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Abstract

Background: The consensus on how to choose a reference gene for serum or plasma miRNA expression qPCR
studies has not been reached and none of the potential candidates have yet been convincingly validated. We
proposed a new in silico approach of finding a suitable reference for human, circulating miRNAs and identified a
new set of endogenous reference miRNA based on miRNA profiling experiments from Gene Expression Omnibus.
We used 3 known normalization algorithms (NormFinder, BestKeeper, GeNorm) to calculate a new normalization
score. We searched for a universal set of endogenous miRNAs and validated our findings on 2 new datasets using
our approach.

Results: We discovered and validated a set of 13 miRNAs (miR-222, miR-92a, miR-27a, miR-17, miR-24, miR-320a,
miR-25, miR-126, miR-19b, miR-199a-3p, miR-30b, miR-30c, miR-374a) that can be used to create a reliable reference
combination of 3 miRNAs. We showed that on average the mean of 3 miRNAs (p = 0.0002) and 2 miRNAs (p = 0.0031)
were a better reference than single miRNA. The arithmetic means of 3 miRNAs: miR-24, miR-222 and miR-27a was
shown to be the most stable combination of 3 miRNAs in validation sets.

Conclusions: No single miRNA was suitable as a universal reference in serum miRNA qPCR profiling, but it was
possible to designate a set of miRNAs, which consistently contributed to most stable combinations.

Background
Molecular genetics has been a major field of study in
medicine and physiology since the first successful deoxy-
ribonucleic acid (DNA) isolation as a genetic material
and conception of the correct structural model of the
DNA [1, 2]. Further work, beginning with the isolation
of DNA polymerase I, laid the groundwork for molecular
methods of quantifying gene expression [3]. Gene ex-
pression is the most fundamental level at which genes
drive the phenotype, therefore its measurement
remained crucial for not only genetic studies, but also
any proteomics or metabolomics research. The need for
a fast and reliable way of quantifying the number of cop-
ies of a specific gene’s mRNAs gave rise to real-time

quantitative polymerase chain reaction (qPCR), which
since 1993 arguably became the “golden standard” of
gene expression quantification and still continues to be
one of the most popular techniques despite the advent
of the high-throughput counterparts such as next gener-
ation sequencing or hybridization microarrays [4]. In
medicine, qPCR, was at first used to detect pathogens’
genetic material and ribonucleic acid (RNA) molecules,
among them mRNA and miRNA [5, 6].
MiRNAs represent a group of small non-coding RNA

molecules consisting of usually 18–26 nucleotides. They
regulate gene expression in a sequence-specific post-
transcriptional manner and their expression is often al-
tered in diseases and pathological conditions [7, 8].
A major breakthrough in the field of miRNA studies

was the observation that they are stably expressed in hu-
man serum, and plasma and as such are good candidates
for biomarkers of pathological conditions [9, 10]. Such
studies typically use a high-throughput method to screen
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for candidate miRNAs which are subsequently validated
by RT-qPCR [11]. However, qPCR results are highly
dependent on parameters of the reaction and varying
specificity of probes – settings unique to each experi-
ment. This makes miRNA expression values difficult to
directly compare between different qPCR experiments
and a wrong choice of a reference can lead to inaccurate
and biased conclusions [12–14]. To further complicate
matters, qPCR measures the relative abundance of a spe-
cific miRNA in the context of a reference gene
(normalizer). Therefore, qPCR accuracy relies on both
technical conditions and the assumption of an unaltered
and stable expression of the internal reference gene.
Such a normalizer should be universally abundant in all
samples of the material that is investigated and be un-
affected by a variety of pathological conditions. Such
normalizers have been identified at tissue level and suc-
cessfully used in multiple studies on mRNA and miRNA
quantification alike (ACTB, GAPDH, U6) [15–17]. In
biofluids however, the ideal, a single universal reference
gene does not exist, and researchers often choose the
normalizer for a specific experiment making it difficult if
not impossible to pool the results with other studies or
perform meaningful meta-analyses. Therefore, the choice
of the reference is a crucial and essential step in every
qPCR analysis and should be validated on the data ac-
quired in different conditions.
The consensus on how to choose a reference genes for

serum or plasma miRNA expression qPCR studies has not
been reached and none of the potential candidates have
yet been convincingly validated [18, 19]. The most com-
mon protocols of normalization involve finding the most
stable endogenous reference on an ad hoc, study-specific
basis, focusing on normalizers efficient in specific diseases
[20–24]; normalization to small-nucleolar RNAs (snoR-
NAs) such as RNU6B [25, 26] or, when qPCR arrays are
used, normalization to mean expression of all miRNAs
[27]. The latter approach may only be applied when an
array of multiple miRNAs is used, making it unsuitable for
validation studies of specific miRNAs or panels; the other
approaches hinder the potential of comparing results be-
tween studies or rely on different RNA classes which may
vary from miRNAs in terms of stability, dynamic range
and amplification efficiency [28–30].
Thus, the hunt for the internal reference gene or a set

of reference genes adequate for qPCR analysis of serum
miRNAs continues. In this article, we proposed a new
design of reference gene selection – employing four dif-
ferent methods of measuring expression stability, we cre-
ated a framework for identification of reference miRNA
sets of a variable number of elements– and tested it on
all currently available datasets on Gene Expression
Omnibus (GEO) platform to find the optimal set of hu-
man serum reference miRNA genes.

Results
Dataset characterisation and miRNAs filtering
We characterised the included datasets in the Additional
file 1: Table S1 [31–37].

Implementation validation
Bland-Altman analysis and Pearson’s correlation (r =
1.0000) showed that our implementations of both ver-
sions of NormFinder stood in the excellent agreement
with the original. The analysis of the raw data provided
in the original GeNorm publication using MetaMirs in-
dicated that our implementation mirrored the results
obtained from the original. There was not publicly avail-
able version of BestKeeper algorithms, and any results
published in the original publication, so we couldn’t per-
form the validation for our BestKeeper implementation.

Single miRNA analysis
We found out that mean rankings, calculated from all sets,
of miR-222, miR-16 and miR-19b were the lowest. We
performed single miRNA analysis and aggregated the re-
sults by averaging their rankings from all datasets. This
suggested that those three were the best universal, single
miRNA references after selecting miRNAs that were
present in more than 80% of the datasets (Fig. 1a). The
heatmap of raw expression values showed great hetero-
geneity of expression amongst the best reference single
miRNAs (Fig. 1b). We thus concluded that finding a single
best normalization gene would be impossible, as not a sin-
gle one miRNA achieved the lowest normalization scores
in all datasets (see Additional file 1).

Comparison of rankings between single, combinations of
two and three miRNAs
We compared the mean rankings of all combinations of
two and three miRNAs as well as mean expression of all
miRNAs using the schema shown in Fig. 2. Kruskal-
Wallis testing showed p < 0.0001 for the comparison
(Fig. 3a). In the post-hoc analysis statistically significant
were the comparisons between single miRNA and two
miRNAs combinations (p = 0.0210), three miRNAs com-
binations (p < 0.0001) and mean expression of all miR-
NAs (p = 0.0025), however the difference in the mean
ranking was not significant between two and three miR-
NAs combinations (p = 0.2861). Dividing the data into
datasets, it was clear that triples of miRNAs proved to
be on average the best normalization factors in all data-
sets occupying the 1st place in rankings in all datasets
(Fig. 3b). We also noted that the mean of 2 and 3 miR-
NAs was on average a better reference gene than its
component single miRNAs (Fig. 3c, d), but in around
50% of cases at least one of the component miRNAs was
a better reference than the combination. Therefore, we
concluded that combinations of three miRNAs proved
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to be the best normalization factors in all four
algorithms.

Choice of the set of reference miRNAs
Data showed that it was impossible to find a universal
single miRNA or a 2- or 3-miRNA combination, which
could be reliably used in all 11 datasets as a reference
gene. This was partly due to the fact that the overlap of
the miRNAs’ presence in the datasets was poor (see
Additional file 1). However, we found out there were miR-
NAs that consistently created part of the top 10 reference
combinations of 2 and 3 miRNAs, mainly miR-222, miR-
17, miR-320a and miR-27a (see Additional file 1).
We have chosen a set of 13 reference miRNAs: miR-

222, miR-92a, miR-27a, miR-17, miR-24, miR-320a,
miR-25, miR-126, miR-19b, miR-199a, miR-30b, miR-
30c, miR-374. According to our pipeline, we first ana-
lyzed the 11 dataset rankings of combinations of 2 miR-
NAs, specifically combinations that placed first in each
ranking. We found out there were multiple combina-
tions placed first in each dataset. This was possible, be-
cause our algorithm evaluated one combination at a
time in the context of an original dataset. After assessing
possible sets of reference miRNAs in the validation step
on the dataset rankings of combinations of 3 miRNAs,
we proposed a set with the lowest normalization score
and with possibly minimal known dynamic range in
serum. By deriving combinations of 3 miRNAs our

chosen dataset covered all first positions in the 11 data-
set rankings both for 2 and 3 miRNA combinations.
Pairwise analysis of miRNAs from the 11 datasets

showed the strongest affinity between: miR-374a and
miR-19b, between miR-374a and miR-17, and weaker af-
finity between miR-25 and miR-126 (Fig. 4). miR-374a,
miR-222, miR-25 and miR-126 had the highest contribu-
tion to creating the most stable combinations of 3 miR-
NAs (Fig. 4).

External validation of the chosen set of miRNAs
We validated the set of 13 reference miRNAs on three ex-
ternal qPCR datasets – two unpublished datasets from pa-
tients with head and neck tumors and one publicly
available dataset from a study including patients with
rheumatoid arthritis [38] – see Additional files 2, 3 and 4.
Figure 5 represents the results of the external validation.
Rankings of the combinations of the chosen miRNAs clus-
tered towards lower ranking. Validation data confirmed
that combinations of two and three miRNAs were a better
reference than a single miRNA. We also identified that
our chosen set showed low mean ranking of derived
three-miRNA combinations in the overall distribution of
mean ranking of combinations derived from random 13
miRNAs (Fig. 6). Average ranking of combinations derived
from the chosen set was lower than 83.32, 84.76 and
97.45% of all average rankings in three validation sets, re-
spectively. This positive control indicated that our choice

Fig. 1 a A heatmap of ranking values for the top 30 single miRNA references identified by averaging ranking across datasets. The miRNA shown
have the lowest ranking value averaged from all datasets. Color intensity represents the ranking value in a dataset, averaged from the four
stability measurement algorithms. The lower the stability value, the better the reference miRNA. MiRNAs at the top were considered the best
single normalizers. MiRNAs with missing expression values in more than 20% of datasets were filtered out. Values were not standardized. b A
heatmap of average raw expression values of miRNAs in each dataset. It suggests that raw expression values of top reference single miRNAs are
heterogeneous, thus implying that a combination of them might be a good reference. Expression values were not standardized
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of a set created more stable references than any random
13 miRNAs, which validated our approach to selecting the
set. We found out that for three external datasets the best
combination of 2 chosen miRNAs placed 3rd in the com-
bined rankings and multiple combinations of 3 chosen
miRNAs placed 1st in the combined rankings (Table 1).
miR-24, miR-222 and miR-27a constituted the combin-
ation with the lowest average ranking in validation ana-
lysis, among combinations of 3 miRNAs present in all two
validation datasets (Additional file 1: Table S2). Detailed
rankings of combinations derived from the chosen set and
the best combinations in validation sets are located in the
Additional files 1: Table S3 and distribution of mean rank-
ings of combinations of 2 miRNAs in comparison with
the mean of our chosen set is in the Additional file 5. As
such we concluded that our normalization scheme is a
valid tool for normalizing serum miRNA qPCR data and
the proposed set of 13 miRNAs, emphasizing one combin-
ation of 3 miRNAs (miR-24, miR-222 and miR-27a), can
be used as a viable reference for such experiments .

Discussion
Our study shows that combinations of two or preferably
three miRNAs make for a better reference than single

miRNAs across a variety of clinical conditions and ex-
perimental setup. While it is difficult to pinpoint a single
best combination of miRNAs that can be used in all situ-
ations, a set composed of miRNAs chosen from among:
miR-222, miR-92a, miR-27a, miR-17, miR-24, miR-320a,
miR-25, miR-126, miR-19b, miR-199a, miR-30b, miR-
30c, miR-374a seems to be a safe, conservative choice
that can be readily adopted as a standard for circulating
miRNA biomarker studies.
We proposed a set of miRNAs that we validated on

new data to show that only 13 miRNAs were needed
to be included in an analysis to acquire a stable en-
dogenous normalization factor. We propose to
normalize qPCR data to the combination of 3 miR-
NAs, which have the lowest normalization score,
equivalent to the lowest ranking, using our algorithm
pipeline and deriving combinations from the set of 13
proposed miRNAs. Our approach found a good refer-
ence in a systemic way taking into the account variety
of qPCR datasets. The inclusion of datasets with dif-
ferent patients’ conditions and treatments ensured
that our results could be generalized as much as pos-
sible and the impact of different conditions of experi-
ments on the choice was minimized.

Fig. 2 Method of analyzing the stability of miRNA combinations. We decided to analyze combinations of miRNA from a dataset in a context of a
dataset. For all possible combinations of miRNAs from a dataset, we sequentially appended an average of expressions of component miRNAs to a
dataset (each sample had an additional entry with an average of expression of component miRNAs). Next step was to run the analysis in the same
manner as for single miRNAs (as in Fig. 1b), which allowed to identify the average ranking value of a combination in a dataset. Then we removed the
combination from the dataset and added another one to ensure that only one combination was present in the dataset at all time. This approach
allowed us to aggregate the results from single and combinations of miRNAs without disrupting the workings of the stability measurement tools
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Using spike-in reference has emerged as a trend and
in fact has been used in many cases, but is not without
specific drawbacks, all of which limit its applicability in
biofluid studies. Spike-in methods operate on two as-
sumptions: 1) the same amount of spike-in RNA is
added to each sample; 2) synthetic spike-in transcripts
behave in the same way as endogenous transcripts. It
has been shown that both of those assumptions are often
false and consequently disrupt the results [39, 40]. This
is due to the inherent biological variability of sample
storage, quality, degree of degradation and potential con-
founding factors. Therefore, a known-concentration
spike-in may produce erroneously globally increased or
decreased expression level of all evaluated miRNAs.
While in experimental conditions such as cell cultures
or isogenic animals, between-sample variability is largely
reduced by the methodological constraints, in the clin-
ical setting an endogenous standard is thus a far more
safe point of reference as even in a degraded sample the
miRNA/reference ratio should remain largely the same if
both are affected by the physical, biological and chemical
factors similarly. Given that our proposed references also
members of the miRNA family both the investigated

ones and the reference ones should maintain their relative
ratio indicative for the investigated pathological condition
even across samples of varied quality. Additionally, there
has been no consensus on the amount of the spike-in con-
trol added to the sample, which still leads to inter-
experiment bias, while any endogenous reference poten-
tially services more than one experiment.
The biggest obstacle to overcome in the study were long

computational times. The need to calculate normalization
scores for each new combination was time-consuming.
Even though a single combination did not take long to cal-
culate (time below 1 s), the sheer number of combinations
going as high as 107 made our whole analysis take hours
in the case of 2 miRNAs combination to days in the case
of 3 miRNAs combinations. We explored other avenues
of tackling the issue of long computation time by reducing
the number of miRNAs included in the creation of combi-
nations. We checked whether the best reference single
miRNAs could be combined into the best reference com-
binations of 2 and 3 miRNAs. We showed that such an
approach did not guarantee that the combinations would
be a good reference, since some combinations created
from miRNAs were worse than their component miRNAs.

Fig. 3 a Figure represents the mean and standard deviation of the average ranking of single miRNAs and combinations of 2 and 3 miRNAs as
well as mean of all miRNAs in each dataset. Each dot represents the average ranking in a single dataset. P values in post-hoc testing > = 0.05
were not shown in the figure. Lower mean ranking represents higher stability. b Figure represents the mean and standard deviation of rankings
of single miRNAs and combinations of 2 and 3 miRNAs in each dataset. The lower the mean ranking the more suitable the reference candidate.
c Figure represents the percent of 2-miRNA combinations that were less stable than all of their component miRNAs (red), were more stable than
1 component miRNA (yellow) and better than all of their component miRNAs (green). d Figure represents the percent of 3-miRNA combinations
that were less stable than all of their component miRNAs (red), were more stable than 1 component miRNA (yellow), were more stable than 2
components (light yellow) and better than all of their component miRNAs (green)
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More miRNAs in the combination did not translate
to a strictly better reference combination. We carried
out the analysis only for combinations of 2 and 3
miRNAs, because longer combinations would require
computational times of months. The maximum num-
ber of miRNAs that can be included in the combin-
ation is equal to the number of miRNAs in the
dataset. Such a combination would be equal or at
least non-inferior to normalizing to the mean of ex-
pression of all miRNAs and we showed that this ref-
erence was not a reliable one and should not be used.
Also, combinations of 3 miRNAs did not differ statistically
significantly from combinations of 2 miRNAs, despite the
pronounced difference in the mean rankings. We
hypothesize there is a threshold number of miRNAs, after
which the stability reaches a plateau and then starts to
decline. Drobna et al. measured normalization scores of
only NormFinder algorithm for different number of miR-
NAs in a combination. Their data indicated that the
plateau was quickly reached around the number of 3–4
miRNAs [24], which strengthens our belief.
Finding the suitable reference gene for qPCR analysis

of human serum miRNAs has never seemed more rele-
vant than now. The number of projects that use

circulating miRNAs as biomarkers is increasing and the
need to find a good reference was never direr, since the
choice of the reference is crucial for the interpretation of
the results and wrong choice can threaten the accuracy
of the results. Finding the universal single or even a
small group of reference miRNAs for human serum
miRNA gene expression analysis by qPCR seemed to be
impossible based on our results and this agreed with the
work of others [18, 20, 41]. The idea to use multiple al-
gorithms to find a reference gene was previously de-
scribed [18, 24, 42]. In short, Marabita et al. described a
new normalization algorithm using three different
normalization tools and presented case-study applica-
tions on single datasets. Mallona et al. defined an ap-
proach using 4 normalization algorithms to create a
unified normalization score by calculation of a footrule
distance matrix and finding a consensus ranking by
Monte Carlo cross entropy algorithm. They also used
only single study approach to measure stability of genes
in plants. Drobna et al. introduced a normalization pipe-
line that included 4 different normalization algorithms,
which they applied to several datasets of patients with
acute lymphoblastic leukemia. They also decided to use
a combination of 3 miRNAs as a reference based on the

Fig. 4 We counted the number of times two miRNAs occurred in all combinations of 3 miRNAs, which placed 1st in the 11 dataset rankings. We
divided each singular count by the number of combinations in a dataset containing the counted combination and summed the counts from all
occurrences of a pair. miR-374a, miR-222, miR-25, miR-126, miR-24 had the highest contribution to creation of the best normalizing combinations
of 3 miRNAs
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normalization scores of single miRNAs. All the studies
above included a step of literature-based arbitrary pre-
selection of candidate miRNAs.
The aforementioned approaches have several areas,

which we improved in our work. First of all, we showed
that choice of miRNA reference should not be made based
on a single qPCR study, because no single good reference
miRNA was reproducible in all experiments. Moreover,
we proved that the mean expression of a combination of 2
or 3 miRNAs was a better reference than the expression
of a single miRNA. In that regard our analysis mirrored
the conclusions already made before by others [43, 44].
In order to determine the potential factors that would

impair the performance of miRNAs included in our
normalizer set we performed a literature search of bio-
logical significance of the chosen miRNAs. Due to large
number of pathological conditions that potentially im-
pact the levels of circulating miRNAs, we compiled a list
of conditions which had been evidenced to significantly
alter expression levels of the corresponding miRNAs
from the proposed, reference set (Table 2). This should

allow for an informed decision about what miRNAs to
include in a reference panel depending on known patho-
logical conditions in a studied population. Moreover, we
summarized the data about previous usage of aforemen-
tioned miRNAs as reference miRNAs in paragraphs
below. Curiously, miR-222 has already been established
as a serum reference miRNA in patients with pleural ef-
fusion and in the study of estrogen-responsive miRNAs
associated with acquired protein S deficiency in preg-
nancy [41, 53]. Combination of 5S-rRNA and miR-92a
enhanced the normalization quality compared to using
only 5S-rRNA in the study of optimal small-molecular
reference RNA for body fluid identification [54]. miR-
27a was found to be stably expressed in rectal cancer tis-
sue, but the downregulation of its exosomal expression
has been associated with amyotrophic lateral sclerosis
[55, 56]. miR-17 was found to be overexpressed in many
human cancer tissues and to promote cell growth. miR-
17 is a member of miR-17-92 cluster, which had been
termed onco-miR-1 and its overexpression was proposed
to be an early non-specific sign of cancer [57]. miR-24 was

Fig. 5 The mean and the standard deviation of ranking of all normalizing factors in two unpublished validation sets - panels a and b - and a
publicly available dataset GSE109888 - panel c (black point and lines; description of the validation datasets experiments in the Additional files 1, 2,
3, 4 and 5). Colored dots represent ranking values of combinations of miRNAs from our chosen set. Our candidate normalization factors clustered
towards the lower values of ranking (better stability)
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notably a worst reference in a cardiovascular diseases’
study involving 7 small non-coding RNAs (miR-16,
SNOU6, 5S, miR-19b, miR-24, miR-15b, let-7i), although
the authors of the study employed only one normalization
algorithm – BestKeeper on top of comparative delta Ct
analysis [58]. Serum expression of miR-320a was not pre-
viously considered as a reference miRNA, but was con-
nected to several conditions including: metabolic

syndrome, epithelial ovarian cancer and inflammatory
bowel disease [59, 60]. miR-25 had been previously con-
firmed as a suitable circulating reference gene [20, 24, 41].
Expression of circulating miR-126 was found to be associ-
ated with disease free survival in patients with squamous
cell lung cancer [45]. It was also implicated in the suppres-
sion, migration and invasion of non-small-cell lung cancer
cells via targeting CCR1 as well as other molecular

Fig. 6 We performed the validation of the chosen set of 13 miRNAs as suitable reference genes. Figures represent histograms of distributions of
mean ranking of randomly selected 13 miRNAs (blue). Panels a and b show two validation sets attached in the Additional files and panel c shows
data from a publicly available GSE109888. We sampled 13 random ones from the pool of miRNAs presented in a validation dataset 2000 times
creating 2000 replicates of mean ranking of derived 3 miRNA combinations. This allowed to plot empirical distribution of mean ranking of
combinations derived from any arbitrarily selected 13 miRNAs. Shown are mean rankings of single miRNAs (pink) and combinations of 3 miRNAs
(blue). A red vertical line marks mean ranking of 3 miRNA combinations derived from the chosen set. The lower the average ranking the more
suitable the combination to be a reference gene. Average ranking of combinations derived from the chosen set (the red vertical lines) was lower
than 83.32, 84.76 and 97.45% of all average rankings in three validation sets, respectively. In summary, combination of 3 miRNAs picked from our
set of 13 were repeatedly within top 15% of best normalizers in two datasets and significantly outperformed single-miRNA normalizers

Table 1 Performance of the chosen miRNAs in the validation datasets

Validation dataset Place of the best single miRNA Place of the best pair Place of the best triple

1 6 3 1

2 4 3 1

GSE109888 1 1 1

We validated our chosen set on two qPCR datasets. In each dataset we used our algorithms to calculate normalization rankings for all possible combinations of
miRNAs present in a dataset and then noted the highest place in the rankings of the combination derived from our chosen set. Full list in the Additional file 1:
Table S3. The combination with the lowest average (0.0231) ranking from the validation datasets consisted of miR-24, miR-222 and miR-27
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functions, but it was not considered as a suitable reference
gene [46, 47]. miR-19b had been found out as a decent
reference miRNA in the previously mentioned evaluation
of 7 potential normalizers in studies focused on cardiovas-
cular diseases [58]. The findings of Zuberi et al. suggested
that miR-199a downregulation might be a potential indi-
cator for progression of epithelial ovarian cancer [48]. This
miRNA has not been previously viewed as a potential ref-
erence miRNA. miR-30b was previously considered as a
reference miRNA in self-collected cervicovaginal tissue
specimens in a study that evaluated 11 reference candidate
small non-coding RNAs [49]. miR-30c had been used be-
fore as a biomarker for detection of autologous blood
transfusions and as an early predictor of recurrence of lo-
calized stage I non-small cell lung cancer after surgical re-
section [50, 51]. The search of PubMed publication
database turned out 3 articles about miR-374a and none
suggested specific profiles that included miR-374a nor its
suitability as a reference miRNA.

Conclusions
Our work showed that using single miRNAs as references
in biofluids provides a significantly worse reference for
qPCR than a combination of two or three miRNAs. We
also showed that the strategy of normalizing to a combin-
ation of miRNAs was more stable and predictable than
normalizing to the average of expression of all miRNAs in
a dataset. The proposed set of 13 miRNAs that reprodu-
cibly contributed to the selection of best normalizer
combinations should be validated in further studies on pa-
tients with different clinical conditions, nonetheless we

have showed that based on our in silico validation the
arithmetic mean of 3 miRNAs (miR-24, miR-222 and
miR-27a) was sufficiently stable to be used as a reference
for serum miRNA qPCR profiling.

Methods
Data acquisition
To identify datasets pertaining to biofluid miRNA profil-
ing with qPCR, we carried out a GEO search with a
query: ((miRNA) AND “expression profiling by RT
PCR”[DataSet Type]) AND Homo sapiens [Organism]
AND (serum OR plasma), which yielded 61 hits (acces-
sion date: 30.10.2017). Afterwards, we extracted datasets,
which fulfilled all of the following criteria: include
miRNA high-throughput methods, raw data must be
published, number of miRNAs measured at least 170 –
many studies included only a limited array of miRNAs,
often as a validation of several miRNAs previously iden-
tified by another measurement method, number of sam-
ples at least 5 – normalizing algorithms require it for
reliable calculations, percentage of missing data lower
than 20% (Fig. 7a). We manually curated each dataset re-
moving duplicates miRNAs and chip-specific control
probes. While curating a single dataset, we also removed
all miRNAs, which did have missing values in that par-
ticular dataset. We treated not achieving a threshold of
detection in RT-qPCR as missing values.
All the data used in this study can be accessed via the

GEO platform (https://www.ncbi.nlm.nih.gov/geo) using
accession link found in the Additional file 1: Table S1.

Table 2 List of exclusions from consideration as a reference miRNA based on the known, experimentally validated connections

microRNA Reports on differential expression in serum or plasma due to specific clinical conditions Reference

hsa-miR-222 Gastric cancer [45]

hsa-miR-92a Acute myeloid leukemia, acute myocardial infarction, potential marker of atherosclerosis, metabolic syndrome, bladder
cancer, systemic lupus erythematosus

[46–49]

hsa-miR-27a Acute pulmonary embolism, colorectal cancer [52, 61]

hsa-miR-17 Elevated in many types of cancer, acute ischemic stroke, endometriosis, acute myocardial infarction [62–64]

hsa-miR-24 Coronary heart disease, type 2 diabetes mellitus, early breast cancer [65, 66]

hsa-miR-320a Esophageal adenocarcinoma, Barret’s esophagus, arrhythmogenic cardiomyopathy [67, 68]

hsa-miR-25 Osteosarcoma, breast cancer, papillary thyroid carcinoma, pancreatic cancer, gastric cancer, hepatocellular carcinoma,
esophageal adenocarcinoma

[69–74]

hsa-miR-126 Non-small-cell lung cancer, chronic heart failure, acute myocardial infarction, ischemic stroke, type 2 diabetes mellitus [64, 75–78]

hsa-miR-19b Knee osteoarthritis, diabetic cardiomyopathy, acute myocardial infarction, gastric cancer, prostate cancer, lung cancer [79–84]

hsa-miR-199a Glioma, hepatocellular carcinoma, acute myocardial infarction, colorectal cancer, osteosarcoma [85–89]

hsa-miR-30b Active tuberculosis [90]

hsa-miR-30c HLTV-1 infection, Duchenne muscular dystrophy, active pulmonary tuberculosis [91–93]

hsa-miR-374 Acute Graft-versus-Host disease [94]

We have performed a literature search in MEDLINE and PMC databases (through www.ncbi.mln.nih.gov/pubmed portal) looking for published evidence of
pathological conditions influencing levels of circulating miRNAs included in the proposed reference set. Only human and experimentally validated studies were
included, and the expression of a miRNA must have differed significantly between study and control groups
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Algorithms implementation, normalization scoring,
aggregating results from different algorithms
We implemented three algorithms: BestKeeper, Norm-
Finder (in two versions), GeNorm in the Python pro-
gramming language following formulas extracted from
the appropriate original publications [12, 24, 52]. Python
serves well for handling large-scale data and extensive
calculations, because it provides well-optimized built-in
functions and modules tailored to deal with data in tabu-
lar form (pandas module). BestKeeper proposes a set of
housekeeping genes and then introduces the correlation
coefficient as a reference. It ranks genes basing on the
standard deviation of their expression across samples.
Genes with lower standard deviation are considered
more stable. It calculates the normalization score for
each possible set of housekeeping genes. The NormFin-
der model-based algorithm is proposed in two variants –
for datasets with multiple groups of samples and for
datasets with only one group. For a generic algorithm,
the inter- and intragroup variations are estimated for
each candidate gene. The combined variations are the
basis for stability value. The authors state that the
proper measure of stability is the distribution in the

developed model, but for practical reasons it is re-
duced to one-dimensional value equal to the sum of
mean and standard deviation of the aforementioned
distribution. GeNorm ranks reference genes according
to stability value M, where lower M means higher
stability [12]. The basis for calculation of stability
measure for a chosen gene is log2-transformed ratio
of expressions between the ranked gene and each of
the remaining genes in the dataset. The stability
measure M is then calculated as an arithmetic mean
of standard deviations of pairwise expression ratios.
In the original algorithm, the procedure begins with a
set of candidate genes, which is a small subset of all
available genes. This approach is proposed due to
computational efficiency of the solution. For each
candidate gene, stability value M is computed, and
the gene with highest M value (i.e. worst stability) is
excluded from the dataset. Then, the M-value calcula-
tions are repeated for the remaining genes, until there
are only two best genes left.
Then we assigned a ranking specific for each algo-

rithm, which varied in an interval [0, 1) and was calcu-
lated as follows:

Fig. 7 a Flowchart of the steps taken in our study to acquire 11 datasets of miRNA expression in serum measured by qPCR and to identify the
most suitable single miRNA or a set of miRNAs to use as reference. b Flowchart of our approach to analysis of single miRNAs. Each dataset was
analyzed by the same four algorithms implemented in the Python programming language. Algorithms independently assigned a stability value
to each miRNA. We changed algorithms to assign a ranking from 0 to 1 based on the stability value (the lower the ranking value, the better the
reference), thus each miRNA had 4 ranking values. We averaged the four values for each miRNA, which resulted in a single measure of stability
and aggregated the results from 11 datasets. c The outline of the two-pronged approach of our analysis. We first analyzed all single miRNAs and
then created all possible average expressions of two or three miRNA-combinations and analyzed the suitability of single miRNAs and their
combinations as a good qPCR reference using the algorithms shown in Fig. 1b
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Dataset ranking ¼ place in the sorted array of normalization scores−1
number of elements in the array

The final normalization score of a miRNA in a dataset
was an arithmetic average of four algorithm-specific
rankings (Fig. 7b). The final normalization scores of all
miRNAs created a normalization ranking. The lower the
ranking, the better the normalization factor.

Implementation validation
We validated the results we received from our imple-
mentation of algorithms. For NormFinder, we carried
out an analysis of RT-qPCR miRNA expression (GEO
ID: GSE47125) with the readily available Microsoft Excel
plug-in created by the authors of the original NormFin-
der article and our implementation of NormFinder. We
compared the results using Bland-Altman plot analysis
and Pearson’s correlation. There was no readily available,
original, open-source and updated to work with current
versions of operating systems’ software implementation
of GeNorm and BestKeeper. In case of GeNorm we used
the raw data provided by the authors of the original
manuscript and ran the analysis for the leukocytes data-
set checking for the overlap of the order of the genes.
The original BestKeeper article did not include any ana-
lyzed data and there is no implementation available in
the open-access fashion, so we could not validate our
implementation of BestKeeper with the original. In the
face of the same problem, Marabita et al. decided to im-
plement their own simplified version of the algorithm,
but we decided not to use it [18].

Multiple miRNAs as a single normalization factor
BestKeeper and GeNorm do not allow scoring of mul-
tiple miRNAs as a single normalization factor, so we had
to devise a way of combining multiple miRNAs. We de-
cided to average expression values of multiple miRNAs
(either two or three) by arithmetic mean, thus creating a
new entry compatible with the rest of the original data-
set. The length of such prepared dataset was larger than
the original by one – the new combination of multiple
miRNAs. Then we could input the original dataset with
the added entry to normalization algorithms, which
allowed for evaluation of the combination set in the con-
text of the whole dataset.
Inclusion of all possible combinations of miRNAs into

the dataset would distort the image of the measured ex-
pression, as the number of all possible combinations
would always be vastly greater than that of actual miR-
NAs quantified. This, in turn, would significantly impact
the standard deviation of the expression of miRNAs and
hinder the possibility to calculate the normalization
scores of NormFinder and GeNorm algorithms. There-
fore, we decided to add single combinations sequentially

and by doing so minimize the effect of the addition of
every new entry. Notably, expanding the dataset by adding
all possible combinations would be without consequence for
BestKeeper as it does not use standard deviation or its deriv-
atives, but we wanted to create a uniform pipeline for all
three algorithms. Therefore, only one combination at a time
was present in a dataset during calculations of normalization
scores. We analysed all possible combinations of 2 and 3
miRNAs in the aforementioned way (Fig. 7c). We did not at-
tach more than one combination of miRNAs to a dataset
simultaneously.

Combining information from different datasets – finding
the normalization set
According to our workflow (Fig. 7c), we created a com-
bined ranking for all normalization factors – single
miRNA, combinations of 2 and 3 miRNAs. We algorith-
mically found a small set of single miRNAs, which could
be further used to create combinations of pairs and
triple miRNAs selected from the set. We wanted to en-
sure that the best miRNAs present in the highest-
scoring combinations of 2 and 3 miRNAs were included
amongst the chosen set of miRNAs and that the set is as
small as possible without compromising the stability of
combinations created from it.
We focused on the 11 dataset rankings of combinations

of 2 miRNAs to find a reliable set of miRNAs and vali-
dated their performance on the 11 dataset rankings of
combinations of 3 miRNAs. First step was to find the
smallest miRNA set that could be used to create combina-
tions of 2 miRNAs, which placed as the best normalization
factors in the 11 dataset rankings of combinations of 2
miRNAs. The second step involved validating whether a
chosen set could be used to create combinations of 3 miR-
NAs that also placed first in all the 11 datasets. At last we
excluded sets containing miRNAs with a known labile or
dynamic expression in serum or plasma.
We performed a pairwise analysis of miRNAs to better

illustrate the relationships between them in the chosen
set. Therefore, we counted the number of times two
miRNAs occurred in all combinations of 3 miRNAs,
which placed 1st in the dataset rankings. We divided
each singular count by the number of combinations in a
dataset containing the counted combination and
summed the counts from all occurrences of a pair. This
ensured that the counts were not weighted by existence
of a one dataset with a multitude of miRNAs. The
resulting matrix was used to create a chord diagram il-
lustrating the “normalizing affinity” between pairs of
miRNAs from the chosen set.

External validation of results
We have acquired three serum miRNAs qPCR datasets
(description of the datasets in the Additional files 2, 3
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and 4). We tested our chosen set of reference miRNAs,
which we acquired in the previous step. We took each
dataset and ran our normalization algorithms for them
and then verified how our chosen miRNAs and combi-
nations derived from them scored and compared with
the normalization ranking of the dataset. Additionally,
we reported the mean ranking of all combinations de-
rived from the chosen 13. We wanted to know whether
our miRNA set was truly better than any random set,
therefore we sampled random 13 miRNAs 2000 times
and estimated the distribution of the mean of rankings
of combinations derived from a set of 13 random miR-
NAs. We reported the position of the mean of our
chosen set in this distribution by providing the percent-
age of random sets surpassed by our set, which we
treated as p-value of a Monte-Carlo testing procedure.

Statistical analysis
Initial pre-processing of the expression data and tidying
was performed in Microsoft Excel 2016. We did the
Kruskal-Wallis testing for comparisons of rankings be-
tween single and combinations of 2 and 3 miRNAs using
statistical software package Statistica (13.1 StatSoft). We
devised the Monte-Carlo analysis in the Python pro-
gramming language using module ‘itertools’.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6530-3.

Additional file 1. Supplementary tables. Contains supplementary tables
created by the authors.

Additional file 2. Validation dataset 1. Contains results of the qPCR
profiling of circulating miRNAs in people with head and neck tumors.
Samples are in columns, miRNAs are in verses.

Additional file 3. Validation dataset 2. Contains results of the qPCR
profiling of circulating miRNAs in people with head and neck tumors.
Samples are in columns, miRNAs are in verses.

Additional file 4. Validation dataset GSE109888. Publicly available on
Gene Expression Omnibus platform under the accession number
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