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Extreme sea levels are a significant threat to life, property, and the
environment. These threats are managed by coastal planers
through the implementation of risk mitigation strategies. Central
to such strategies is knowledge of extreme event probabilities.
Typically, these probabilities are estimated by fitting a suitable
distribution to the observed extreme data. Estimates, however,
are often uncertain due to the small number of extreme events in
the tide gauge record and are only available at gauged locations.
This restricts our ability to implement cost-effective mitigation. A
remarkable fact about sea-level extremes is the existence of
spatial dependences, yet the vast majority of studies to date have
analyzed extremes on a site-by-site basis. Here we demonstrate
that spatial dependences can be exploited to address the limita-
tions posed by the spatiotemporal sparseness of the observational
record. We achieve this by pooling all of the tide gauge data
together through a Bayesian hierarchical model that describes how
the distribution of surge extremes varies in time and space. Our
approach has two highly desirable advantages: 1) it enables sharing
of information across data sites, with a consequent drastic reduc-
tion in estimation uncertainty; 2) it permits interpolation of both
the extreme values and the extreme distribution parameters at
any arbitrary ungauged location. Using our model, we produce an
observation-based probabilistic reanalysis of surge extremes cover-
ing the entire Atlantic and North Sea coasts of Europe for the period
1960–2013.
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Extreme sea levels can have profound impacts on coastal
areas, including significant loss of life and damage to prop-

erty and to the environment. They cause billion-dollar disaster
events in countries across the globe and floods related to sea
level now cost the world 10s of billions of dollars each year (1).
And with climate projections indicating a significant increase in
the intensity and frequency of sea-level extremes by 2100 (2, 3),
those numbers are bound to grow even further. To manage these
threats, coastal planners use measures of extreme event likeli-
hood to estimate risk and determine appropriate levels of pro-
tection that balance expected damage with protection costs. When
risk can be accurately estimated, a well-designed risk mitigation
plan can save both lives and money by reducing disaster impact
while avoiding needless costly overprotection measures. In reality,
however, estimates of event probabilities, which are central to risk
estimation, are often subject to large uncertainty, primarily due to
the sparseness of the observational record. This uncertainty can
lead to a significant shortfall in the performance of risk mitigation
strategies, including the premature failure of infrastructure, with
disastrously expensive consequences. Reducing uncertainty in
existing estimates of probabilities of sea-level extremes is therefore
a priority, in order to enable more accurate risk estimation, and
thus more effective mitigation.
Extreme value theory (EVT) provides the most rigorous sta-

tistical framework for the analysis of extremes and underlies the
majority of existing work on sea-level extremes. Generally, there
are two ways of defining extremes, both widely used: the block-

maxima method, which divides the observations into consecutive
nonoverlapping blocks (or periods), typically years, and selects
the maximum value in each block; and the peaks-over-threshold
method, which considers all of the values above a certain thresh-
old. The central result of EVT asserts that the only possible lim-
iting distribution of block maxima is the generalized extreme value
(GEV) distribution (4, 5). Analogously, threshold excesses can
only converge in distribution to the generalized Pareto distribution
(6). This fundamental result means that, assuming the observa-
tions are independent and identically distributed, the distribution
of extremes can be characterized simply by fitting one of those
limiting distributions to the extreme data.
While simple conceptually, the application of EVT to sea-level

data involves a number of challenges. First, the historical sea-level
record, consisting of tide gauge measurements, provides only a
small sample of extreme events, from which accurate estimation of
the distribution parameters is difficult. Second, there is abundant
observational evidence that the sea-level distribution is changing
with time, both its mean values (7) and its tail behavior (8–11),
which violates the assumption of stationarity on which classical
EVT is predicated. Taking this nonstationarity into account is
essential to ensure not only that EVT remains applicable, but also
that risk mitigation strategies select a level of protection that
matches the real risk of extremes. Last but not least, tide gauge
observations are only available at a small number of sites, while
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estimates of event probabilities are also needed at many other
ungauged coastal locations. Dynamical models can provide sim-
ulated data with better spatial coverage, but extreme values tend
to be underestimated in such models (12–15). Furthermore, exist-
ing dynamical simulations span only the most recent decades, and
hence they face the same problem of a small sample of events as
the observations.
Studies of extremes have become a preeminent focus for sea-

level research in recent decades. Although EVT is central to
most of these studies, they differ in their geographical scope, their
definition of extremes, and in how they address nonstationarity.
Some studies are global in scope (8, 9, 14, 16, 17), whereas many
others have a regional or local focus (10, 13, 18–28); some studies
adopt a block-maxima approach (e.g., ref. 9), while others use
threshold excesses (e.g., ref. 23); some incorporate nonstationarity
through state-space methods (e.g., ref. 9), whereas others model it
using fits to running windows (e.g., ref. 10) or parametric ap-
proaches (8). Beyond these differences, all these studies share a
common trait: they analyze extremes on a site-by-site basis by
fitting a model separately at each tide gauge station. The limita-
tions of this approach are readily apparent. At sites with long tide
gauge records, the approach is generally able to constrain the
distribution parameters reasonably well, however at sites with little
data (the vast majority) estimates have large uncertainty. Cru-
cially, the approach tells us nothing about extremes at ungauged
locations.
Here, we present an approach based on a Bayesian hierar-

chical model (see ref. 29 for a general description of hierarchical
models) that addresses the challenges posed by the sparseness of
the observational record and overcomes the limitations of the
traditional site-by-site analysis. Our focus here is on the surge
contribution, which is the part of sea level that remains after
removal of the tide and the mean sea level. While spatial hier-
archical models have never been used for sea-level extremes (to
our knowledge), they have been successfully applied to other
types of extremes (30–35), and are emerging as the state-of-the-
art tool for geostatistical modeling in general. Our approach
relies on the fact that, although observations are spatially dis-
crete, the storm surge process is continuous in space and varies
smoothly with length scales similar to those of the weather regimes
that give rise to the surges. This means that, although tide gauge
sites might have some degree of individuality due, for example, to
local bathymetric features, there will also be dependences among
them. The key idea is to exploit these dependences in order to
enable sharing of information across stations. Such data pooling
cannot only drastically reduce estimation uncertainty, but also
allows for the interpolation of the extreme surge field at unob-
served locations and times.
The idea of pooling information across space has been applied

before to the analysis of surge extremes, primarily through the
method of regional frequency analysis (RFA) (36, 37). RFA
involves, first, predefining homogeneous spatial regions, then
normalizing the extreme data in each region by an index flood
measure, and last fitting an extreme value distribution to the
pooled normalized data. While RFA represents an improvement
over the traditional single-site analysis as it allows for more
precise estimates of event probabilities, it has its limitations. In
particular, the specification of homogeneous regions introduces
artificial boundaries that can lead to discontinuities in the ex-
treme field, contradicting the physical expectation that the surge
process is spatially continuous. In addition to this, RFA does not
permit incorporation of physical information through covariates,
and accounting for nonstationarity is unfeasible, or at best prob-
lematic. Notably, it is unclear how errors propagate through the
various steps of the procedure, which presents an obstacle to
obtaining proper uncertainty estimates. Relatedly, RFA typically
ignores spatial dependence when estimating the extreme distri-
bution parameters, which artificially narrows confidence intervals,

although a modification to correct for this has recently been
proposed (38).
In contrast to RFA, our approach captures spatial dependence

in both the surge annual maxima, via a max-stable process, and
in the GEV parameters, through latent processes and physical
covariates. A max-stable process is the infinite-dimensional gen-
eralization of the GEV distribution (39), and hence the most
appropriate choice to model pointwise maxima. The use of spatial
models avoids spatial discontinuities and enables us to flexibly
account for site differences while also pooling information across
sites. Furthermore, the hierarchical approach allows us to pre-
scribe rich classes of spatiotemporal models. For example, our
model introduces temporal variation in the GEV location pa-
rameter to account for long-term changes in extremes arising from
climate change. Importantly, our approach naturally accommo-
dates data gaps, involves a comprehensive treatment of uncer-
tainties with rigorous error propagation, and allows estimation of
both the annual maxima and the GEV parameters at any arbitrary
location, either gauged or ungauged. This enables us to produce
observation-based estimates of the GEV parameters and annual
maxima on a grid covering the entire Atlantic and North Sea
coastlines of Europe for the period 1960 through 2013 (40).
This study focuses on describing the Bayesian hierarchical

model, assessing its performance through a number of evaluation
metrics, and presenting the reanalysis.

Formulation of the Bayesian Hierarchical Model
A Bayesian hierarchical model is a full probability model that
makes inferences from data about unobserved quantities and is
expressed, by Bayes’ rule, as a product of conditional distribu-
tions or submodels (29, 41): 1) an observation model (called the
likelihood) that links the observed data to the spatiotemporal
processes; 2) a process model that describes the dynamics of the
processes; and 3) a parameter model that models the uncertainty
in the parameters and incorporates our prior knowledge about
the data and the processes. Bayesian inference relies on evalu-
ating the joint distribution of processes and parameters condi-
tioned on the observed data (called the posterior distribution),
and accounts for uncertainty in the observations, processes, and
parameters.
In modeling spatial dependence of extremes, it is important to

distinguish between two types of dependence (30), which here we
refer to as residual and climatological. The former occurs when
multiple locations are affected by the same events, while the
latter implies locations with similar storminess but not necessarily
cooccurrence of events. In other words, residual dependence im-
plies dependence among annual maxima whereas climatological
dependence reflects spatial association among the GEV parame-
ters. Here, residual dependence is captured via a max-stable pro-
cess, while dependence among the GEV parameters is described
via latent processes with random effects and bathymetric cova-
riates. The implementation of the max-stable process is the same
as described by ref. 32 and we defer to that study for full details.
In our model, the GEV location parameter is allowed to vary

in both time and space, whereas the scale parameter varies only
in space. The shape parameter is assumed to be constant over
the entire domain. This latter assumption is justified by explor-
atory analysis based on individual GEV fits to the observed an-
nual maxima (SI Appendix). Inference in our model is performed
using Markov chain Monte Carlo (MCMC) sampling as de-
scribed in Materials and Methods. In the following, we describe in
detail the observation and process layers of the hierarchical
model. The parameter layer is described in SI Appendix.

Observation Layer
Let Yt(s), t = 1, . . ., T, be the annual maximum surge for year t
and at location s, and let s1, . . ., sn denote the locations of
the tide gauge stations. We assume that the surge process

1878 | www.pnas.org/cgi/doi/10.1073/pnas.1913049117 Calafat and Marcos

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913049117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913049117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1913049117


Yt(s) is max-stable, and hence its marginal distributions are
GEV(μt(s),σ(s),ξ), where μt(s) is the location parameter, σ(s)
is the scale parameter, and ξ is the shape parameter. Following
ref. 32, the likelihood can be written as:

YtðsiÞ
���θtðsiÞ, μtðsiÞ, σðsiÞ, ξ, α  ∼ind GEV

�
μpt ðsiÞ, σpt ðsiÞ, αξ

�
, [1]

μpt ðsÞ = μtðsÞ+
σðsÞ
ξ

�
θtðsÞξ − 1

�
, [2]

σpt ðsÞ= ασðsÞθtðsÞξ, [3]

where θtðsÞ is a spatial process capturing residual dependence
and α∈ ð0,1Þ is a parameter that controls the relative contribu-
tion of small-scale errors.
At this point, it is instructive to make a few observations on the

three equations above. First, Eq. 1 means that the annual max-
ima are independent, conditioned on θtðsÞ, μtðsÞ, σðsÞ, ξ, and α,
and are modeled as 1-dimensional GEVs. Second, climatological
dependence is captured by specifying spatial models for μtðsÞ and
σðsÞ, whereas residual dependence is modeled by introducing
random effects in the GEV parameters through θtðsÞ, as repre-
sented by μpt ðsÞ and σpt ðsÞ. Hence, it is θtðsÞ that confers the
model its ability to make predictions of the annual maxima at
ungauged locations. To illustrate how θtðsÞ induces residual de-
pendence, it is helpful to consider the cases where α→ 0 and
α→ 1. In the first case, σpt ðsÞ→ 0 and YtðsÞ convergences in dis-
tribution to GEVðμpt ðsÞ, 0,0Þ, which implies YtðsÞ≈ μpt ðsÞ, and
thus the surge process becomes a spatial process with strong
residual dependence. Conversely, when α→ 1, θtðsÞ→ 1 and YtðsÞ
convergences to GEVðμtðsÞ, σðsÞ, ξÞ, and thus there is no residual
dependence. Next, we describe how the processes θtðsÞ, μtðsÞ,
σðsÞ are modeled.

Process Layer
The spatial residual process θtðsÞ is expressed as

θtðsÞ=
 XL

l=1

At,lwlðsÞ1=α
!α

, [4]

where wlðsÞ≥ 0 are kernel functions and At,l are their coefficients.
The kernel functions are taken to be scaled Gaussian functions
(other kernels are possible):

wlðsÞ= Kðsjvl, τÞPL
j=1K

�
s
��vj, τ�, [5]

Kðsjvl, τÞ= 1
2πτ2

exp
�
−

1
2τ2

ðs− vlÞTðs− vlÞ
�
, [6]

where v1, . . ., vL are spatial knots and τ is the characteristic
length scale of the residual dependence. The scaling ensures that
the kernels sum to 1 at each location, which is required to pre-
serve the max-stability properties of the model (see ref. 32). The
location of the spatial knots is shown in SI Appendix, Fig. S1A.
The coefficients of the kernel functions are assumed to follow

a positive stable distribution to ensure max-stability (32):

At,l   ∼
iid
  PSðαÞ. [7]

The location parameter μtðsÞ is assumed to vary smoothly with
time (i.e., we aim to capture long-term changes such as nonlinear
trends as opposed to shorter-term variations which are likely

unresolvable), thus we model it as a spatiotemporal integrated
random walk of the form

μtðsÞ= μt−1ðsÞ+ μtrend,t−1ðsÞ, [8]

μtrend,tðsÞ= μtrend,t−1ðsÞ+ωtðsÞ, [9]

where ωtðsÞ is a zero-mean Gaussian process (42) ωtðsÞ∼
GPð0, cðs, s’; γμ, ρμÞÞ, with cð ·, · Þ being a covariance function
and γμ and ρμ denoting, respectively, the SD and length scale
defining the covariance function. The initial states of the location
parameter and its trend are modeled as

μt=0ðsÞ∼GP
�
xTðsÞβμ, c

�
s, s’; γμ0, ρμ0

��
, [10]

μtrend,t=0ðsÞ∼GP
�
0, c
�
s, s’; γμ00, ρμ00

��
, [11]

where xðsÞ is a 2 × 1 vector of referenced covariates containing
an intercept and the width of the continental shelf at each loca-
tion, and βμ is a 2 × 1 vector of regression coefficients. The
reason for using shelf width as a covariate is justified by the
theory of storm surges, which states that wider continental shelves
lead to larger storm surges (43).
Finally, the logarithm of the scale parameter, logσðsÞ, is

modeled as a spatial process:

logσðsÞ∼GP
�
xTðsÞβσ , cðs, s’; γσ , ρσÞ

�
. [12]

The scale parameter σðsÞ is restricted to be positive, and taking
its logarithm ensures that such bound is enforced. This transfor-
mation is standard in Bayesian statistics.
For the covariance function cð ·, · Þ of all Gaussian pro-

cesses, we assume a Matérn kernel with smoothing parameter
ν= 5=2 (42).

Model Validation
Checking that the model performs as expected is a crucial step
to ensure that we can confidently use its outputs to learn about
extremes. In this regard, we note that, aside from through
parameters and processes, uncertainty can enter the model
primarily through model inadequacy and lack of observations.
It is important to consider these two sources of uncertainty. To
this aim, we perform two validation experiments. First, we test
the model on synthetic data generated under the same spa-
tiotemporal model as the one used to fit the data. This allows
us to isolate the influence from the sparseness of the observa-
tional record, since model inadequacy is eliminated by design.
The second experiment involves testing the model on real tide
gauge data and aims to quantify the real-world skill of the model,
but it also allows us to assess, by comparison with the first ex-
periment, the adequacy of the model in reality. For complete-
ness, we perform an additional third experiment with reanalysis
data from a dynamical surge model (see Materials and Methods
for a description of the reanalysis). The surge reanalysis allows us
to validate the model at more locations than it is possible using
the tide gauge data and provides a means for further assessing
the adequacy of the model. The results from the first and third
experiments are presented in SI Appendix, whereas those from
the validation with real tide gauge data are exposed in the
following.
A few clarifications first. A description of the tide gauge

dataset is given in Materials and Methods, while site locations are
shown in SI Appendix, Fig. S1. Note that whenever we talk about
estimates from the hierarchical model and their SEs we are re-
ferring to posterior distribution means and SDs, respectively.
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Model skill is evaluated in terms of a number of diagnostics such
as fractional differences (FDs), SEs, and Spearman’s rank cor-
relation for annual maxima predictions (seeMaterials and Methods
for an explanation of these diagnostics).
The experiment with synthetic data (SI Appendix) shows that,

given a perfectly adequate model, the hierarchical model is ca-
pable of characterizing the extreme value field at ungauged lo-
cations with high accuracy (median FDs of 0.09 and 0.10 for μ
and σ, respectively, and a mean Spearman’s rank correlation
of 0.70 for annual maxima), despite the sparseness of the tide
gauge record. To account for model inadequacy and quantify the
real-world skill of the model, we perform the following experi-
ment with real tide gauge data. We exclude one tide gauge site,
then predict the extreme value field at the location of the
omitted site using the remaining data sites, and compare this
prediction with the true values. This procedure is repeated for
each one of the 79 tide gauge sites. Since the true value of the
GEV parameters is unknown, the predictions of μ and σ at the
omitted sites are compared with the Bayesian estimates based on
the full dataset. The predicted annual maxima are compared with
the actual observed values.
Both μ and σ are well captured by the hierarchical model at

most excluded data sites (Fig. 1 A and B), with median FDs of
0.14 and 0.11, respectively. This implies that the estimates of μ and σ
at ungauged locations are accurate, on average, to within ∼14 and
∼11% of the “true” value, respectively. Notably, the FDs are fairly
uniform across stations, indicating that model skill is largely in-
dependent of location. The predictive skill for annual maxima is also
good (Fig. 1 C and D), with a mean Spearman’s rank correlation of
0.62 and a fraction of annual maxima contained by the 1-sigma
credible interval of 0.77 (mean value over the 79 stations). The
latter is consistent with the theoretical expectation that a 1-sigma
credible interval should contain the true value with a probability of

∼0.7, and demonstrates that the hierarchical model yields realistic
uncertainty estimates. This performance is similar to that esti-
mated using synthetic data in a perfect model setting (SI Appen-
dix), corroborating the adequacy of the hierarchical model. It is
also comparable to the results from the validation with reanalysis
data (SI Appendix), giving us additional confidence in the skill of
the model.

Probabilistic Reanalysis of Storm Surge Extremes
We now present the probability distribution of surge extremes as
estimated by the Bayesian hierarchical model from the real tide
gauge data. The posterior distribution for the model parameters
(α, τ, ξ, ρσ, ρμ0, γσ, γμ0, βσ, and βμ) is shown in SI Appendix, Fig. S2.
Next we discuss the estimates of the GEV parameters. The
values of the time-mean location parameter μ at gauged locations
range from 0.4 m along the coastlines of Portugal and Spain to 2 m
in the German Bight (SI Appendix, Fig. S3A). The scale parameter
σ shows a similar spatial structure, with values <0.1 m along
southwestern Europe and values as large as 0.5 m in the German
Bight (SI Appendix, Fig. S3B). The SEs associated with μ and σ
also vary with location (SI Appendix, Fig. S3 C and D) but, in all
cases, are at least an order of magnitude smaller than the pa-
rameter values (mean values of 2.9 and 1.9 cm, respectively), in-
dicating that the model is able to estimate the parameters at data
sites with high precision. The spatial dependence structure un-
derlying the location and scale parameters emerges even more
clearly when looking at the gridded estimates (SI Appendix, Fig.
S4). Both parameters show larger values in the North Sea, par-
ticularly in the German Bight, and a general tendency for smaller
values as we move southward. SEs at interpolation sites are larger
than at gauged locations (mean values of 18.8 cm for μ and 2.5 cm
for σ), but they are still only a small fraction of the parameter
values at most locations. In particular, SEs are, on average, only
20% of the parameter value, and smaller than 66% ðμÞ and 46%
ðσÞ of the value at all locations.
The estimates of the GEV parameters can be used to compute

extreme event probabilities. In engineering design, such proba-
bilities are typically specified in terms of the N-year return
level, which is the level that is exceeded on average once every N
years. The N-year return level can be calculated simply as
Qð1− 1=N; μ, σ, ξÞ, where Q is the quantile function for the GEV
distribution. As an illustration, we show gridded estimates of the
time-mean 50-y return level for the European coastlines (Fig. 2).
As expected, the smallest return levels are found along the
coastlines of Portugal and Spain with values of about 0.7 m,
whereas the largest values are found in the North Sea with values
as large as 4.4 m in the German Bight (Fig. 2A). The uncertainty
associated with the estimated return levels is small relative to the
value of the return levels, with SEs that range from about 0.2 m
almost anywhere outside the North Sea to about 0.3 to 0.4 m in
the North Sea (Fig. 2B). Note, however, that these SEs refer to
interpolation sites; estimates at gauged locations have even
smaller uncertainties with a median SE of 0.1 m. To put these
uncertainties into context, we note that a single-site GEV model
based on maximum likelihood estimation yields estimates of the
50-y return levels with a median SE of 0.2 m, which is two times
larger than the Bayesian errors at gauged locations and compa-
rable to the errors at ungauged sites. Furthermore, the single-site
model is unable to yield meaningful estimates at three locations
(Ferrol in Spain, Le Crouesty in France, and Moray Firth in
Scotland) due to the failure of the maximum likelihood estimator
to converge.
The hierarchical model also produces estimates of the annual

maxima in any given year and at any arbitrary location. These
estimates enable us, for example, to analyze the magnitude and
spatial extent of individual extreme events as they were actually
observed. As an illustration, we show the surge levels during the

Fig. 1. Validation with real tide gauge data. FDs between the Bayesian
estimates based on the full tide gauge dataset and the predicted values of
the GEV time-mean location (A) and scale (B) parameters at omitted sites.
The Spearman’s rank correlation between the true and predicted annual
maxima (C), along with the fraction of 1-sigma credible intervals that con-
tains the true extreme value (D), are also shown.
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passage of cyclones Xaver in December 2013 and Klaus in Jan-
uary 2009 (Fig. 3), which struck, respectively, the North Sea and
Bay of Biscay coastlines and caused record-setting water levels at
several coastal locations (e.g., ref. 44). The highest surge levels
induced by Xaver occurred near the Germany–Netherlands
border (Fig. 3A), with values as large as 3.5 m. Surge levels
higher than 3 m affected a large section of coastline (>150 km),
stretching from northwestern Netherlands to well within the
central portion of the German Bight. To put these values into
historical context, we also show the predicted time series of
annual maxima for the period 1960 through 2013 in the Ger-
man Bight along with the observed annual maxima at two
nearby tide gauges (Fig. 3C). We see that, although Xaver is
one of the largest events in the period 1960 through 2013, other
events of similar magnitude are also evident in both the pre-
dicted and observed annual maxima. The series of annual
maxima from the two tide gauge records are very coherent
between them and also with the predicted annual maxima,
giving us confidence in the predictive skill of the model in
this region.
Regarding Cyclone Klaus, the maximum surge is found in

southwestern France, with values of over 1 m affecting a 300-km
section of coastline (Fig. 3B). Klaus appears to be the highest
surge event over 1960 through 2013 in this region (Fig. 3D), both
in the predicted and observed sequences of annual maxima.
Note, however, that this is a region where the two nearest tide
gauges (Arachon-Eyrac and Bocau) show less coherence than
those in the North Sea (note, for example, differences in years
2009 and 2010), indicating that smaller length scales might be at
work here. They also provide fewer data. The hierarchical model
responds to this by widening the credible intervals and pulling
the estimate toward the middle of the observed values. This
means that events that are localized and show inconsistent values
between neighboring stations might be underestimated by the
hierarchical model.

Conclusions and Discussion
Understanding the risk of coastal flooding from sea-level extremes
requires accurate estimates of their occurrence probabilities.
Obtaining such estimates is, however, challenging because of the
difficulties posed by the sparseness of the tide gauge record. There
is, therefore, a need for new approaches that can address those
difficulties and yield more precise estimates of event probabilities.
Here, we have demonstrated that this can be achieved by mod-
eling the surge extreme field as a continuous spatiotemporal
process, as opposed to modeling data from each tide gauge sta-
tion independently. Our approach has enabled us to gener-
ate observation-based estimates of event probabilities on a grid

covering the entire Atlantic and North Sea coasts of Europe
for the period 1960 through 2013. When compared to the tra-
ditional single-site modeling approach, our model cuts the un-
certainty in estimates of event probabilities (e.g., return levels)
by half at gauged locations and yields estimates with comparable
uncertainty at ungauged sites. These estimates will help coastal
planners and stakeholders to make more confident decisions,
particularly in regions with few or no observed data. An additional
benefit is that, since our estimates are solely based on observa-
tions, they can be used to validate extreme data from dynamical
surge models.
Our results are indeed encouraging, but a few remarks need to

be made. The ability of the model to share information across
space depends directly on the length scales of the extreme field; the
smoother the field the more precise the estimates and the further
away from a tide gauge we can interpolate with confidence. The
GEV parameters tend to vary smoothly in space, following varia-
tions in the width of the continental shelf and changes in climate
conditions by latitude, and so in general they can be estimated with
confidence up to a few hundred kilometers away from any station.
We expect this to be the case even in regions affected by tropical
cyclones, which have relatively small length scales, since the spatial
structure of the GEV parameters is defined by climatological
rather than residual dependence. Conversely, coherence among
annual maxima is directly related to the spatial extent of individual
events and so it tends to show smaller length scales. This means
that values of annual maxima at ungauged sites are, in general,
more difficult to predict than those of the GEV parameters. The
hierarchical model could be extended to capture small-scale ef-
fects, for example, by incorporating spatial information via prior
distributions, but this would come at the cost of increased model
complexity. Other factors that can affect model performance are
tide–surge interactions and wave setup effects. The former might
introduce errors during the extraction of the surge extremes by
causing inaccuracies in the tidal predictions, although here we

Fig. 2. Bayesian estimates of 50-y return levels. Gridded estimates of the
50-y return levels from the hierarchical model (A), along with their SEs (B).
The time-mean value of the location parameter has been used.

Fig. 3. Bayesian predictions of surge annual maxima. Surge levels in-
duced by cyclones (A) Xaver in December 2013 and (B) Klaus in January
2009 as estimated by the Bayesian hierarchical model. The blue cross de-
notes the site with the maximum surge whereas the green and magenta
triangles denote the location of the two closest tide gauges on either sides
of the blue cross. The predicted sequence of annual maxima (thick black
line) at the location showing the maximum surge (the blue cross) during
(C ) Xaver and (D) Klaus is also shown, along with the observed annual
maxima (green and magenta lines) at the two tide gauges shown in A and
B. The gray shading in C and D denotes the 1-sigma credible interval as-
sociated with the predicted annual maxima. Note that years in our analysis
start in April, so Cyclone Klaus, which occurred in January 2009, falls
into year 2008.
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have aimed to minimize such errors as explained in SI Appendix.
Wave setup, if present in the tide gauge records after removal of
the tide and the mean sea level, might reduce spatial coherence in
the extreme values leading to increased uncertainty, but we expect
this effect to be small since wave setup is generally small inside
harbors where most tide gauges are located. In any case, our
model provides realistic uncertainty estimates and these should
always be taken into account when using our estimates.

Materials and Methods
Tide Gauge Data. Hourly sea-level observations were obtained from the
Global Extreme Sea Level Analysis (GESLA) tide gauge data set (45), which
consists of 1,355 records of variable quality and length, obtained from the
international databases at the University of Hawaii Sea Level Center and
the Global Sea Level Observing System, and complemented with addi-
tional observations from national and subnational data providers. The
surge annual maxima are extracted from each tide gauge record as de-
scribed in SI Appendix.

Inference in the Hierarchical Model. The posterior distribution in our model
does not admit a closed-form expression and thus we must resort to MCMC
sampling to perform inference. However, inference in our Bayesian hier-
archical model is challenging and standard MCMC methods can fail to
converge in a reasonable amount of time. Therefore, here we use the No-U-
Turn Sampler (NUTS) (46) as implemented by the Stan probabilistic pro-
gramming language (47). NUTS is a variant of Hamiltonian Monte Carlo
with adaptive optimization, and is capable of fitting our model without
difficulty, providing fast MCMC mixing and convergence. We run the
sampler with four MCMC chains of 2,000 iterations each (warm-up =
1,000). A number of convergence and performance diagnostics for the
MCMC sampler are presented in SI Appendix.

Storm Surge Reanalysis from a Dynamical Model. Daily storm surge maxima
from the Global Tide and Surge Reanalysis (GTSR) numerical model (14)

along the European coastlines have been used. GTSR provides near-coast
time series of storm surges and tides globally at the spatial resolution of
the Dynamic Interactive Vulnerability Assessment model (48), spanning
the period 1979 through 2014. Storm surge data are simulated with a
hydrodynamic model forced with 10-m wind speed and atmospheric
pressure from the ERA-Interim global atmospheric reanalysis (49) and run
over an unstructured grid with spatial resolution down to 5 km near
the coasts.

Skill Diagnostics. The skill of the model in estimating the GEV parameters is
evaluated in terms of FDs, which are defined as FD= jðxtrue − x̂Þ=xtruej,
where xtrue and x̂ are the true and estimated values of the parameter,
respectively. Note that, since this metric compares true and estimated
values, it provides a measure of the accuracy of the hierarchical model.
The SEs yielded by the model, on the other hand, are a metric for model
precision.

To estimate the skill of the model in interpolating the annual maxima at
ungauged locations, we use two metrics: 1) the Spearman’s rank correlation
between the true and predicted extreme values; and 2) the fraction of true
extreme values that fall within the 1-sigma credible interval. That is, at each
location, we calculate how many of the 54 true extreme values over 1960
through 2013 are contained by the 1-sigma credible intervals, and then di-
vide the result by 54.

Data and Code Availability. The probabilistic surge reanalysis data presented
in this paper and the code to implement thehierarchicalmodel areboth available
via Zenodo, DOI: 10.5281/zenodo.3471600; DOI: 10.5281/zenodo.3442167.
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