Skip to main content
. 2020 Jan 31;10:1554. doi: 10.1038/s41598-020-58028-0

Table 2.

Outcomes of Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs).

Model Dataset Dependent variable Independent variables sign terms (estimate) p-value Dev. Expl. AIC
GLM 1997–2013 biomass SSTspawn + CHLspawn + SSTpost + CHLpost non significant terms
GLM 1997–2013 biomass + catch SSTspawn + CHLspawn + SSTpost + CHLpost non significant terms
GLM 1998–2013 biomass SSTspawn + CHLspawn + SSTpost + CHLpost non significant terms
GLM 1998–2013 biomass + catch SSTspawn + CHLspawn + SSTpost + CHLpost non significant terms
GAM 1997–2013 biomass s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) non significant terms
GAM 1997–2013 biomass + catch s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) SSTspawn (Fig. 6.a) 0.043 63.62% 321.84
GAM 1998–2013 biomass s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) non significant terms
GAM 1998–2013 biomass + catch s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) SSTspawn (Fig. 6.b) 0.043 63.62% 321.84
GLM 1997–2013 biomass LRI + SSTspawn + CHLspawn + SSTpost + CHLpost LRI (2.871) 0.001 80.33% 311.94
CHLspawn (−6.512e + 05) 0.038
GLM 1997–2013 biomass + catch LRI + SSTspawn + CHLspawn + SSTpost + CHLpost LRI (2.867) 0.001 82.05% 309.51
CHLspawn (−6.078e + 05) 0.037
GLM 1998–2013 biomass LRI + SSTspawn + CHLspawn + SSTpost + CHLpost LRI (2.871) 0.001 80.33% 311.94
CHLspawn (−6.512e + 05) 0.038
GLM 1998–2013 biomass + catch LRI + SSTspawn + CHLspawn + SSTpost + CHLpost LRI (2.867) 0.001 82.05% 309.51
CHLspawn (−6.078e + 05) 0.037
GAM 1997–2013 biomass LRI + s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) LRI (2.8663) 0.001 85.70% 308.91
GAM 1997–2013 biomass + catch LRI + s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) LRI (2.9253) 0.005 91.90% 300.66
CHLspawn (Fig. 6.c1) 0.035
CHLpost (Fig. 6.c2) 0.038
GAM 1998–2013 biomass LRI + s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) LRI (2.8663) 0.001 85.70% 308.91
GAM 1998–2013 biomass + catch LRI + s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) LRI (2.9253) <0.001 91.90% 300.66
CHLspawn (Fig. 6.d1) 0.035
CHLpost (Fig. 6.d2) 0.038

In GAM, the use of s() stands for the application of the cubic regression spline as a smooth term. When significant terms (sign. terms) were detected, the model regression coefficients (estimate) and the associated p-value are shown, as well as the deviance explained and the AIC index, as an indicator of the model fitting performance.