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Proteinopathies are degenerative diseases in which specific proteins adopt deleterious con-
formations, leading to the dysfunction and demise of distinct cell types. They comprise some
of the most significant diseases of aging—from Alzheimer’s disease to Parkinson’s disease to
type 2 diabetes—for which not a single disease-modifying or preventative strategy exists.
Here, we survey approaches in tractable cellular and organismal models that bring us
toward amore complete understanding of themolecular consequences of proteinmisfolding.
These include proteome-scale profiling of genetic modifiers, as well as transcriptional and
proteome changes. We describe assays that can capture protein interactomes in situ and
distinct protein conformational states. A picture of cellular drivers and responders to proteo-
toxicity emerges from thiswork, distinguishing general alterations of proteostasis fromcellular
events that are deeply tied to the intrinsic function of the misfolding protein. These distinc-
tions have consequences for the understanding and treatment of proteinopathies.

Proteinopathies are degenerative diseases in
which specific proteins aggregate in distinct

cell types. The most common and devastating
diseases of the group include the neurodegener-
ative disorders, Alzheimer’s disease (AD), and
Parkinson’s disease (PD). But beyond these,
type 2 diabetes mellitus, inclusion body myop-
athy, and systemic amyloidoses are also pro-
teinopathies. Outside of the rare condition,
transthyretin amyloidosis (Maurer et al. 2018),
no disease-modifying treatments exist for these
diseases, and the public health significance can-

not be overstated. They collectively cost the
United States around $500 billion annually,
and AD alone affects 4.5 million Americans.

Increasingly, it is becoming appreciated that
a “one-size-fits-all” treatment strategy may not
be feasible for proteinopathies. Substantial var-
iability among individual genomes, cells, and
protein conformations may lead to unique dis-
ease processes in individual patients (Jarosz and
Khurana 2017). Broadly speaking, these diseases
are thought to arise from an interplay between
genetic factors and environmental “hits” that
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result in accumulation of misfolded proteins
(Fig. 1A). In some informative cases, aggressive
early-onset disease is driven deterministically by
a dominant mutation or locus multiplication in
the gene encoding the aggregating protein, tying
that protein aggregation process causally to the
disease. Once the protein-folding pathology is
induced, there are toxic responses within the
cell to themisfolding andmislocalization of pro-
teins (Fig. 1B). A distinction can be made be-

tween responses that relate to the intrinsic func-
tion of the misfolded protein and general
responses to misfolded proteins, the latter com-
monly referred to as disruption of the proteo-
stasis machinery (Balch et al. 2008; Labbadia
andMorimoto 2015). Finally, theremay be toxic
interactions among cells. For neurodegenerative
diseases, these interactions may result in disrup-
tion of neuronal circuitry, abnormal interactions
between neurons and glial or immune cells
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Figure 1. A summary of consequences of protein aggregation in proteinopathies. The brain is comprised of
neurons and glial cells (astrocytes, oligodendrocytes, and microglia). Glio–neuronal interactions are critical for
appropriate brain development and increasingly recognized as pivotal for neurodegeneration also. Here, we
illustrate four consequences of protein misfolding: (A) Direct consequences of aggregation of a protein. In
this example, one (green) protein component of a ribonucleoprotein (RNP) complex aggregates as a result of
an environmental challenge, deterministic pointmutations, or various genetic factors (1). This leads to formation
of amyloid fibrils of the protein (2), thus relieving other protein/RNA members from the complex (3). Toxicity
results from either loss-of-function of the RNP complex, or from toxic gain-of-function of misfolded or mis-
localized RNP complex proteins. (B) Effects of protein aggregation on the cellular homeostasis machinery.
Members of protein complexes require each other for correct folding and chaperoning. The first member of
the complex forms an amyloid aggregate and is degraded in this illustration through engulfment by autophagic
membranes (4). A second with exposed hydrophobic cores attracts Hsp70 for refolding (5). Another protein
(blue) attracts Hsp90 to exposed hydrophilic surfaces (6). Another member (purple) is ubiquitinated and
degraded by the proteasome (7). Sequestration of these chaperones or overwhelmed protein degradation path-
ways can lead to a vicious cycle that results in misfolding and abnormal accumulation of other proteins,
eventually triggering an unfolded protein response (UPR) in the endomembrane system (8) or mitochondria
(9). (C) Intercellular spread or self-templating of amyloid fibrils. Fibrils can be secreted (10) or taken up from the
extracellular matrix by receptor-mediated endocytosis (11). Nanotubes between cells can also mediate transfer of
fibrils from one cell to another (12). (D) Neuroinflammation and complement activation by neurons (via C1q
expression) and glia results in C3b deposition at the surface of neurons. Microglia expressing C3 receptors can
engulf such neurons, thus contributing to neurodegeneration. ER, endoplasmic reticulum.
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(Fig. 1D; Liddelow et al. 2017; Salter and Stevens
2017). These may be driven by the pathologic
templating and propagation of misfolded pro-
tein conformers in prion-like fashion between
cells (Fig. 1C; Guo and Lee 2014; Jarosz and
Khurana 2017).

Even within this elemental view of neurode-
generative disease pathogenesis, there are many
unanswered questions.We discuss some of these
in this review, including:

• What biological approaches can help us com-
plete the genetic “map” of proteinopathies?
Genetic factors have been pivotal in directing
rational research in the proteinopathy field,
but most of the heritability of these diseases
remain unexplained.

• Are genetic factors that informus about disease
risk and initiation equally informative about
mechanisms of disease progression?Or are im-
portant cellular and intercellular responses not
captured by genetic analysis? Vulnerability fac-
tors involved in disease risk or initiation might
be good preventative targets, but may not be
good targets in late stages of the disease. On the
other hand, if these diseases progress in an or-
derly fashion, distinct cell types may be in dif-
ferent disease states at any given time, and thus
there may be a scope for preventative and re-
versal strategies simultaneously.

• How can we develop methods to systemati-
cally understand and target different toxic
protein conformations? Much attention has
been given to distinct biophysical forms, or
conformers, of toxic proteins, and methods
are sorely needed to tractably model these in
the laboratory.

The answers to some of these questions may
lie inmethods that can capture systematically the
molecular consequences of protein misfolding.
A reductionist approach could plausibly use a
variety of cellular assays to fully deconstruct cel-
lular consequences in cellular models. In time,
this could be achievable in different cell types
and in more complex models to examine inter-
cellular interactions. In this review, we describe
distinct methods we and others have employed
for such analysis. We focus on neurodegenera-

tive proteinopathy. Some emphasis is placed on
α-synuclein, the protein that misfolds in synu-
cleinopathies including PD, because it has been
extensively analyzed with these methods.

MAPPING PROTEOTOXICITY: GENETIC
DETERMINANTS AND CELLULAR
RESPONSES

To study proteinopathies, we can, on the one
hand, systematically catalog the genetic require-
ments for proteotoxicity. This approach aims
to identify the cellular setup—through forcing
the absence or elevated expression of a specific
gene—that exacerbates (“enhances”) or amelio-
rates (“suppresses”) toxicity associated with a
misfoldingprotein.Mostoften inmodel systems,
the proteotoxicity is induced by overexpression
of a protein that is prone tomisfolding, in accor-
dance with the customary autosomal dominant
and toxic gain-of-function mechanisms in pro-
teinopathies. In a genome-wide screen, gene
knockouts/deletions or gene overexpression for
approximately every coding sequence are que-
ried for their effect on a proteotoxic phenotype.
However, genetic screens are typically not de-
signed to report on cellular responses to protein
misfolding. This is because the gene deletion or
overexpression generally occurs before, or con-
comitant with, expression of the toxic protein.
Rather, cellular response can be investigated
by systematicallymeasuring the changes that oc-
cur at the transcript and protein level (trans-
criptomics, proteomics) as a consequence of
proteotoxicity.

To gain a global view of the cellular effects
of protein misfolding, data sets from multi-
ple “omics” approaches (e.g., genetic screens,
transcriptomics, metabolomics, proteome-scale
protein–protein interactions, ChIP-seq) can be
integrated through bioinformatic methods (Fig.
2A; Tuncbag et al. 2016). Such in silico ap-
proaches can point to cellular pathway(s) most
affected by a particular proteotoxic protein, and
unveil relevant genes that might not have been
recovered in individual screens, thereby increas-
ing our understanding of the cytotoxic mecha-
nism. As noted above, some of the genetic
requirements or molecular consequences may
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reflect a general proteostatic response within a
cell, whereas others relate to the intrinsic func-
tion of the protein that misfolds.

Genetic Screens

In proteinopathies, the principal aggregating
protein (or proteins) are distinct in each disease,
for example, α-synuclein in PD, β-amyloid and
tau in AD, huntingtin in Huntington’s disease
(HD), TDP-43 in amyotrophic lateral sclerosis
(ALS), prionprotein (PrP) inpriondiseases (e.g.,
Creutzfeldt–Jakob disease), and islet amyloid
polypeptide (IAPP) in type 2 diabetes. Many of
these proteinopathies have been modeled by
transgenic overexpression in genetically tracta-
ble model systems, including baker’s yeast cells

(Table 1; for review, see Khurana and Lindquist
2010). The tractability of yeast cells is offset
by lackof specialized neuronal features, and trac-
table metazoan organisms, including Caeno-
rhabditis elegans and Drosophila melanogaster,
have helped fill in that significant gap. Genome-
wide and candidate genetic screens in these
model organisms have been facilitated by high-
throughput technologies such as knockout or
overexpression libraries for everyprotein-coding
gene (Saccharomyces cerevisiae), RNA inter-
ference (C. elegans,D. melanogaster), and trans-
genic stocks with P-element insertionmutations
(D. melanogaster). Published data sets of genet-
ic modifiers from high- and low-throughput
screens against nine neurodegenerative proteo-
toxicities in yeast, flies, and worms have been
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Figure 2. Building a global view of cellular response to proteotoxicity. (A) Bioinformatic methods can be applied
to bridge data sets from genome-wide genetic screens and transcription profiles, thereby integrating genetic
drivers and cellular response to proteotoxicity, and augmenting the list of molecular candidates implicated in the
cytotoxic mechanism. Network-building algorithms can identify “hidden nodes” that are not recovered in
individual screens. Such approaches are currently feasible in model organisms where multiple “omics” data
sets are already available, but can one day be applied to human disease-relevant cell types (e.g., human neurons)
as genome-wide genetic and molecular data sets become available. (B) Different cell types (e.g., neurons,
astrocytes, oligodendrocytes, microglia) likely exhibit different molecular network profiles due to differential
gene expression, so within proteotoxicity models, it will be important to obtain cell-specific data and build cell-
type-specific networks. mRNA, messenger RNA.

I. Lam et al.

4 Cite this article as Cold Spring Harb Perspect Biol 2020;12:a034124



Table 1. Modeling human proteinopathies in genetically tractable model organisms

Misfolding
protein Proteinopathy Model organism References

α-Synuclein Parkinson’s disease Saccharomyces
cerevisiae

Outeiro and Lindquist 2003; Willingham et al.
2003; Dixon et al. 2005; Zabrocki et al. 2005;
Sharma et al. 2006

Drosophila
melanogaster

Feany and Bender 2000; Auluck et al. 2002

Caenorhabditis
elegans

Lakso et al. 2003; Cao et al. 2005; Kuwahara
et al. 2006; Hamamichi et al. 2008; van Ham
et al. 2008

β-Amyloid Alzheimer’s disease S. cerevisiae Bagriantsev and Liebman 2006; Caine et al.
2007; von der Haar et al. 2007; Treusch et al.
2011; D’Angelo et al. 2013

D. melanogaster Finelli et al. 2004; Iijima et al. 2004; Crowther
et al. 2005; Iijima et al. 2008

C. elegans Link 1995; Link et al. 2003
tau Alzheimer’s disease,

FTDP-17
S. cerevisiae Vandebroek et al. 2005

D. melanogaster Williams et al. 2000; Wittmann et al. 2001;
Jackson et al. 2002; Blard et al. 2007

C. elegans Kraemer et al. 2003; Miyasaka et al. 2005;
Brandt et al. 2009

huntingtin Huntington’s disease S. cerevisiae Krobitsch and Lindquist 2000;Muchowski et al.
2000; Duennwald et al. 2006a,b; Solans et al.
2006; Kayatekin et al. 2014

D. melanogaster Jackson et al. 1998
C. elegans Faber et al. 1999; Parker et al. 2001

Polyglutamine
(polyQ)

Polyglutamine-expansion
disorders (e.g.,
spinocerebellar
ataxia type 1, type 3)

S. cerevisiae Fernandez-Funez et al. 2000; Meriin et al. 2002,
2003

D. melanogaster Warrick et al. 1998; Kazemi-Esfarjani and
Benzer 2000; Marsh et al. 2000

C. elegans Satyal et al. 2000; Brignull et al. 2006
TDP-43 Amyotrophic lateral

sclerosis
S. cerevisiae Johnson et al. 2008; Elden et al. 2010; Kim et al.

2014
D. melanogaster Kim et al. 2014

FUS Amyotrophic lateral
sclerosis

S. cerevisiae Fushimi et al. 2011; Ju et al. 2011; Kryndushkin
et al. 2011; Sun et al. 2011

SOD1 Amyotrophic lateral
sclerosis

S. cerevisiae Rabizadeh et al. 1995; Ticozzi et al. 2011

D. melanogaster Watson et al. 2008; Bahadorani et al. 2013;
Gallart-Palau et al. 2016; Şahin et al. 2017

C. elegans Oeda et al. 2001; Gidalevitz et al. 2009; Wang
et al. 2009

Islet amyloid
polypeptide
(IAPP)

Type 2 diabetes S. cerevisiae Kayatekin et al. 2018
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cataloged and annotated inNeuroGeM (Na et al.
2013). Here, we distill four key insights from
screens in proteinopathy models.

First, genetic screens in simplemodel organ-
isms have uncovered disease-relevant biology.
Homologs of known human disease risk factors
have emerged as genetic modifiers (for reviews,
see Khurana and Lindquist 2010; Kryndushkin
and Shewmaker 2011; Tenreiro et al. 2017).
For example, genetic screens in the yeast synu-
clein models recovered orthologs of multiple
confirmed or putative risk factors for human
parkinsonism, including ATP13A2/PARK9,
RAB7L1/PARK16, VPS35/PARK17, EIF4G1/
PARK18, and SYNJ1/PARK20, with validation
of the findings in models from worm to rodent
to induced pluripotent stem cell (iPSc)-derived
neurons (Gitler et al. 2009; Dhungel et al. 2015;
Khurana et al. 2017). Similarly, a genome-wide
screen against β-amyloid (Aβ) toxicity in yeast
recovered homologs of multiple risk factors of
sporadic AD (including YAP1802, the yeast ho-
molog of PICALM) as suppressors of toxicity,
and these were also found to modify Aβ toxicity
in worms and primary rodent neuronal models
(Treusch et al. 2011). Remarkably, the identifi-
cation of the yeast homolog ofATXN2 as amod-
ifier of TDP-43 toxicity in yeast led to the iden-
tification of this gene as a robust risk factor for
ALS in humans (Elden et al. 2010) and a modu-
lator of neurodegeneration in a mouse model of
that disease (Becker et al. 2017).

Second, the same gene modifiers are not
necessarily recovered in genetic screens of the
same proteotoxicity in different model organ-
isms, but often the same cellular pathways
emerge. For example, genes in the vesicle traf-
ficking pathway appear as modifiers of α-synu-
clein toxicity in both yeast andC. elegans, even if
precisely the same genes do not emerge as mod-
ifiers in the different models. A case in point is
the gene encoding the vacuolar assembly/sort-
ing protein VPS41, which emerged as amodifier
of α-synuclein pathology in an RNAi screen in
C. elegans and was subsequently validated to be
neuroprotective (Hamamichi et al. 2008; Ruan
et al. 2010; Harrington et al. 2012). The homo-
log of VPS41 did not emerge as a genetic mod-
ifier of α-synuclein in yeast genetic screens to

date, although YCK3, which encodes the kinase
that phosphorylates Vps41, as well as a host of
other genes involved in endolysosomal traffick-
ing were identified as modifiers (Khurana et al.
2017). The same genes may fail to be recovered
in different screens of the same proteotoxi-
city due to technical limitations of the screens
(i.e., if the screens have low genome coverage),
or for biological reasons (e.g., redundant gene
function, or differences in genetic require-
ment across strain backgrounds in the same
species).

Third, there is little overlap in genetic mod-
ifiers against different proteotoxicities (e.g.,
α-synuclein, Aβ, TDP-43, tau, polyglutamine-
expansion models), suggesting that each protein
exerts different intrinsic genetic requirements
and/orcellular responses despite acommonpro-
tein misfolding pathology in human disease (Ja-
rosz andKhurana2017;Khurana et al. 2017). For
example, genetic modifiers against α-synuclein
toxicity in yeast are enriched in processes related
to lipid metabolism and vesicle trafficking (Ou-
teiro and Lindquist 2003), whereas modifiers
against polyglutamine-expanded huntingtin
are enriched for genes related to stress response,
protein folding, and ubiquitin-dependent pro-
tein catabolism (Willingham et al. 2003). Along
the same lines, kinases and phosphatases are the
major class of genetic modifiers identified in a
D. melanogaster model of tauopathy, but not of
the polyglutamine disease model SCA3 (Shul-
man and Feany 2003). These observations are
consistentwithhyperphosphorylated and aggre-
gated tau as hallmark pathology in AD and fron-
totemporal dementia (FTD). Meta-analysis of
published genetic screen data sets indicate that
this trend holds true when comparing polyglut-
amine disease models (e.g., HD, SCA1, SCA3,
SCA7) versus AD models (Aβ): polyglutamine
disease models share many genetic modifiers
that are not seen in AD models, consistent with
a common underlying biology linking polyglut-
amine expansion (Na et al. 2013).

Fourth, despite the common molecular dys-
function (protein misfolding), genes in the pro-
teostasis network do not appear as a major class
of modifiers overlapping proteotoxicities (e.g.,
α-synuclein, Aβ, and TDP-43) (Jarosz and
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Khurana 2017). Although proteostasis network
components that are broadly protective against
misfolded and aggregation-prone proteins do
emerge as modifiers (Nollen et al. 2004; Silva
et al. 2011), it is estimated that such genes ac-
count for only 3% of genetic modifiers across
yeast, worm, and flies (Na et al. 2013). There
are many possible explanations for their under-
representation, including the setup strategy for
genetic screens, the essential functions of certain
genes in this pathway, and the redundancy of
others. We return to this point again below.

Finally, the advent of CRISPR-Cas9 genome
editing has extended the reach for high-
throughput genetic screens against proteotoxic-
ities (e.g., Kramer et al. 2018). For example, most
genome-wide screens to date have been limited
to looking at single genetic modifiers. In prac-
tice, combinatorial effects could be equally
critical and valuable for functional genomics.
This would be of particular interest for genes
with redundant function, whereby knockdown
of one gene is compensated by a second gene,
masking the genetic modifier effect of the
first. Recently, screening technology that com-
bined randomized guide RNAs (gRNAs) with
CRISPR-Cas9-based transactivation (so-called
“CRISPRa” technology) was used for unbiased
screening of transcriptional networks that mod-
ify α-synuclein toxicity in yeast (Chen et al.
2017). In this approach, the gRNA recruits a
transactivating protein complex to the 50 un-
translated region (UTR) of a number of gene
targets, enabling combinatorial effects of gene
expression to be probed. Genes with altered ex-
pression in the presence of top gRNA hits from
the screen were then shown to suppress α-syn-
uclein toxicity in yeast and neuronal models.
Most of the genes recovered in this way were
not previously identified in single-gene overex-
pression or deletion screens (but tellingly had
overlap in gene ontology [GO] categories).
This study underscores the importance of or-
thogonal approaches to obtain a complete un-
derstanding of the cellular requirements and
consequences of protein misfolding.

With CRISPR/Cas9-based approaches,
whole-genome genetic screens previously con-
ceivable only in tractable genetic organisms are

now also within reach in human cells (Khurana
et al. 2015). For example, Kramer and colleagues
used the CRISPR-Cas9 system to conduct ge-
nome-wide knockout screens in human cell
models of C9ORF72 dipeptide-repeat (DPR)
protein toxicity associated with ALS and FTD
(Kramer et al. 2018). Their cellular model of
C9ORF72 DPR toxicity consisted of exposing
K562 cells to proline-arginine and glycine-
arginine synthetic polymers. Suppressors and
enhancers of C9ORF72 DPR toxicity were vali-
dated in a secondary, pooled CRISPR-Cas9
screen in mouse primary neurons. Screen hits
were enriched in endoplasmic reticulum (ER)
stress, proteasome, nuclear transport, RNA pro-
cessing, and chromatin modification pathways.
One of the suppressors, TMX2, which encodes
the ER-resident transmembrane thioredoxin
protein, was further validated in human neu-
rons. Knockdown of TMX2 improved survival
of motor neurons derived from a C9orf72 ALS
patient’s iPScs (Kramer et al. 2018).

Transcriptomics

A systematic assessment of 179 environmental
and genetic perturbations in yeast (an organism
where such comprehensive data are uniquely
available) surprisingly revealed that transcrip-
tional responses are largely distinct from genetic
modulators when yeast cells were subjected to
distinct stressors or environmental perturba-
tions (Yeger-Lotem et al. 2009). Genetic hits
were biased toward genes that encode regulatory
proteins, whereas transcriptional profiling hits
were biased toward genes involved in metabolic
processes. The same study confirmed this exclu-
sive nature of genetic and transcriptional data
sets in a yeast model of α-synuclein toxicity.
Genetic modifiers were dominated by genes en-
coding vesicle trafficking proteins. In contrast,
messenger RNA (mRNA) profiling revealed
up-regulated genes with oxidoreductase activi-
ties, and down-regulated genes relating to mito-
chondrial activity and ribosomal response to
stress (Yeger-Lotem et al. 2009; Su et al. 2010).
Notably, down-regulation of genes related tomi-
tochondrial activity (along with dysregulation of
lipid, and membrane transport) was also detect-
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ed by genome-wide expression profiling in a D.
melanogaster transgenic model of α-synuclein
toxicity (Scherzer et al. 2003), and in expression
analysis of postmortem substantia nigra tissue of
PD patients (Hauser et al. 2005; Mandel et al.
2005; Duke et al. 2006; Zheng et al. 2010).
Gene-expression analyses in individuals affected
by PD also revealed perturbation of other cellular
functions including chaperones, ubiquitin-pro-
teasome protein degradation, vesicle trafficking,
iron transport, synaptic transmission, oxidative
stress, and dopamine metabolism (Hauser et al.
2005;Mandel et al. 2005; Duke et al. 2006; Zheng
et al. 2010; Borrageiro et al. 2018). At least in the
case of PD and α-synucleinopathy, these find-
ings reveal a surprisingly conserved difference
between transcriptional profiles (dominated by
metabolic andmitochondrial genes) and genetic
modifiers (dominated by vesicle trafficking
genes) from model organisms to PD patients.

Proteomics

Proteomics is another important component to
consider when capturing the macromolecular
environment in the presence of a perturbation.
Many studies have conducted quantitative pro-
teome profiling in the presence of proteotoxicity
in cellular and animal models, and patient brain
samples (for review, see Kasap et al. 2017). No-
tably, proteomic analyses of PD researchmodels
concur with transcriptional profiling data in de-
tecting dysregulation of proteins associated with
mitochondrial function compared to controls.
This holds true in Drosophila or mouse models
expressing transgenic α-synuclein A53T or
A30P mutations, or neurotoxin-induced neuro-
degeneration in rodents (e.g., MPTP, 6-OHDA)
(Poon et al. 2005; Xun et al. 2007a,b; Diedrich et
al. 2008; Lessner et al. 2010). Proteins in other
molecular pathways are also significantly altered
inmodels of PD, including calciummetabolism,
actin cytoskeleton, membrane trafficking, and
ribosomal components (Kasap et al. 2017).

Differences in protein levels between patho-
logic and normal conditions can provide useful
insights for discovery of disease biomarkers or
therapeutic targets. Proteomic and genetic anal-
yses can informdruggable targets when used in a

coordinated fashion. A recent study utilized this
approach to identify the molecular mechanism
through which calcineurin and FK506 contrib-
ute to α-synuclein toxicity in yeast and rat α-
synuclein models (Van der Perren et al. 2015;
Caraveo et al. 2017). Calcineurin is a calcium-
calmodulin dependent phosphatase. A thor-
ough genetic analysis revealed that increased
activity of calcineurin is associated with α-syn-
uclein toxicity in cellular models, and the calci-
neurin inhibitor tacrolimus/FK506 accordingly
rescued this toxicity (Caraveo et al. 2014). Cal-
cineurin is inhibited by tacrolimus/FK506
through the formation of a ternary complex
with the FK506-binding protein FKBP12 (Liu
et al. 1991). Mass spectrometry-based phospho-
proteomics analysis in the yeast model demon-
strated that FKBP12 contributes to α-synuclein
toxicity by regulating calcineurin activity and
promoting dephosphorylation of proteins in-
volved in endocytosis, vesicle trafficking, actin
reorganization, and ion channel regulation
(Caraveo et al. 2017). Conversely, inhibiting
the functional interaction between FKBP12
and calcineurin with low doses of tacrolimus
restored phosphorylation of calcineurin- and
FKBP12-dependent substrates involved in vesic-
ular trafficking in an in vivo rat model of PD,
resulting in restored dopamine transporter traf-
ficking and dopamine secretion at presynaptic
terminals. At the organismal level, tacrolimus
improved behavioral deficits related to α-synu-
clein toxicity (Van der Perren et al. 2015; Cara-
veo et al. 2017). In this case, proteomic analysis
provided critical insights into mechanisms
through which genetic and pharmacologic tar-
gets relate to proteotoxicities.

ResponseNet: Integrating Genetic
and Transcriptional Data

Because genetic modifiers and transcriptional
responses are frequently distinct (see above),
computational methods have been used to com-
bine these two data sets to develop a coherent
view of the cellular response to a proteotoxicity.
Yeger-Lotem et al. (2009) developed an algo-
rithm (ResponseNet) to bridge the data obtained
from genome-wide screens and transcriptional
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profiling, and thereby capture a unified cellular
map of the proteins and genes responding to
cellular perturbation. ResponseNet identifies
molecular-interaction pathways connecting ge-
netic screen hits and differentially expressed
genes through known protein–protein interac-
tions (Lan et al. 2011; Basha et al. 2013). This
method can theoretically be extended to other
types of “omics” data sets across different
organisms and proteotoxicities (Fig. 2A). Fur-
thermore, different cell types will likely exhibit
different molecular network profiles, so within
proteotoxicity models it will be important to
generate cell-type-specific networks (Fig. 2B)
and to use molecular interaction data that are
cell-type and tissue-specific. Basha and col-
leagues have recently assembled such tissue-
specific molecular interaction data in a database
called DifferentialNet (Basha et al. 2018). Cell-
type-specific networks may reveal differences in
network connectivities that provide mechanistic
insight into differential vulnerability to proteo-
toxicity across cell types, a unifying but poorly
understood feature of proteinopathies.

MAPPING TO FIND MISSING HERITABILITY
IN PROTEINOPATHIES

Despite decades of human genetic studies, the
set of genes responsible for disease risk of many
proteinopathies remains incomplete. Genes re-
sponsible for disease risk have traditionally been
identified through family-based genetic linkage
analysis and population-based genome-wide as-
sociation studies (GWAS) (Cui et al. 2010; Flint
2013). Linkage analysis is generally better suited
to detect rare variants with large effects, as in
Mendelian disorders (e.g., HD). More recently,
whole-exome sequencing has been favored to
search for such variants. In contrast, GWAS
are geared toward detecting common variants
with smaller effects. GWAS have successfully
uncovered causal genetic loci for a variety of
complex genetic disorders (e.g., type 2 diabetes,
schizophrenia) (Visscher et al. 2017). However,
when the effect size and frequencies of the
known causative loci are combined for a disease,
they often explain only a small fraction of the
heritability of the disease. Even in monogenic

disorders like HD, our knowledge of genetic
variants that modify disease onset or pro-
gression is far from complete (Arning 2016;
Holmans et al. 2017). Put another way, a large
proportion of genetic variation predisposing to
proteinopathies ormodulating their progression
is unaccounted for.

What are the other genetic loci that are af-
fecting disease susceptibility? This conundrum
is referred to as the problem of “missing herita-
bility” (Manolio et al. 2009). Many ideas have
been put forth to explain it (Manolio et al. 2009;
Eichler et al. 2010; Brookfield 2013). GWAS are
limited in identifying single-nucleotide poly-
morphisms (SNPs) in linkage disequilibrium
with the “true” gene locus conferring risk and
may never pinpoint the causal gene (MacArthur
et al. 2014; Schaid et al. 2018). Furthermore,
traditional methods for evaluating common
variants, such as replication of the association
across populations, are not readily applicable for
rare variants. Rare variants may be private to a
family or small population and are thereby dif-
ficult to replicate in another population, leaving
the status of the variant in doubt (Lupski et al.
2011; Casals and Bertranpetit 2012). In addi-
tion, for both classes of variant, combinatorial
effects can be elusive.

As noted above, genetic screens against pro-
teotoxicities in model organisms are enriched in
homologs of known human genetic risk factors
for neurodegenerative diseases. It is thus plausi-
ble that complete cellular dissection of proteo-
toxicity (through the different methods outlined
in this review) could provide a candidate list of
genes enriched in true human genetic modifiers.
This kind of Bayesian approach—Bayesian be-
cause it begins with a list of genes a priori more
likely to be involved with the disease process—
may be synergistic with traditional human
genetic analysis. Because tests to identify asso-
ciation between rare or common variants and
complex genetic disease are statistically under-
powered, one method to sidestep this limitation
is by reducing the number of comparisons in
genetic association studies through integration
of information from available biological data
sets in model organisms or cellular models.
This idea is gaining traction and has recently
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been tested in the PD field. For example, in a
recent GWAS meta-analysis of PD cases and
controls, candidate causal genes were assigned
to novel PD-associated risk loci (P < 5 × 10−8)
by using a “neurocentric” scoring-based strategy
that takes into account multiple levels of exper-
imental evidence, including expression quanti-
tative trait locus (eQTL) and tissue-specific
gene-expression data from central nervous sys-
tem (CNS) cell types in mice and neurologically
relevant phenotypic annotations in Drosophila
(Chang et al. 2017).

TransposeNet: Transposing Molecular
Networks across Species

If model organisms are utilized for functional
genomics, a clear challenge arises in assigning
cross-species homology. Assigning homology of
genes and networks across species is a nontrivial
exercise, particularly when sequences of homol-
ogous genes diverge over evolution. Ideally, a
molecular network identified in one species
could be “transposed” to another. A recent study
achieved this for three genome-wide screens
against α-synuclein toxicity in yeast. A compu-
tational approach (TransposeNet) was devel-
oped to transpose rich yeast molecular networks
from yeast to human (Khurana et al. 2017).

Prior to network generation, TransposeNet
comprised three steps (Fig. 3, steps 1 through 3).
First, human homologs to yeast genes were as-
sembled through consideration not just of se-
quence, but also of protein structure and known
molecular interactions. Thismodel of homology
accounted better for sequence divergence across
evolution, and demonstrably increased assign-
ment of homologs across species. Only homo-
logs expressed in brain were included. Second,
molecular interaction data linking these human
gene “nodes” were curated. However, human
molecular interaction data (particularly genetic
interactions) are sparse and result in fragment-
ed, incomplete networks. To address this, an
augmentation method was developed as a third
component of TransposeNet: known molecular
interaction data between yeast genes and pro-
teins were transposed across species to augment
the sparse human data sets. This enriched data

set emerged as a critical component to generate
network “coherence,” namely, the appropriate
interconnection of the majority of the original
genetic hits into a single network on which
genes/proteins of like function are linked to-
gether in close proximity.

Finally, having assembled the original ge-
netic hits and known yeast/human molecular
interaction data, the TransposeNet networks
themselves were generated through an optimi-
zation framework based on the prize-collecting
Steiner Forest algorithm (Fig. 3, step 4). The al-
gorithm identifies the simplest way to connect
the gene/protein “nodes” of the network through
themost robustknownprotein–proteinorgenet-
ic interactions. The algorithm also inserts genes
(“predicted nodes”) to solve the network prob-
lem in themost efficientway, thereby connecting
genes not included in the original data set in the
network. The resultant “humanized” networks
were more complete and appropriately linked
genes of related function together. Importantly,
underscoring the strength of the approach, the
resulting “humanized”network includedhuman
disease genes with no clear homologs in yeast as
predicted nodes. The humanized network of
α-synuclein toxicitymodifiers thus revealedmo-
lecular connections between multiple different
genetic forms of parkinsonism, and predicted
pathologies (e.g., mRNA translation defect) that
were validated in patient-derived neurons. Im-
portantly the network approach could also infer
connections to druggable targets for synuclein-
opathy (including calcineurin, described above,
and another target Nedd4), even when those
druggable targets were not recovered by the ge-
netic screens fromwhich the networkswere gen-
erated.This typeof computational approachmay
provide a blueprint for translating findings in
model organisms for functional genomics and
pharmacogenomics in human proteinopathies.

A “DRIVER-RESPONDER” ARCHITECTURE
IN PROTEOTOXICITY

Distinguishing Causation and Progression
in Neurodegeneration

Where abundant molecular interactome data
are available, genetic and transcriptional data are
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1- Predict homologs, taking into consideration sequence, structure, and network

2- Interconnect genetic “nodes” with known human molecular interaction “edges”

3- Augment with yeast molecular interaction “edges”

4- Complete networks (Steiner Forest algorithm)

Figure 3. TransposeNet is a computational approach that may enable integration of cross-species molecular data
to build a more coherent view of proteotoxicity. In this depiction of a recently published study (Khurana et al.
2017), modifiers recovered from genetic screens of proteotoxicity in yeast were “transposed” into the context of
the human proteome. (1) Human homologs of yeast modifiers were generated through cross-species consider-
ation of sequence, structure, and protein–protein interactions. (2,3) Genetic and physical interactions (“edges”)
between these human genes/protein “nodes” were curated not just from the relatively sparse existing human
molecular interaction data sets (2) but also through augmentation of the much richer data set of homologous
interactions in the yeast proteome (3). (4) A network was generated to connect the nodes through edges,
employing a method known as the Steiner Forest prize-collecting algorithm. The advantage of this method is
that it solves a “hairball” of interactions in the most efficient, robust way and introduces “predicted” nodes to do
so. The “predicted” nodes can capture biology that wasmissed in the original screen. In the published example for
α-synuclein toxicity, the method captured interactions betweenmany genetic risk factors for Parkinson’s disease
through specificmolecular pathways. It is presumed that the tool can be used to focus attention on specific human
genes as potential genetic risk factors, aiding functional genomics efforts.
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largely nonoverlapping, as noted above. Genetic
screens to identify modifiers of proteotoxicities
may be more geared toward identifying factors
that either drive disease processes or vulnerabil-
ity. In contrast, transcriptional profiling may be
more germane for identifying responders to the
toxic insult. It is worth remembering that genet-
ic modifiers in simple yeast screens are often
introduced into the yeast cell prior to the pro-
teotoxic insult (or simultaneous with it), just as
they would be in a human born with a gene
variant. In contrast, transcriptional profiling
assesses the response at various intervals after
the toxic protein is overexpressed.

There is mounting evidence that drivers and
responders to proteotoxicities may be different.
For example, in HD, the archetypal polyglut-
amine-expansion disorder, it is well known
that the longer the polyglutamine tract (or the
CAG repeat that encodes it), the earlier the onset
of thedisease.However, a recent study found that
disease duration is independent of this repeat
length (Keum et al. 2016). Thus, factors other
than the polyglutamine tract, whether genetic
orotherwise, aremore important in determining
disease course and progression. Alternatively,
the polyglutamine tract may also be important
in driving progression, but in cells or circuits
that are distinct from those involved in disease
initiation.

Likewise, as noted above, in the case of α-
synuclein toxicity in cellular models or in pa-
tients, genetic hits are enriched in genes encod-
ing proteins involved in vesicle trafficking, but
transcriptional responses are enriched in genes
encoding proteins localized to themitochondria
and genes involved in oxidative metabolism. In-
terestingly, an emerging literature is revealing
mechanistic links between trafficking and mito-
chondria. For example, α-synuclein itself has
been localized to mitochondria-associated ER
membranes (Guardia-Laguarta et al. 2014), and
binds to the mitochondria-associated tethering
protein Vapb to disrupt mitochondrial function
(Paillusson et al. 2017). Mutation of the Parkin-
son’s geneVPS35 (that genetically interacts with
α-synuclein) leads to mitochondrial fragmen-
tation. This has been attributed to abnormal
interactions between mutant Vps35 and mito-

chondrial dynamin-like protein (DLP1) (Wang
et al. 2016). The endocytic and actin cytoskeletal
machinery are intimately related, and perturba-
tions induced by α-synuclein in the actin cyto-
skeleton lead to mitochondrial dysfunction
(Ordonez et al. 2018). Beyond mitochondrial
dysfunction, it is conceivable that “responders”
to different proteotoxic stressors include other
components of the proteostasis network, for in-
stance the unfolded protein response, chaper-
ones, proteasomal and lysosomal degradation
machineries, and so forth.

Another major thrust of current neurode-
generative disease research involves factors out-
side neurons, and even outside the nervous sys-
tem, that may be pivotal in disease progression.
These types of disease mechanisms may not be
accessible to modeling within model organisms
that lack specialized biology. For example, there
is deepening interest, in the prion-like self-tem-
plating behavior of amyloids and their ability to
spread trans-synaptically or between neurons
and glial cells (Brettschneider et al. 2015; Jarosz
and Khurana 2017). Increasing evidence sug-
gests that, just as for bona fide prions like PrP,
specific conformers of proteins prone tomisfold
may have tropism for certain cells and circuits
(Falcon et al. 2018). This could explain how dis-
tinct disease processes may result from the mis-
folding of the same protein (Jarosz and Khurana
2017; Peng et al. 2018).

There has also been burgeoning interest in
neuroimmune interactions, in particular the po-
tential role of microglial dysfunction. This has
been partly driven by the recovery ofmany genes
enriched in microglia in human genetic studies
of neurodegenerative disease (Salter and Stevens
2017) in conjunction with elegant cellular stud-
ies that distinguish normal from pathogenic
interactions between microglia and neurons
(Krasemann et al. 2017). Even more recently,
there has been growing appreciation that viral in-
fectionmayhave a role to play in the initiation and
progression of neurodegeneration (Eimer et al.
2018). It is plausible that neuroimmune mecha-
nisms may be involved in neurodegenerative dis-
ease progression after an initiating proteotoxic
stress. Alternatively, in late-onset “sporadic”
forms of the disease it is conceivable that protein
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misfolding is initiative through either defective
neuroimmune mechanisms or perturbed clear-
ance of toxic proteins from extracellular spaces.

This distinction between drivers and re-
sponders to proteotoxic stress may have signifi-
cant implications for therapy. Genetic modifiers
may alter vulnerability to protein misfolding
and cytotoxicity, but they may miss critical pro-
teostasis pathways that respond to proteotoxic
stress. It is intriguing, for example, that for the
most part the central proteostasis machineries
(chaperones and so forth) are not commonly
implicated in human genetic studies of neuro-
degenerative disease, and also in genetic modi-
fier screens of proteotoxicity in model organ-
isms. This is surprising because these pathways
are known to be critical to the handling of mis-
folded proteins and deeply tied to pathways of
aging. But this does not necessarily detract from
the potential importance of these pathways. It
could be, for example, that the core components
of the chaperone machinery are essential for all
of protein biogenesis and required to support
embryonic development, and thus detrimental
mutations would not be recovered. Or it could
be that alterations in these pathways do not
affect predisposition to disease but modulate se-
verity or rate of progression. Conventional case-
control human genetic studies would miss these
factors, and yet theymight be very important for
therapeutics. Likewise, genetic screens in cellu-
lar models such as yeast cells could miss key
genetic drivers of pathologies in aged organisms,
and screening at different time points in organ-
isms that can be aged (like the fly or worm) may
be useful for identifying these factors. Finally,
many of these factors may act in combination.
As noted above, human genetic analysis of pro-
teinopathies has far from exhausted a search for
combinatorial effects of genes, and the majority
of heritability factors remain as yet unrecovered.

Spatial Mapping to Identify Drivers

One intriguing feature that has emerged from
the genetic architecture of neurodegenerative
diseases is how little overlap there is between
distinct diseases. With the possible exception
of apolipoprotein E genotype, there is not a sin-

gle genetic risk factor known to definitively
predispose to different degenerative proteinopa-
thies. It is possible that major defects in the pro-
teostasis machinery that could predispose to
misfolding and aggregation of multiple toxic
proteins would be lethal, or that there is enough
redundancy in the machinery to protect against
the effect of such mutations.

Another possibility is that the genetic mod-
ifiers of a proteotoxicity relate in part to the
intrinsic function of the protein that misfolds.
Put another way, modulation of pathways in-
trinsically related to this function aremajor driv-
ers of disease. Considerable evidence supports
this possibility, particularly for proteins like
huntingin and ataxin proteins (reviewed recent-
ly in Jarosz and Khurana 2017). Recently, this
hypothesis was indirectly tested via mapping of
interacting proteins. For example, Hughes and
colleagues exploited protein interaction data of
huntingtin protein (via yeast two-hybrid and af-
finity pull down-mass spectrometry) to identify
candidate genetic modifiers of huntingtin in a
Drosophilamodel ofHD. They thereby connect-
ed genetic drivers to functional interactors of the
misfolding protein (Kaltenbach et al. 2007).
Proximity biotinylation labeling with an ascor-
bate peroxidase (APEX) tag (Han et al. 2018)
enables this kind of analysis in living neurons,
and was recently applied to α-synuclein (Chung
et al. 2017). Genetic modifiers of α-synuclein
toxicity in yeast cells (“geneticmap” as described
above) were cross-compared to proteins <10 nm
radius from α-synuclein in neurons (Chung
et al. 2017; Khurana et al. 2017). The spatial
and genetic maps significantly overlapped,
most clearly for vesicle trafficking and mRNA-
binding proteins. Thus, the intrinsic location
and protein interactions of α-synuclein are di-
rectly related to its mechanism of toxicity when
it misfolds. This may turn out to be a general
theme, explaining in part the exquisite specific-
ity of protein-misfolding pathologies.

CAPTURING SPECIFIC PROTEIN
CONFORMERS IN LIVING CELLS

Underlying the conceptual framework of drivers
and responders to neurodegeneration, there is a
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physical dimension at the level of biomolecules
that needs to be understood. Themethods we de-
scribe above delineate proteins and pathwaysme-
diating the cellular effects of toxic proteins. But at
the molecular level, these cellular networks need
to be resolved as specific protein–protein interac-
tions, and as interactions betweenproteins in spe-
cific conformational states. To achieve this level of
understanding, there are a growingnumberof ap-
proaches to assess alterations of protein structure
and protein–protein interactions in living cells.

It is straightforward to grasp the disruption
of a network if amutation arises in an “executive
domain’’ of a protein, such as a catalytic site,
a well-folded protein-interaction domain or a
posttranslational modification site. However,
there are numerous Mendelian mutations that
are mapped to intrinsically disordered regions
(IDRs), or low-complexity domains (LCDs)
(Castello et al. 2013). Nowhere is this clearer
than the case of ALS, where mutations of TDP-
43 and FUS proteins are concentrated in LCDs
(Harrison and Shorter 2017). Although IDRs
seem to have low information content, they
had been well-recognized in yeast prions and
polyglutamine-containing proteins as the pri-
mary source of prionogenic potential. For in-
stance, conversion to a prion conformation in
yeast depends on long stretches of asparagines
and glutamines (N/Q) (HalfmannandLindquist
2010), and computational algorithms trained on
these LCD sequences enabled the discovery of
novel prions (Alberti et al. 2009). But beyond
sequence, the last decade has brought remark-
able biophysical insights into the nature of in-
trinsically disordered proteins. These included
seminal observations of the gel-like properties
of nuclear pore complexes (Frey et al. 2006)
and the liquid behaviors of P-granules of C. ele-
gans oocytes (Brangwynne et al. 2009). A new
understanding of the material properties of pro-
teins has emerged in which phase separation
contributes to cellular organization through the
formation of membraneless organelles (MLOs).
Moreover, this process is highly sensitive to mu-
tation of such proteins (Shin et al. 2017; Boey-
naems et al. 2018). Although the nomenclature
for this phenomenon is as abundant as the newly
discovered MLOs (prion-like aggregation, liq-

uid–liquid phase separation, droplets, ribonu-
cleoprotein bodies, phases, granules, etc.), the
term “condensates” has been widely accepted
in the field (Banani et al. 2017) as it is inclusive
of all the physical states (liquid, gel, amyloid fi-
brils) of biological polymers.

Condensates are widely thought to organize
the cellular milieu in a spatiotemporal manner.
Classical cellular compartments are now recog-
nized asMLOs; P-bodies/stress granules (Decker
and Parker 2012), Cajal bodies (Nizami et al.
2010), nucleolus (Feric et al. 2016), and Balbiani
bodies (Boke et al. 2016). Some of these granules
exist constitutively, such as P-bodies, although
their numbers increase upon mRNA decay-re-
lated stress. In contrast, stress granules quickly
form de novo upon translation-related stress
(Protter and Parker 2016). Although these phys-
iologic protein accumulations are carefully con-
trolled by the cell, their inherent metastability
gives them a dangerous edge. Point mutations
in the IDRs (Harrison and Shorter 2017),
malfunctioning of the chaperone machinery
(Mateju et al. 2017), aging (Alberti and Carra
2018), ATP depletion (Patel et al. 2017), pH
changes (Munder et al. 2016), or cellular crowd-
ing (Delarue et al. 2018) can drive thesemetasta-
ble proteins into pathological aggregates. Cells
can cope with such aggregates to a certain extent
through degradation (autophagy/proteasomal
degradation) (Balchin et al. 2016), or sequestra-
tion (JUNQ/INQ or IPODs) (Miller et al. 2015).
However, beyond a point, the cell succumbs and,
as noted above, proteotoxicity can result and
may be amplified when some conformations
are templated and spreadwithin or between cells
(Jarosz and Khurana 2017). Abnormal protein
conformation may thus be critical to both the
genesis and progression of proteinopathies. It
is, therefore, imperative to integrate this confor-
mational information into our understanding of
cellular pathologies in proteinopathies.

Technologies to Measure and Control
Aggregation Complexes and States
in Living Cells

Traditional biochemical methods for assaying
protein aggregation may entail lysis of the cell
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but many tools have been developed for in vivo
detection of condensation. Within intact cells,
our knowledge has mostly arisen from skillful
usage of fluorescent microscopy of tagged can-
didate proteins. In vivo dynamics of these con-
densates are measured by FRAP (fluorescence
recovery after photobleaching) complemented
by in vitro droplet formation assays with puri-
fied components (Brangwynne et al. 2009; Li
et al. 2012; Caudron and Barral 2013; Zeng
et al. 2016). Complementation of split fluores-
cent proteins have also been extensively utilized
to track α-synuclein aggregations in vivo (Lá-
zaro et al. 2014). Frequently, these condensates
are a complex mixture of proteins and RNA.
APEX methods (noted above) can be used to
identify the heterogeneous composition of gran-
ules before or after condensation events. Stress-
dependent composition of stress granules, for
example, have been identified through proxim-
ity labeling of G3BP1-APEX (Markmiller et al.
2018). In some instances, solid cores of conden-
sates are strong enough for extraction and pro-
teomic analysis (Jain et al. 2016). Hubstenberger
et al. (2017) have developed a fluorescence-acti-
vated particle-sorting method to check for the
composition of P-bodies before and after stress
conditions by labeling LSM14.

Amyloids can be investigated by methods
developed in the prion field. Semidenaturing
agarose gel electrophoresis (SDD-AGE) or filter
trap assays have been extensively used to screen
hundreds of wild yeast strains for [PSI+] prion
(Halfmann et al. 2012), or to search for amyloid-
ogenic propensities of Q/N rich proteins in the
yeast proteome (Alberti et al. 2010). However, a
major challenge is to examine these entities in
vivo with minimal intrusion. Recently, Newby
and colleagues developed a highly sensitive, dy-
namic invivoproteinaggregation trackingmeth-
od called yeast transcriptional reporting of ag-
gregating protein (yTRAP). yTRAP makes use
of a synthetic zinc finger (ZnF) fold and an acti-
vator moiety attached to a protein under investi-
gation (Newby et al. 2017). ZnF recognizes a
highly specific cognate DNA sequence upstream
of afluorescent reporter. This simple logic allows
channeling the aggregation state of a protein to
a fluorescent output (Fig. 4A). The modular

nature of yTRAP permits tracking of multiple
prion aggregations simultaneously and its high
sensitivity, combined with flow cytometry, al-
lows differentiating different strains of the same
prion, a crucial distinction especially for the neu-
rodegeneration field.

Importantly, many condensates contain
RNA molecules, and low-complexity regions
are highly represented in RNA-binding proteins
(RBPs) (Castello et al. 2013). The unexpected
finding that numerous RBPs contained IDRs
and could be precipitated in biotinylated isox-
azole from cell lysates opened up intense re-
search into the biophysical properties of RNP
granules (Han et al. 2012; Kato et al. 2012). Cer-
tain RBPs with IDR regions, especially compo-
nents of stress granules, can solidify in vivo, a
process known as maturation or hardening,
causing loss of their protein/RNA clients, thus
altering cellular “ribostasis” (Ramaswami et al.
2013). Hardened stress granules have been im-
plicated inALSpathology (Li et al. 2013). Tofind
aggregation-prone RBPs, Newby et al. created a
library of yTRAP strains for RBPs in the yeast
proteome. This allowed simultaneous measure-
ment of RBP aggregation states upon a chemical
or environmental stress, such as chaperone in-
hibition or overexpression.Moreover, the library
permitted tracking of coaggregation events in a
time-resolved manner (Newby et al. 2017). It
will be crucial to extend these libraries to other
protein families, such as transcription factors,
and transfer the methodology to mammalian
systems.

Although amyloids are extremely stable,
their nucleation is rare due to kinetic barriers.
An important question in amyloidogenesis is
how initial protofilaments form and self-tem-
plate. To track these rare nucleation events in
vivo, the Halfmann laboratory developed
DamFRET(Khanet al. 2018). Thismethod relies
on a photoconvertible mEos3.1 fluorescent tag.
Semiconversion of mEOS1 allows a single tag to
represent a protein of interest as FRET pairs.
Therefore, an increasing FRET signal occurs
when the tagged protein becomes more tightly
aggregated (Fig. 4B). With this single tag and
flow cytometry, the aggregation of any protein
can be measured as a function of its concentra-
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tion.Kinetic barriers foraggregation can certain-
ly be overcome by overexpression of the protein
under investigation; however, its supersaturation
may occur in the cell because of overcrowding,
change of cellular milieu, failure of protein con-
trol mechanisms, or aging as discussed above.
Therefore, it is highly desirable to have precise
spatiotemporal control of nucleation events in
vivo by means other than overexpression. Opto-
droplets, developed for this purpose, are chimer-
ic fusions of proteins under investigation and a
blue light–inducible oligomerization domain of
Cry2 fromArabidopsis thaliana (Fig. 4C). Using
this technique, Shin and colleagues determined
the in vivo dynamics of triggered condensations
and their solidifications in time (Shin et al. 2017).

Collectively, these powerful and comple-
mentary approaches set the stage for detailed
molecular dissection of protein aggregation
states and multiprotein complexes.

CONCLUDING REMARKS

Here, we surveyed some methods that are en-
abling proteome-scale dissection of proteotoxic
mechanisms at the cellular and organismal level.
As noted above, the emerging biological data
sets promise to, in turn, help us focus on specific
gene variants emerging from larger-scale genet-
ic studies for which pure human genetic analysis
will most likely become an exercise in diminish-
ing returns.

Driven by the classical tools of molecular
biology, the preponderance of knowledge to
date has (not surprisingly) been at the gene,
transcript, and protein level. But chemical ge-
netic profiling (Piotrowski et al. 2017), metabo-
lomic profiling (Evers et al. 2017), and survey of
chromatin and epigenetic factors (De Jager et al.
2018) are revealing novel mechanisms. For in-
stance, recent elegant work has connected geno-
mic instability, chromatin relaxation, and the
aberrant activation of transposable genetic ele-
ments in tauopathy, providing entirely new per-
spectives on how age-related cellular changes
might amplify the toxic effects of misfolded pro-
teins (Guo et al. 2018; Sun et al. 2018). Compu-
tational approaches are also being employed to
make better biological sense of the “hairballs” of

large-scale interaction networks and to interre-
late different large-scale data sets (Khurana et al.
2017; Kedaigle and Fraenkel 2018).

For all of their utility, the data sets described
in this review have largely emerged from model
systems that have not captured human cellular
biology or the specific protein conformations
that give rise todisease. There is a growing appre-
ciation that specificity of proteinopathies is driv-
en by distinct conformational states of proteins.
Thesemaybeunique amongdiseases (Woerman
et al. 2018), differ between individual patients,
and be critically dependent upon cellular milieu
(Penget al. 2018).Theseunique conformershave
notbeenmodeled incellularororganismmodels,
nor have they been profiled in a human cellular
context. But this will now change as technologies
that capture both human host cell and toxic pro-
tein strain are available.

At the level of capturing human cell biology,
somatic-cell reprogramming and the advent of
iPSc is enabling the generation of patient-specif-
ic cells and distinct cell types from these patients.
Cells can be arrayed in cocultures in specific ori-
entations, aided by microfluidics or 3D laser
printing. Stunningorganoid technologies enable
3D patient-specific tissues to be generated too.
These technologies are becoming available for
the cells and tissues most affected in proteinopa-
thies, from CNS (Lancaster and Knoblich 2014)
to pancreatic islets (Zhou and Melton 2018) to
muscle (Pourquié et al. 2018). At the level of
capturing disease- and patient-specific con-
former, biochemical approaches that capture
and amplify these from brain (Peng et al. 2018)
and spinalfluid (Shahnawaz et al. 2017) arebeing
developed. Elusive cell types, such as microglia,
cannowbe generated from iPScand incorporated
into 3D organoids (Muffat et al. 2016).

The amalgamation of these distinct technol-
ogies will provide an unprecedented view of
proteotoxicity, amenable to the many methods
outlined in this review. But a new wave of tech-
nologies will render it possible to profile 2D and
3D models, or patient-derived postmortem hu-
man tissue, in a spatially specific way (Fig. 5).
Single-cell sequencing technologies are poised
to reveal somatic mosaicism at the level of ge-
nome (Evrony et al. 2012) and transcriptome
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(Ecker et al. 2017). Next-generation barcoding
and sequencing have now also been applied to
achieve transcriptional profiling of spatially re-
solved intact tissue, with methods such as fluo-
rescence in situ sequencing (FISSEQ) (Lee 2017)
and highly multiplexed error-robust FISH
(MERFISH) (Moffitt et al. 2016) that can now
be applied to 2D and 3D models of proteinop-
athy or human tissue samples. Stunning devel-
opments in microscopy will enhance our capac-
ity to profile and understand proteinopathies in
3D, for example, the ability to expand tissuewith
expansionmicroscopy (Chen et al. 2015;Ku et al.
2016) or to combine clearing of lipids with mul-
tiplex antibody analysis (Murray et al. 2015).

In a time of aging populations, the personal
and societal consequences of proteinopathies,
from AD to PD to diabetes, will become even
more devastating. It is heartening that our un-
derstanding of these diseases, from factors that
drive them to those that mediate progression, is
commensurately increasing. Unbiased method-

ology at the level of cell, tissue, and organism
promises to enrich our understanding of under-
lying biological mechanisms. We predict that
sorely needed preventative and therapeutic op-
tions for patients will follow closely behind.
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