapped with the univariate
maps of human face selectivity across subjects (p = 0.4708, p <
0.0001, Fig. 2c) and within subjects for seven out of eight subjects
(except subject 8, Supplementary Table 7, Supplementary Fig. 2).
This result shows that MKL relies heavily on face-selective sites
for the classification. For subject 8, the classifier seems to rely on
non-face information, as the site with highest contribution
contains higher amplitude signals for non-face categories than for
human faces (pooled non-face > face: p <0.05, permutation test).
These results suggest that the potential face information present
in task-active sites is correlated with the information present in
face-selective sites. Please note that this analysis does not suffer
from circularity as it does not rely on the previous univariate
results.

Temporal distribution of face processing. Thus far, our uni-
variate and multivariate results display that face sites are “rele-
vant” for human face processing. However, we also showed that
including more face sites in the model increases model perfor-
mance (random set models). We then explored the relationship
between selectivity, anatomy, and timing of the HFB responses on
face and task-active sites during human face processing.

While the face sites displayed significant responses to human
face stimuli, the selectivity of their responses decreased from
posterior to anterior sites as demonstrated by correlating the MNI
y-coordinate with selectivity (p=—0.6097, p =5.39e—06, n=
47). For task-active sites, selectivity to human faces increased
from posterior to anterior sites (p = 0.2699, p = 0.0013, n = 139).

In addition, our fast event-related paradigm combined with
simultaneous recordings across selective and task-active sites with
high sampling rate allowed us to compare the latency of neuronal
population responses to faces within the first 500 ms of stimulus
presentation. We measured the response onset latency (ROL) to
human face stimuli across human face-selective sites and task-
active sites based on unsmoothed, normalized signals (Figs. 3, 4).
A recent study?® revealed a temporal lag between the posterior
fusiform gyrus (pFG, y < —45) and medial fusiform gyrus (mFG,
—45<y<—35) across face-selective sites. In line with these
anatomical boundaries, our data indicates an average temporal
delay of 33 ms across the two regions and a further delay of 13 ms
with the more anterior face-selective region (y > —35). Further-
more, ROL values across human face-selective sites were
significantly correlated with the y-coordinate of the correspond-
ing site (p=0.5207, p=9.5399e-04, n = 37). Interestingly, the
posterior-to-anterior lag was also significant for task-active sites
(p=10.6563, p=7.3554e—07, n =46, Fig. 4). Importantly, the
group-level findings presented here were also present at the
individual subject level for human face-selective sites, when
calculating the ROL for each site relative to the most human face-
selective site within subject (Fig. 3b-d): p(ROL—y) = 0.7593, p =
1.7911e—06, n =29 and p(selectivity—y) = —0.5680, p = 0.0013,
n=29. In other words, the posterior to anterior ROL gradient
was not driven by one or a few subjects who happened to have
coverage over a specific region of the TC. For task-active sites
(Fig. 4b, c), the correlation between ROL and y-coordinate was
also significant: p = 0.6718, p = 3.2032e-07, n = 46. On the other
hand, there was no significant correlation between anatomical
position and selectivity when compared to the most face-selective
site: p=-0.2269, p =0.1294, n = 46. We remind the reader that
task-active sites showing non-selective responses can be of two
types: those in the earlier visual cortices (located more posterior
than the first face-selective sites) and engaged much earlier in
presumably low-level processing of visual information and those
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located in the anterior temporal lobe that are engaged much later
in presumably high-level processing of visual information.

We explored the timing of events across task-active and face-
selective sites (both including posterior and anterior sites), and
compared the ROL values between the two groups, but this
comparison was not significant (p = 0.9452, Wilcoxon rank sum
test). We argued that the lack of difference could be due to large
variability in ROL values within each group. To mitigate this
confounding effect, we matched face-selective sites to their closest
task-active sites in terms of y-coordinate (up to 2 mm difference),
and found that the time of activation in face-selective sites
trended earlier than anatomically matched adjacent non-selective
sites but this difference did not reach statistical significance
(paired Wilcoxon signed-rank, p =0.1631, n = 32 face sites, and
n =19 task-active sites). Performing the matching within subjects
led to similar results (p = 0.1752, n = 20 face sites matched to 16
unique task-active sites). Figure 4d shows the distribution of ROL
values across the two groups after matching.

Importantly, signal amplitude or slope did not affect our ROL
method (Supplementary Fig. 4, Supplementary Discussion 8).

Effect of electrical brain stimulation on face perception. Lastly,
we explored the effect of electrical perturbation of face-selective
sites on the subjective processing of faces. We hypothesized that
the stimulation of face-selective sites in the posterior TC would
cause more salient effects than the stimulation of non-selective
sites in the anterior TC. This hypothesis has not been addressed
in prior to electrical stimulation studies showing distortion in
conscious viewing of faces?0-2850:51 or naming of famous

faces°>°3, Subjects were instructed to view a human face at
the bedside while we performed active or sham (zero current)
stimulations of selective, task-active, or non-responsive sites.
Subjects then reported whether the face remained the same or was
distorted. We emphasize that this anecdotal report departs from
the well-controlled experimental procedures that have been per-
formed in non-human primates and human subjects due to
limitations in our equipment and clinical time constraints.
Figure 5 summarizes the results of electrical stimulations and
details of the procedure in each patient is provided in
Supplementary Table 9. Our findings indicate that distortion of
human face perception was reported only with real (but not
sham) stimulation of some (but not all) face-selective sites.
Among 52 stimulated sites in the fusiform area, 24 were face
selective and 28 were not. Among the 24 face-selective sites
(17 pFG sites and 7 mFG sites), 6 caused distortions in face
perception when stimulated while 18 did not; all 6 sites that
caused distortions in face perception when stimulated were
located in the posterior fusiform gyrus (y < —45). Among the 28
non-selective sites (14 pFG sites and 14 mFG sites), 3 caused
distortions in face perception when stimulated while 25 did not;
again, all 3 sites that caused distortions in face perception when
stimulated were located in the pFG. We found a significant effect
of anatomical site in predicting the subjective responses to
electrical stimulation: one-tailed z-score tests for two population
proportions showed that the proportion of sites whose electrical
stimulation induced a face distortion in the pFG (9/31) versus the
same proportion in the mFG area (0/21) was significantly
different (z=1.833, p=0.034). This trend held true when
comparing the proportion of pFG versus mFG sites that distort
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Fig. 4 Temporal distribution of human face information on task-active sites. a Mean (zstandard error) HFB traces across task-active sites in the
posterior (<—45, n = 24), middle (—45 to —35, n=7), and anterior (after —35, n=6) sites for human faces (pink) and non-faces (grey) stimuli.

b Selectivity in each subject, when compared to MNI y-coordinate with the best (i.e., most human face selective) site in each individual chosen as the point
of reference. The best site is represented as a black circle, at the crossing of the two axes. Selectivity is not related to anatomical position. € ROL in each
subject, when compared to MNI y-coordinate with the best site in each individual chosen as the point of reference. Latency is related to anatomical location
of the sites. d Histograms (in probabilities) of ROL values for human face-selective sites (n =32) and their matched task-active sites in terms of
y-coordinate (n=19). N.s. refers to a non-significant difference between the two distributions.

face perception when stimulated within face-selective sites only
(pFG: 6/17; mFG: 0/7; z=1.815, p=0.035) and within non-
selective sites only (pFG: 3/14; mFG: 0/14; z = 1.833, p = 0.034).
These results indicate that electrodes that cause distortions in face
perception when stimulated are greater in proportion in the pFG
than in mFG.

Moreover, among the nine pFUS sites that caused face-
perception distortion, six were face-selective sites and three were
sites immediately abutting the face-selective sites within the likely
area of distribution of electrical charge. In fact, two of the abutting
task-active sites displayed weak face selectivity (permutation test,
P <0.05 before FDR correction) during face processing. Based on
our previous quantification of the spread of electrical charge in the
human brain®4, we believe that the electrical fields generated by the
stimulation of the three task-active sites likely spread to the abutting
face-selective sites.

Of note, face distortion occurred only with right hemisphere
stimulations except in one left hemisphere case (S1) who
happened to be left handed. We have previously discussed the
lateralized effect of stimulation in a separate report>. As such, we
find that stimulation of posterior face patches, in the language
non-dominant hemisphere, causes face specific distortions.

In one subject (subject 8), we probed the effect of stimulations
across two patches of the FFA (sites numbered as 1, 2, and 3 in
Fig. 5b). Using bipolar (adjacent pair of sites stimulated together)
or unipolar stimulations (site was paired with a distant reference),
we elicited distortions when the subject looked at his own face in
the mirror, looked at a cartoon face drawn on a piece of paper,
and focused on parts of a face (e.g., eyes or lips). He also reported
induced perceptions of a face during electrical stimulation while
his eyes were closed. The subject’s verbal reports after stimulation
include “one side of the face changed”; “facial features [turned]

into a cartoon”; one eye “became someone else’s”; “face wiggled a
little bit”; and “face looked familiar” (Supplementary Movie 1).
More importantly, the effects were observed only when site 3 was
stimulated. To explore the anatomical location of site 3, we
localized the pFUS and the medial fusiform face area (mFUYS)
onto subject 8s native neuroanatomical space. Using methods
described in ref. ¢ the calculated field of electrical stimulation of
site 3 was precisely localized in the pFUS (Fig. 5b, zoom panel).
The other face-selective sites (1 and 2), located in mFUS failed to
cause any distortions even though they were only 1 cm away from
site 3. This finding adds to our previous report?® in which we
stimulated both mFUS and pFUS in a bipolar manner.

Discussion
Our study addresses the spatiotemporal distribution of face
information based on univariate measures, machine learning-
based modeling, timing analysis, and direct cortical stimulation.
Using this multipronged approach and by leveraging the tem-
poral resolution of the ECoG method, we confirmed the following
results: the majority of recording sites in the human TC do not
show any significant change of activity in response to the visual
presentation of faces; a minority of sites respond non-selectively
to at least one category of visual stimuli; and only fewer sites
respond selectively to face stimuli, and that these are clustered in
the fusiform gyrus or lateral occipital gyrus across individuals.
We found that face information was represented to a greater
degree in face-selective regions than in task-active sites. Remov-
ing face-selective sites from machine learning-based classification
significantly dropped the decoding accuracy of the model. In
addition, classification model suggested that task-active sites had
a limited effect on the decoding model and were at best weakly
relevant (in the technical sense as used in Weichwald et al.4%).
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Fig. 5 Electrical brain stimulation. Effect of electrical stimulation applied to a pair of electrodes is shown with lines colored in orange (stimulation of this
pair affects subjective face perception) or blue (stimulation of this pair has no effect on subjective face perception). Human face-selective electrodes are
outlined in pink. a Depicts the localization of stimulated sites on subjects 1, 3, 4, 5, 6, and 7 using the same convention as in Supplementary Figs. 1 and 2.
b Displays the same results for S8 and investigates further the localization of the stimulated sites. In the inset figure, the location of sites 1, 2, and 3 are
shown on top of the fMRI patches of mFUS (green) and pFUS (purple). The estimated cortical area affected by the stimulation of site 3 is shown with a blue
circle around it. The cortical area was estimated using the parameters recently validated in a separate cohort>®. Site 3 in subject 8 is the site whose
stimulation caused distortion of faces when it was stimulated in pairs with site 1 (another face elective site), nearby site 4 (task-active site), and a remote
reference site. Right panel shows the HFB responses to human faces (pink) and non-faces (grey) of the sites that were stimulated. Please see
Supplementary Movie 1 for the video of subject S8's verbal responses after being stimulated.

This was supported by an improvement in model performance
when considering a sparse approach. Overall, our results suggest
that face information in task-active sites is weak, highly correlated
with the face information that is present (earlier and stronger) in
face-selective sites, and not causally necessary nor sufficient
(in terms of our machine learning analysis) for face processing.
We confirm the presence of temporally distributed information
within task-active and face-selective sites that may be functionally
relevant and even necessary for downstream processing of faces
(e.g., associating faces with memory or name information).
Comparing our results to prior neuroimaging studies, we
would like to emphasize the methodological differences including
the number of recording sites, the time scales considered, and the
recorded signals used in the analysis. For instance, the number of
anatomical samples in each subject is limited with the ECoG
method, which can reduce the power of the algorithm in
detecting weak, distributed patterns. To maximize the detection
of small effects, we used Support Vector Machine classifiers,
which are known for their ability to detect subtle, distributed
patterns and we focused our analysis on the high SNR of HFB
responses induced by human face versus non-face stimuli. While
we could not relate the number of sites to model performance
(Results section), it is possible that the signal in task-active sites is
too weak to be detected across a few tens of anatomical samples in
each subject. On the other hand, the novelty of our data is in part
due to the high temporal resolution of ECoG, which enabled us to
measure the fast temporal dynamics of face processing in the
human brain. Specifically, our electrophysiological analysis relied

on responses elicited within 500 ms of stimuli presented for
300 ms with an inter-stimulus interval of 400 ms. This is in stark
contrast to some of the classic neuroimaging studies whose
temporal window included >10's of signal processing (e.g., 24 or
16 s long blocks of visual stimuli for each category!”).

Another methodological caveat that needs to be considered is
that the task-active areas in humans may be variable in their
relative size and primary cytoarchitectonic composition®’.
Therefore, hubs of activity in posterior to anterior TC may have
different sizes or shapes of physiological responses or locations on
the surface of gyri versus depth of sulci which could have influ-
enced the properties of recorded electrophysiological signals as
well as the subjective effect of electrical stimulation. As such, the
results reported here could represent an idiosyncrasy of our iEEG
method. However, it is still noteworthy that responses to faces
were significantly faster in the posterior sites than in anterior
face-selective sites. By using ECoG recordings, our results confirm
our overarching hypothesis that face information is anatomically
localized but temporally distributed. The posterior to anterior
gradient was observed within both face-selective and task-active
sites, with no statistically significant time differences between
task-active and face-selective sites—though the time of activations
in face-selective sites trended earlier (Fig. 4d). The lack of sta-
tistical significance in terms of ROL can be explained by several
factors. First, there is a posterior-to-anterior temporal lag in
activation, i.e., anterior face-selective sites may respond later
than posterior non-selective task-active sites. Second, there
are task-active sites in the more posterior regions that respond
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significantly earlier than any other sites. For instance, one cannot
assume that face-selective activations precede the ones in the
primary visual cortex. Third, given these two confounds, the
number of electrodes in each subject may be too small for sta-
tistically differentiating a subtle temporal lag between selective
and adjacent non-selective sites. Finally, despite the trending
results reported here, we would caution against any conclusions
from it. Given our knowledge of brain anatomy, we would
anticipate that task-active and face-selective sites would be
engaged in bilateral information exchange at multiple levels along
the posterior—anterior axis of signal propagation and, as such,
the ROL values across sparse recording sites in each individual
brain may not be able to address this issue and addressing it with
iEEG may be ill-advised to begin with.

Additionally, our findings support the causal link between
some, but not all, face-selective sites of the fusiform gyrus and
conscious processing of faces as suggested previously by our
group?9-28 and others®!>2. Our findings from electrical stimula-
tion procedures (1) replicate our prior findings?0-28>° in a new
cohort of subjects that the stimulation of the right (non-language
dominant) hemisphere is more important for eliciting subjective
reports of face distortion; (2) that some of the posterior face-
selective sites (i.e., y < —45 in MNI space) are more critical than
anterior sites for conscious processing of faces, and (3) that the
pFUS (but not the mFUS) region may serve as a key node in the
conscious processing of faces. While the low numbers of anterior
site stimulations preclude any definite conclusions, the third
finding is intriguing and needs to be replicated in a larger
sample of subjects with a task-based and stimulus-locked elec-
trical perturbation procedures. As demonstrated in non-human
primates!4>8, and also in the human lateral occipital and fusiform
cortices!?22°6, we acknowledge that the face-selective sites out-
side the fusiform gyrus also play an important role in face pro-
cessing. For example, a recent study in non-human primates
showed that the micro-stimulation of the anterior face-selective
patch (area anterior medial) severely distorted the monkey’s
percept of facial identity, such that faces depicting the same
identity appeared to depict different identities®S.

Our findings may provide neurophysiological explanations for
some of the classic behavioral observations. The preferential
responses to human faces compared to non-human faces is in line
with a recent human functional magnetic resonance imaging
(fMRI) study, in which multivariate patterns of activity
throughout the ventral TC were found to correlate with beha-
vioral judgments of biological similarity of the same stimuli (i.e.,
monkeys and mammals versus insects and birds)>®. Moreover,
two electrophysiological studies in the macaque brain have shown
faster responses of neurons to primate faces compared to non-
primate animal faces®® or a change in species selectivity across
different patches of face-selective areas®!l. Our findings along with
these studies may explain the behavioral observations of con-
specific advantage in face recognition; that is, humans and other
primates recognize members of their own species more readily
than faces of other species®2%3, For instance, chimpanzees raised
in a human environment are better at discriminating pictures of
unknown human faces than unknown chimp faces®?.

In closing, our data suggest that a few anatomically discrete
sites play a crucial role in processing face information and that
there is a time delay in their processing of the same information.
However, our study does not suggest that the conscious percep-
tion of faces solely depends on the operation of these isolated
patches of face-selective sites. We acknowledge that different
facets of face processing may occur in different patches of face-
responsive sites and that these neuronal patches are embedded in
a larger network of visual and other association areas of the brain,
and their function should not be seen in isolation from this wider

integrated brain network!®9. Future studies with simultaneous
recording across face-selective and other association areas are
needed to determine how different facets of face information is
encoded in each of the face patches and how their function is
embedded and relayed to the rest of the brain for serving human
cognition and behavior.

Methods

Demographics and recordings. Eight subjects (six males, two females, aged
between 23 and 68 years) were implanted with intracranial electrodes to localize the
source of drug-resistant seizures. The procedure was approved by the Stanford
Institutional Review Board and the subjects provided written informed consent to
participate in the study. The location of the grids was determined by clinical needs
(Supplementary Fig. 1, three left hemisphere implantations, five right). Data were
obtained at 1525.88 Hz through a 128-channel recording system (Tucker Davis
Technologies) for the first seven subjects while a Nihon Kohden Technology sys-
tem with simultaneous video monitoring was used to perform 1 kHz recordings in
subject S8. Each electrode was a platinum plate, either 2.3 mm or 1.15 mm in
diameter (exposed recording area) with center-to-center spacing of 4-10 mm
between adjacent electrodes on the grid or strip. Electrodes containing artifacts or
pathological activity were discarded from further analyses.

Anatomical localization of electrodes. Structural MRIs were acquired with a
GE 3-Tesla Sigma scanner at Stanford University equipped with a head coil

of a T1-weighted SPGR pulse sequence. The images were AC-PC (anterior
commissure-posterior commissure) aligned and were resampled to 1 mm isotopic
voxels, then segmented to separate gray and white matter. Postimplantation
computed tomography images were aligned to the pre-op MRI anatomical brain
volume®. Electrodes were visualized on the subject’s own brain volume and
reconstructed onto a three-dimensional cortical surface allowing for accurate
anatomical localization of electrodes. The electrode positions were also transposed
into the MNI space and displayed on a MNI cortex file for visualization of results
across subjects. The coordinates of the left hemisphere sites were mirrored such
that all sites could be displayed on a single hemisphere.

Experimental paradigm. The experiment was administered using psychtoolbox
running on Mac OSX. The laptop was placed ~70 cm from the subject’s eyes at
chest level. Screen resolution was 1280 x 800. Each image was subtended five visual
degrees at its longest dimension. Each subject underwent a visual task during which
images of different categories were presented at the center of the screen for 300 ms,
with an ISI of 400 ms. The categories included ten human face, human body,
mammal face (one monkey face), mammal body, bird face, bird body, marine face,
marine body, human limbs, object, and place. The image backgrounds were phase
scrambled at 3% in order to reduce visual artifact. The visual dimensions of the
image plus its scrambled background were 11.10 x 11.10 cm, and the visual angle
was 9 degrees. Each category comprised 25 images, presented twice. This hence
leads to 50 stimuli per category and 550 visual stimuli in total. During image
presentation, the subject was asked to press a key (“press 17) when the pattern
“###” appeared in red at the center of the screen (further referred to as a “Response
Block”). The onset of each stimulus was recorded by a photodiode signal generated
by a luminance change in the display at image onset.

Signal preprocessing. All preprocessing steps were performed using Matlab
(The MathWorks, Inc., Natick, Massachusetts) and the SPM (www.fil.ion.ucl.ac.
uk/spm) toolbox in custom routines (https://github.com/LBCN-Stanford/
Preprocessing_pipeline). The data were first down sampled to 1000 Hz and fil-
tered for power-line noise (band-stop between 57 and 63 Hz) and harmonics
(117-123 Hz and 177-183 Hz). Sites underwent an automatic quality assess-
ment: sites with variances five times larger or smaller than the average variance
across all sites were labeled as pathological and excluded. Sites with three times
more “jumps” (defined as changes in the signal derivative >100 pV) than the
average across sites were considered as spiky and excluded. The signal was then
re-referenced to the average of the signal over all selected sites. Each event was
extracted (i.e., epoched) in the —200 to 700 ms time window around its onset
and baseline correction was performed (using the [—200 to 0]ms time window
around onset as baseline). Events were marked as artifacts if they contained
spikes of >100 uV and were discarded from further analyses. At this stage, there
were no further checks for interictal activity. A time-frequency decomposition
was then computed using a seven-cycle Morlet wavelet, with frequencies ranging
from 70 to 177 Hz (steps of 1 Hz, avoiding discarded frequencies from Notch
filtering). A similar five-cycle Morlet wavelet time-frequency decomposition was
performed for frequencies ranging from 1 to 69 Hz. The power in each frequency
and time bin was rescaled using the log-power of the [—100 0]ms window
around stimulus onset. Six frequency bands were considered in this work:
(4-7 Hz), a (8-12Hz), B, (13-29 Hz), B, (30-39 Hz), y (40-69 Hz), and HFB
(70-177 Hz). The signal was finally averaged across frequency bins within each
band considered and smoothed with a 50 ms width Gaussian window. The HFB
power in the [—100 600]ms window around stimulus onset was considered for
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further analysis (see Supplementary Table 2 and Supplementary Discussion 2 for
justification).

Relevance of TC sites in encoding. For each subject, sites were defined as “active”
if they displayed a significant HFB response in the [150 500]ms after stimulus onset
for at least one category, when compared to the event baseline ([—100 0]ms before
onset). Paired non-parametric permutation tests (50,000 permutations) assessed
the significance of the response (p <0.05, FDR corrected for the number of sites
tested). Out of the active sites, “face-selective” sites were identified as sites where
significantly higher responses were seen to the four face categories (human,
mammal, bird, and marine) pooled compared to all other stimuli pooled (non-
parametric permutation tests, FDR corrected) in the time window [150 500]ms
after onset. Finally, “human face-selective” sites displayed significantly higher
responses to human faces compared to all non-face stimuli pooled (non-parametric
permutation tests, FDR corrected) in the [150 500]ms after onset window. Active
sites that were not assessed as face selective or human face selective are further
referred to as “task-active” sites. Sites assessed as (human) face selective were
considered as relevant in encoding settings for face processing?>. These analyses
were performed for the HEB signal but also for other frequency bands (Supple-
mentary Table 2). The four face subcategories were then compared on both the
“face-selective” and “task-active” sites based on the amplitude of their HFB
response averaged in the [150 500]ms time window after onset. Permutation tests
assessed the significance of potential differences between subcategories (10,000
permutations, FDR corrected for the number of tests (n = 12, 6 binary comparisons
for face sites and 6 for task-active sites)). Please note that there is no circularity in
this analysis as the contrast to select sites (i.e., faces versus non-faces) is different
from the effect investigated (i.e., human faces versus mammal faces versus bird
faces versus marine faces).

Frequency information for faces. For each frequency band, a univariate analysis
assessed active, face-selective, and human face-selective sites. In addition, a MKL??
model assessed the contribution of each frequency band to the discrimination
between human faces and non-faces®’. In this case, a linear kernel is built for each
frequency band. Those kernels are then combined during the modeling step, based
on a sparsity constraint. The model outputs a contribution for each kernel that can
be interpreted as the weight of each frequency band in the classification. All
modeling parameters were kept consistent with models L, I, and IV (see “Relevance
of TC sites in decoding”). In addition, a second MKL model combined the power in
HFB and the ERP (i.e., before time-frequency decomposition) as a recent study®”
showed that ERPs could bring complementary decoding information to HFB sig-
nals. These analyses were performed in version 3.0 of the Pattern Recognition for
Neuroimaging Toolbox (PRoNT03%:68).

Low-level image features. To ensure that low-level features in the stimulus
images did not drive our results, we performed multiple control analyses.

First, spatial frequency power spectrum with rotational average was calculated
for each stimulus and averaged across categories. Averaged spatial frequency power
spectrums were compared using the one-way Anova and post hoc analysis was
performed using “Tukey-Kramer” method. Power spectral analysis returned 153
values for each image, which were averaged within each category (n =153). We
also computed the mean luminance across pixels in each category, pooling all non-
faces together.

We then investigated the effect of mean luminance on the univariate results
(i.e., on sites defined as face selective). To this end, we plotted the histogram of
mean luminance in the face and in the non-face categories. We defined as low
(resp. high) luminance faces, face stimuli with a mean luminance smaller (resp.
larger) than 120 (threshold defined arbitrarily). The neural signals in each category
was compared on all face sites (high luminance faces: n = 45, human:15,
mammal:12, bird:7, and marine:11; low luminance faces: n = 55, human:10,
mammal:13, bird:18, and marine:14), using permutation tests.

Relevance of TC sites in decoding. We then assessed the relevance of face and
task-active sets of sites in decoding settings. To this end, a machine learning model
discriminating between human face epochs and non-face epochs was estimated
based on different site sets: (I) All TC sites included for analysis (referred to as the
“TC” model); (II) All TC sites, excluding the ones assessed as “human face
selective” by the univariate, permutation tests (referred to as the “T'C-sign” model);
(IIIa) All TC sites excluding task-active sites; and (III) 499 random subsets of task-
active and face sites, including at least on face site. In scheme (III), further referred
to as the “random sets” model, the number of sites (i.e., features) included for
modeling is identical as for model (II). However, the proportion of face sites
randomly varies, from 1 to all face sites. The different models aim at answering the
following questions: (I) Is it possible to significantly discriminate human face from
non-face trials in each subject? (II) Are face-selective sites relevant for the dis-
crimination between human faces and non-faces? i.e., do we observe a significant
change in model performance when removing the set of face-selective sites?
Accessorily, is it still possible to significantly discriminate between human face and
non-face trials? Or, on the contrary, is the information in those human face-
selective sites necessary for significant classification? (Illa and III) Are (random

subsets of) task-active sites relevant for the discrimination between human face and
non-face stimuli? i.e., is model performance significantly affected when removing
random (sets of) task-active sites? This analysis was conducted in PRoNTo version
3.030:68, The data considered focused on the [150 500]ms after stimulus onset. The
“mammal body”, “bird body”, “marine body”, “human body”, “object”, “place” and
“limbs” categories were pooled together to form the “non-face” category. As this
leads to imbalances in terms of the number of trials in each class (maximum 50
human faces compared to maximum 350 non-faces), epochs from the “non-face”
category were randomly subsampled to closely match the number of epochs in the
“human face” category. During this process, care was taken to include approxi-
mately the same number of epochs from each subcategory (e.g., 7 “mammal body”,
8 “bird body”, 7 “marine body”, 7 “human body”, 8 “object”, 7 “place”, and 7
“limbs”). A linear kernel matrix was built based on the data from all sites con-
sidered in the feature set (number of features = number of sites x 351 time points).
This matrix corresponds to a similarity matrix between each pair of epochs (dot-
product). The similarity matrix was then input into a Support Vector Machine
classifier. It should be noted that SVM is an L2-norm regularized technique. This
means that it does not assume or enforce a sparse distribution of the model
weights. It should hence, in theory, be able to identify subtle, distributed patterns
over the TC. Model performance was computed based on a five-folds cross-vali-
dation, i.e., 20% of the epochs were left out before training the model on the 80%
remaining epochs (non-overlapping). The model was then tested on the left out
20% epochs and the predictions it returned were compared to the “true” targets.
This partitioning of the data was performed five times in total, each partition
corresponding to a “fold”. The model performance in this work was averaged
across folds. To estimate model performance, the sensitivity for each class was
computed (corresponding to the class accuracies for “faces” and “non-faces”).
Those values were then averaged to provide a global measure of model perfor-
mance, further referred to as “balanced accuracy”. Within each fold, another four-
folds cross-validation was performed to optimize the soft-margin hyperparameter
of the SVM model (C=10.01, 0.1, 1, 10, or 100). The significance of the obtained
model performance (p < 0.05) was assessed using 1000 permutations®. Classifi-
cation accuracy was considered significant if the balanced accuracy was significant.
In addition, the difference between each model and the “TC” model (I) was tested
for significance based on Wilcoxon signed-rank test at the population level (n = 8).
To ensure a fair comparison between those models, all modeling parameters were
identical, including cross-validation folds, epochs considered and permutations of
the labels. Only the sets of sites considered for modeling differed across the four
schemes.

Sparse versus distributed decoding information. Assessing relevance in
encoding and decoding settings assumes the interpretation of negative results.

As negative results are by nature inconclusive, we here investigate the effect of
priors on model performance. For one model (model I), the algorithm used
assumes a “distributed” prior (SVM, L2-regularization), i.e., all features contribute
to the model. If this prior is appropriate, model performance should be high, and
potentially higher than for other types of prior. We test this hypothesis by com-
paring model I to a model that enforces sparsity on the sites. Thereby, if the sparse
model performs better or as well as a distributed model, the face information is
likely localized in a few sites and other features bring no further relevant infor-
mation. The sparse model, further referred to as model IV, is based on the sparse
MKL method?’. The main difference with model I is that sparsity is enforced at the
site level. In practice, one linear kernel is built per site (i.e., number of features =
1 x 351 time points) and those kernels are combined through a sparse prior (L1-
norm regularization). Some sites will hence not be considered in the final model
(i.e., their contribution is zero). All modeling parameters are identical between
models I and IV. Furthermore, the implementation of the sparse algorithm relies
on an SVM (for each kernel), which limits the effect of implementation on the
results. From the output of model IV, a “contribution” map can be built, which
displays the contribution of each site to the final decoding model. Thereby, the
“sparsity” of the model can be estimated as the number of sites with a non-null
contribution to the model divided by the number of sites considered”’. This
measure was computed within subjects for each fold, then averaged across folds.
Interpreting contribution maps is controversial*® as the amplitude of the con-
tribution does not necessarily reflect the presence or absence of the signal of
interest on a site. In this work, we correlate (Pearson correlation) the model
contribution at each site with its human face selectivity to ensure that decoding is
performed using information from face-selective patches, both within and across
subjects. We however preclude from any conclusion relating contributions to the
model and contributions to face processing.

Circular analysis. In this work, we perform various analyses on the same data set,
and more importantly, the contrasts investigated are identical in the univariate and
multivariate analyses. The ideal solution would be to split our data set in two parts:
one to identify face and human face-selective sites using univariate methods, the
other to build the machine learning-based models. However, with numbers of trials
as low as 30 for human faces after artifact rejection, splitting our data set would be
detrimental for both analyses. In this section, we perform univariate analyses on
another visual task recorded on the same subjects that includes human faces and
non-face stimuli, to investigate the amount of task dependence on the identified
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sites. It is important to note that this visual task comprises a different contrast from
our main task, as the visual task mostly comprises images of words and numbers,
and not pictures. This explains why we chose not to include this task in our main
analyses.

All subjects underwent a visual localizer comprising images of human faces,
animal (faces with bodies), places, objects, logos, false fonts, English and Spanish
words, numbers and Persian numbers. Each image was presented for 400 ms, with
an inter-stimulus time interval of 500 ms. During the stimuli presentation, the
patient was asked to pay attention to the center of the screen where a dot that
would randomly change color (from red to blue) was displayed. The patient was
asked to respond using a keyboard (“press 1”) when the dot changed color.

This session was preprocessed similarly to the main task presented in the
manuscript and univariate testing was performed to identify face-selective and
human face-selective sites (permutation testing, FDR corrected). For face-selective
sites, the human face and animal categories were pooled together, while all other
categories formed the non-face category. The time window considered for this
analysis was amended to account for shorter presentation duration to [100 400]ms.
The results of this analysis are presented in Supplementary Table 6 and
Supplementary Discussion 6.

Temporal distribution of face information. Building on previously published
methods’!, we implemented a technique to estimate the onset of the task-induced
trial-by-trial HFB response on each site. Importantly, this analysis was performed
on the non-smoothed data to eliminate any confound associated with temporal
smoothing. For each trial of one category, we normalize the signal with respect to
peak amplitude and implement a sliding window with 30 ms bins with 28 ms
overlap. We then estimate the signal average and standard deviation in a baseline
time window of [—200 0]ms before onset (averaged across trials) and identify 25
consecutive bins, in which the average HFB power exceeds the baseline average
plus one standard deviation. This criterion allows us to identify the task-induced
signal as opposed to more transient pathological activity or artifactual spiking. The
earliest time point of the first bin in this sequence is marked as the signal onset for
a specific trial. In the case that 25 consecutive bins surpassing the baseline
threshold are not found, we exclude that trial from further analysis. In the present
work, we calculate the median over trial-by-trial ROL estimates in order to assign
singular ROL values for specific sites. Sites for which a ROL value could not be
obtained in 50% of the trials or more were discarded from the analysis.

We investigated whether the response onset to human faces is related to the
site’s anatomical position or selectivity. To this end, we computed the ROL of the
HFB amplitude generated by human face stimuli on human face-selective sites. The
obtained ROL values (n = 40) were then correlated (Spearman correlation) with
the sites” anatomical position (the “y”-coordinate in MNI space, estimating how
posterior or anterior in the TC a site is). Similarly, the ROL values for human face-
selective sites were correlated (Spearman correlation) with the site’s selectivity to
human faces. The same analysis was performed for task-active sites (n = 94) for
comparison. For illustration, we computed the average HFB traces on sites with y <
—45, —45 <y < —35, and —35 < y for both face-selective and task-active sites. The
boundaries chosen here are taken from a separate electrophysiological study
focused on face-processing in the ventral TC#. Our ROL analyses are subject to
imprecisions, due to temporal smoothing related to the time-frequency
decomposition and to the averaging of the HFB signal in 30 ms bins. Hence our
focus is on estimating relationships between ROL and anatomical positions.
Absolute values of ROL should be considered with care as different techniques lead
to different ROL values”2. To this end, we estimated the same correlations but
subtracting the ROL value from the most face-selective site within each subject.
These results, plotted in Figs. 3b-d and 4b, ¢ ensure that the reported correlations
are not driven by specific subjects or systematic errors in timing estimation. Finally,
we estimated potential group differences in ROL between face-selective and task-
active sites using a Wilcoxon rank-sum test. To mitigate the effect of the posterior
to anterior ROL gradient found on both groups of sites, we matched each face-
selective site to its closest task-active site in terms of y-coordinate (considering a
maximum distance of 2 mm) and performed a paired Wilcoxon signed-rank test.
The same analysis was also performed within each subject.

Effects of signal amplitude and slope on ROL. Our method performs response
onset detection at the trial level, based on unsmoothed data. However, different
parameters of the signal could affect the obtained ROL values, including noise,
signal amplitude, and signal slope. In this section, we used semi-simulated data to
investigate the effect of signal amplitude and slope on the obtained ROL values.
The level of noise is the one that is naturally present in ECoG data.

The semi-simulated data used in this work have been designed for other work”3
and are described in detail below. The data and code for generating the simulation
are available open-source (https://github.com/JessicaSchrouff/Simulated_ECoG).

The original data was recorded from subject S1, during a 5-min wakefulness rest
period, with eyes closed. Sites assessed as “pathological” by medical doctors were
discarded from further analysis. A fake experimental design was simulated: two
conditions, “A” and “B”, presented at random every 1.9s. The stimuli are further
assumed to last for 1s. This yielded 146 “stimuli”, 73 for each category.

Signal preprocessing was performed with specific ECoG routines (github/
LBCN/Preprocessing_Pipeline) using Matlab (www.mathworks.com) and SPM12

(www.filion.ucl.ac.uk/spm). First, the data were converted to SPM format and
downsampled to 1 kHz. The continuous signal was filtered for line noise and
harmonics (stop-band: 57-63 Hz, 117-123 Hz, and 177-183 Hz) and an automatic
quality assessment identified “noisy” or “spiky” sites based on their variance and
number of “jumps” (i.e., signal derivative > 100 uV), leaving 38 “good” sites. The
data was re-referenced to the average of all good channels before being epoched in
the [—400, 1400]ms window around “onset” and baseline corrected using the
[—400, 0Jms window. Epochs displaying flat segments of >4 ms or “jumps”
>100 pV were discarded from further analysis. The signal was then decomposed
using a five-wavelets decomposition in the 70-170 Hz frequency band (step: 10 Hz,
avoiding 120 Hz) to estimate HFB power. The time-frequency signal was z-scored
based on the pooled baselines of all events in the [—300, 0]ms window before onset
to avoid edge effects and smoothed in the [—200, 1200]ms window after onset by a
50 ms Gaussian window. Epochs displaying z-scores >8 were discarded, leaving 60
trials for condition “A” and 56 for “B”. This preprocessing procedure is very similar
to the one used in the main part of the work, including bad channel rejection.
We then simulated signals according to the “fake” experimental design. All
modifications of data structure were performed on the preprocessed data to avoid
an effect of the preprocessing on the obtained results. To simulate neural signal, a
ramp window was added to all epochs of condition “A” starting 0 ms after “onset”
with a slope of 3 until 500 ms, on all “good” sites. The amplitude of the signal in
condition “A”was varied by modifying the SNR between trials “A” and “B”. Hence,
varying signal amplitude is strongly correlated with varying the selectivity of sites
to condition “A”. The amplitude of the signal in the ramp window was computed
based on a desired SNR on each site:

Xpefr = Xa + SNRy, x std(X) (1)

where X, ¢ represents the amplitude of the effective simulated signal for condition
“A” trials, X,, the amplitude of the signal for trials “A”, SNRy,, a fixed number
representing the desired SNR, and Xj, the average trace of “B” trials. SNR;, was
varied from 2 to 10 by steps of 0.5. In our real dataset, the distribution of estimated
SNR varies from —2 to 17 on human face-selective sites, with only three sites with
SNR > 10.

To estimate the effect of signal slope on the ROL results, we performed the same
simulation but normalizing the amplitude of the signal in each trial before ROL
detection (Liys -norm, i.e., dividing by the maximum amplitude). This simulated
dataset hence varies the slope of the signal, but not the amplitude (set to
maximum of 1).

For each SNR level, ROL detection is performed at the trial level, for the “A”
trials on each “good” site. All parameters are identical to the technique reported
above. Trials with <50% of detected onsets were excluded from the results. This
analysis was performed on both the un-normalized (i.e., varying amplitude at fixed
slope) and the normalized (i.e., varying slope at fixed amplitude) simulated data.
The results are presented in Supplementary Discussion 8 and Supplementary Fig. 4.

Causal importance of TC sites for face perception. A set of electrical brain
stimulations (EBS) was performed on seven of the eight subjects in addition to the
experimental task (but not concurrently). The sites of stimulations were chosen
based on a priori knowledge about their HFB responses to face and non-face
stimuli, as assessed by the univariate analysis of a localizer task. During the pro-
cedure, face-selective and task-active sites were stimulated with electrical charge
while the subjects were instructed to look at various real-world face stimuli (per-
sons at the bedside). Across the seven subjects, the instructions given included (A)
looking at the face, (B) looking at the lips, (C) looking at the nose, (D) looking at
self in the mirror, (E) looking at a cartoon face on a sheet of paper, or (F) close eyes
and imagine a face. Please note that these clinical procedures diverge from
stimulus-locked electrical perturbation experiments. Between 3 to 8 mA (depend-
ing on the excitability of the stimulated site) were delivered at a duration ranging
from 1 to 3 s at 50 Hz frequency and 200 ps pulse width, of a square wave electrical
waveform in unipolar (subject S8) or bipolar montage (S8 and other subjects). In
unipolar montage, a TC site and a remote cortical reference site were stimulated
whereas in the bipolar montage, a pair of adjacent electrodes were stimulated.
Sham stimulations were also administered at 0 mA. Continuous EEG monitoring
showed no after discharges or epileptic activity during the sessions. Verbal reports
were collected following each stimulation. We recognized an electrode as a catalyst
in face perception change if (A) the stimulation of this electrode yielded a face-
specific change; (B) the stimulation of this electrode paired with any other electrode
still yielded a change; and (C) the result of the stimulation and its resulting face-
perception change was replicable across multiple stimulation trials. In addition, in
subject S8, the estimated cortical area affected by the stimulation on electrode 3 was
calculated using the relationship between the estimated charge per trial and the
cortical area affected>*. The charge deposited per trial (LC) was calculated as a
product of the pulse width (ms), current (mA), frequency (Hz), and duration (s) of
stimulation for each trial; then, we estimated the cortical area (mm?) affected by the
stimulation as a function of the charge deposited per trial (uC) according to the
methods described in a previous publication®. Furthermore, using a one-tailed
z-score test, we tested whether the proportion of sites that induced distortions in
face perception where significantly different in the posterior versus mid fusiform
gyrus across all subjects.
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Statistical testing. Throughout this work, statistical testing was performed using
non-parametric permutations. When suited, the tests were paired (e.g., when
comparing two conditions in terms of ROL value on the same set of sites, or when
comparing the HFB response of a stimulus category to its baseline). A minimum of
1000 permutations was performed, to ensure a good estimation of the null dis-
tribution. FDR or Bonferroni correction was applied when multiple comparisons
tested for the same effect (e.g., testing for human face selectivity on each site).
Significance was determined at p < 0.05, after correction if applicable. Population
statistics for the decoding models I-IV was performed using Wilcoxon signed-rank
tests®.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Due to the presence of patient identifying information in the data, we cannot release the
presented recordings.

Code availability

All analyses were performed in Matlab (www.mathworks.com). Preprocessing and
univariate analyses were performed based on SPM (http://www.fil.ion.ucl.ac.uk/spm/)
and in-house routines available at https://github.com/LBCN-Stanford/
Preprocessing_pipeline. ROL in-house codes are available on Github at https://github.
com/LBCN-Stanford/. Multivariate analyses were performed using a development
version of PRONT00%8. This code will be released as PRoNTo v3 and be available at
http://www.mlnl.cs.ucl.ac.uk/pronto/. The code to build semi-simulated data is available
at https://github.com/JessicaSchrouff/Simulated_ECoG, along with the rest data from
subject S1 used to generate the noise structure.
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