Table 2.
Best performing set of parameters for different classifiers.
Classifier | Best performing set of parameters |
---|---|
Random forest (RF) | No. of trees - 50 |
Min. samples at each leaf node - 400 | |
Min. impurity measure at each split - | |
Max. depth of trees - 25 | |
Neural network (NN) | No. of neurons in a hidden layer - 100 |
Solver - LBFGS, Initial learning rate - | |
Max. no. of iterations - 1800 | |
Tolerance - | |
Support vector machine (SVM) | γ - 1.0 |
C-value - 1.0 | |
Max. no. of iterations - 5000 | |
Adaboost classifier (AB) | No. of trees in base estimator - 2 |
No. of estimators - 30 | |
Learning rate - 1.0 | |
Loss function - exponential |