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Clarifying the effect of library batch on extracellular

RNA sequencing

Christopher Hartl® and Yuan Gao®""'

We read with great interest the recent paper of Zhou
et al. (1) which describes a promising low-input pro-
tocol for measuring secreted RNA in blood. Zhou et al.
(1) apply this technology to 96 samples of serum from
cancer patients (28 with recurrence, 68 without) and
32 samples of serum from healthy controls. In the face
of high noise (> ~0.5 over 12 log-orders), the cohorts
can be distinguished with an area under the receiver
operating characteristic curve of >0.95 on the basis of
extracellular RNA. This classification performance is
stronger than what has been observed in circulating
tumor cells (2), so we sought to understand the nature
of the extracellular cancer signal.

Reanalysis of the raw data demonstrated a perfect
confound between read length and cancer status
(50 base pairs [bp] for both cancer cohorts, 75 bp
for normal). Raw expression principal components
PC1 and PC2, which separate cancer from normal
samples, highly correlate to alignment metrics (Fig. 1
A and B). Following in silico read-length trimming,
normal samples still exhibited perfect or near-perfect
separation along a number of purely technical vari-
ables: mismatch rate, intronic rate, exonic rate, ribo-
somal RNA (rRNA) rate, and others (Fig. 1 C and D).
Based on these observations, it seems that serum from
individuals with cancer was processed separately from
serum from individuals without cancer, creating a perfect
confound between library batch, sequencing batch,

and status. Since many standard RNA sequencing
(RNA-seq) technical metrics also stratify by batch, cor-
recting for these technical covariates [which is stan-
dard for differential expression analysis (3-6)] results
in an inability to predict cancer status.

Library and sequencing batch are well-known
drivers of RNA-seq expression variance (7, 8) that in
some studies have been observed to explain the ma-
jority of raw expression variance (9, 10). It should be
regarded as a very likely case, if not the most likely
case, that batch rather than cancer status is the pri-
mary driver of the differences observed by the
authors.

We do not dispute that Small Input Liquid Volume
Extracellular RNA Sequencing reproducibly profiles
serum extracellular RNA, nor do we dispute that it
has diagnostic potential. However, the perfect con-
found between status and batch significantly weakens
the stated results of the paper. Because of the well-
established relationship between both library and se-
quencing batch and RNA-seq expression, we recom-
mend the experiment be repeated with a careful eye
to controlling serum and blood storage conditions and
randomization across library and sequencing batch.
Furthermore, it should be made clear both in the pub-
lished paper and in its supplement that the primary
outcome was not randomized across either library
construction or sequencing batch.
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Fig. 1. Perfect confounding in extracellular RNA-seq. (A) Kallisto-quantified, uncorrected RNA-seq expression principal components. Serum
samples from cancer patients cluster separately from serum drawn from healthy controls. (B) Correlation of the raw expression principal
components with standard RNA-seq quality control (QC) metrics, demonstrating very high correlations with input read length and indel rates.
(C and D) Example plots of sample-level RNA QC metrics, after clipping to matched read sizes, on which normal and cancer serum samples
separate. rRNA depletion appears to have performed significantly better on the batch consisting of serum samples from cancer patients.
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