Skip to main content
. 2020 Feb 3;21:22. doi: 10.1186/s13059-020-1929-3

Table 1.

Summary of footprinting tools, including software category, programming language, algorithm or statistical method, bias correction for DNase-seq or ATAC-seq, and output statistics. In addition, the second last column exemplifies the application of tools in ATAC-seq data

Tool Category Language Algorithm Bias correction? Statistics Used for ATAC in literature? Reference
Neph De novo C++ Slide window N Footprint occupancy score (FOS) N [47]
HINT Python HMM N Probability N [133]
HINT-BC Python HMM Y (DNase-seq) Probability Y [48] [130]
HINT-ATAC Python HMM Y (ATAC-seq) Probability Y [134] [134]
Boyle NA HMM N Probability N [135]
Wellington Python Binomial test N (visualize bias) P value, FDR Y [48] [136]
Wellington-bootstrap Python Bootstrap DE analysis N (visualize bias) P value, FDR Y [48] [137]
DNase2TF R Binomial test, iteratively merge Y (DNase-seq) FDR Y [134] [129]
CENTIPEDE Motif-centric R Bayesian mixture model, unsupervised N Posterior probability Y [138] [139]
msCentipede Python and Cython Bayesian multiscale model, unsupervised Y (can extend to ATAC-seq) Posterior probability Y [140] [140]
Romulus R Bayesian mixture model, unsupervised N Posterior probability N [141]
PIQ R Gaussian process model, unsupervised N Probability of binding times local chromatin accessibility Y [134] [147]
BinDNase R Logistic regression, supervised N Probability N [142]
MILLIPEDE R Logistic regression, supervised N (robust to bias) Probability N [143]
DeFCoM Python SVM, supervised N Ranking Y [131, 134] [131]
BPAC Python Random forest, supervised N Probability N [144]
BaGFoot R Differential motif activity Y P value Y [132] [132]

FDR false discovery rate, HMM hidden Markov model, SVM support vector machine