Skip to main content
. 2019 Nov 15;202:116056. doi: 10.1016/j.neuroimage.2019.116056

Table 2.

Best performing set of parameters for different classifiers.

Classifier Best performing set of parameters
Random forest (RF) No. of trees - 50
Min. samples at each leaf node - 400
Min. impurity measure at each split - 1×103
Max. depth of trees - 25
Neural network (NN) No. of neurons in a hidden layer - 100
Solver - LBFGS, Initial learning rate - 1×103
Max. no. of iterations - 1800
Tolerance - 1×103
Support vector machine (SVM) γ - 1.0
C-value - 1.0
Max. no. of iterations - 5000
Adaboost classifier (AB) No. of trees in base estimator - 2
No. of estimators - 30
Learning rate - 1.0
Loss function - exponential