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An estimated 12 million adults in the United States are 
diagnosed with chronic obstructive pulmonary disease 

(COPD) and an additional 12 million are thought to have 
undiagnosed COPD (1,2). CT captures the presence, pat-
tern, and extent of phenotypic abnormalities associated 
with COPD. Both visual and quantitative CT assessments 
have been extensively validated and are considered comple-
mentary methods for assessment of COPD (3,4).

The Fleischner Society proposed a structured system for 
visual classification of parenchymal emphysema, the proto-
typical pattern of emphysema seen in cigarette smokers (3). 
The system uses a six-point ordinal scale to grade parenchy-
mal emphysema as absent, trace, mild, moderate, confluent, 
or advanced destructive. Visual assessment of emphysema by 

using the Fleischner system provides a valid and reproduc-
ible index of severity that is associated with impaired func-
tion and higher risk of mortality, genetic loci associated with 
COPD, and lung cancer (5–7). However, visual analysis by 
using a structured scoring system is time consuming, subjec-
tive, and requires substantial training, making it difficult to 
perform in routine practice (5,8,9). A validated automatic 
technique to classify emphysema patterns could be useful for 
risk stratification in clinical practice and lung cancer screen-
ing programs. In addition, such a technique could permit 
selection of participants with specific grades of emphysema 
(or with no emphysema) for future COPD clinical trials.

Deep learning has provided dramatic advances in a 
wide range of challenging image analysis tasks including 
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Background:  Pattern of emphysema at chest CT, scored visually by using the Fleischner Society system, is associated with physiologic 
impairment and mortality risk.

Purpose:  To determine whether participant-level emphysema pattern could predict impairment and mortality when classified by us-
ing a deep learning method.

Materials and Methods:  This retrospective analysis of Genetic Epidemiology of COPD (COPDGene) study participants enrolled be-
tween 2007 and 2011 included those with baseline CT, visual emphysema scores, and survival data through 2018. Participants were 
partitioned into nonoverlapping sets of 2407 for algorithm training, 100 for validation and parameter tuning, and 7143 for testing. 
A deep learning algorithm using convolutional neural network and long short-term memory architectures was trained to classify 
pattern of emphysema according to Fleischner criteria. Deep learning scores were compared with visual scores and clinical param-
eters including pulmonary function tests. Cox proportional hazard models were used to evaluate relationships between emphysema 
scores and survival. The algorithm was also tested by using CT and clinical data in 1962 participants enrolled in the Evaluation of 
COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study.

Results:  A total of 7143 COPDGene participants (mean age 6 standard deviation, 59.8 years 6 8.9; 3734 men and 3409 women) 
were evaluated. Deep learning emphysema classifications were associated with impaired pulmonary function tests, 6-minute walk 
distance, and St George’s Respiratory Questionnaire at univariate analysis (P , .001 for each). Testing in the ECLIPSE cohort 
showed similar associations (P , .001). In the COPDGene test cohort, deep learning emphysema classification improved the fit of 
linear mixed models in the prediction of these clinical parameters compared with visual scoring (P , .001). Compared with par-
ticipants without emphysema, mortality was greater in participants classified by the deep learning algorithm as having any grade of 
emphysema (adjusted hazard ratios were 1.5, 1.7, 2.9, 5.3, and 9.7, respectively, for trace, mild, moderate, confluent, and advanced 
destructive emphysema; P , .05).

Conclusion:  Deep learning automation of the Fleischner grade of emphysema at chest CT is associated with clinical measures of pul-
monary insufficiency and the risk of mortality.
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in 1 second (FEV1) and forced vital capacity (FVC) are propor-
tionate, with normal values for FEV1/FVC ratio (16). Deaths 
were reported to the central study from clinical centers, and the 
Social Security Death Index was used to determine survival or 
censoring time for each participant (5). This report is based on 
9652 COPDGene participants with available baseline inspira-
tory CT, visual emphysema scores, and mortality data. Visual 
assessment of CT in 4000 of these participants was reported pre-
viously (5). The prior article dealt with visual scoring of images, 
whereas in this article we report results of automatic scoring of 
emphysema by using a deep learning algorithm.

The Evaluation of COPD Longitudinally to Identify Predictive 
Surrogate End-points (ECLIPSE) study was a 3-year multicenter 
observational study designed to discover and validate novel and 
robust metrics of COPD (17,18). It included 2164 participants 
with Global Initiative for Lung Disease stages 2–4 COPD and 
582 control participants (nonsmokers and smokers). It was com-
pleted in 2011 (17). Our present study included 1962 ECLIPSE 
participants with available baseline CT, spirometry, and mortality 
data. Additional information on study cohorts is available in Ap-
pendix E1 (online). Other researchers have reported on CT in the 
ECLIPSE cohort using different analysis methods (4,17).

Visual Scoring
Visual assessment of 9652 baseline COPDGene CT scans was 
performed by four trained research analysts between 2013 and 
2017 using the Fleischner system, which is described elsewhere 
(3,5). The analysts had no previous experience with radiologic 
interpretation. Visual scoring using the Fleischner system was 
not performed in the ECLIPSE study.

Deep Learning Algorithm Development and Training
The deep learning algorithm combines a convolutional neural net-
work architecture with a long short-term memory layer (Fig 1). 
Long short-term memory networks are recurrent neural networks 
capable of learning dependencies in sequences of images (19). 
The algorithm takes as input 25 axial slices, sampled evenly over 
the height of the lungs as determined in an initial segmentation 
process. The convolutional neural network includes four blocks of 
convolutional and pooling operations, which extract complex fea-
tures from each input image. These features are concatenated into 
a sequence, which is transformed by the long short-term memory 
into a composite feature vector for the participant. The output 
of the model is a set of six continuous variables representing the 
prediction probability (on the scale of 0.0–1.0) for each category 
and is treated as a discrete probability distribution. The final clas-
sification is calculated as the probability-weighted average of the 
categories rounded to the nearest integer. The algorithm was de-
veloped in-house by using Python (version 3.6; Python Software 
Foundation, Wilmington, Del; https://www.python.org/) and Py-
Torch (version 0.4.1; https://pytorch.org).

CT scans in 2407 COPDGene participants were used for 
training the deep learning algorithm, and a separate group of 100 
were held out for validation and parameter tuning. Participants 
used for training were selected because they had CT and visual 
emphysema scores available and not been included in an earlier 
analysis (5). See Appendix E1 (online) for additional details.

Abbreviations
CI = confidence interval, COPD = chronic obstructive pulmonary 
disease, COPDGene = Genetic Epidemiology of COPD, ECLIPSE = 
Evaluation of COPD Longitudinally to Identify Predictive Surrogate 
End-points, FEV1 = forced expiratory volume in 1 second, FVC = 
forced vital capacity, LAA-950 = percentage of lung voxels with CT 
attenuation less than -950 HU

Summary
Presence and severity of emphysema, scored automatically according 
to the Fleischner system by using a deep learning algorithm, is associ-
ated with greater impairment and risk of mortality.

Key Results
	n In the Genetic Epidemiology of COPD (COPDGene) cohort, 

weighted k statistic comparing visual and deep learning Fleischner 
emphysema scores was 0.60 (n = 7143; P , .001).

	n Deep learning emphysema classification improved the fit of linear 
mixed models in the prediction of clinical parameters of chronic 
obstructive pulmonary disease (pulmonary function tests, 6-min-
ute walk distance, and St George’s Respiratory Questionnaire) 
compared with visual scoring (P , .001).

	n Deep learning classification of emphysema grade according to the 
Fleischner system showed Cox adjusted proportional hazard ratios 
of 1.5, 1.6, 2.9, 5.3, and 9.7, respectively, for trace, mild, moder-
ate, confluent, and advanced destructive emphysema (P , .01).

automatic grading of diabetic retinopathy, assessment of skin 
lesions, and detection of tuberculosis on chest radiographs 
(10–12). In this study, we developed and trained a deep learn-
ing algorithm to classify emphysema according to the Fleischner 
system for analysis of chest CT by using visual scores from the 
Genetic Epidemiology of COPD (COPDGene) cohort. We hy-
pothesized that deep learning could successfully automate this 
classification. Our aim was to determine whether participant-
level emphysema pattern could predict impairment and mortal-
ity when classified by using a deep learning method.

Materials and Methods

Study Cohorts
This study is a retrospective analysis of data from COPDGene 
(ClinicalTrials.gov registration number NCT00608764), a pro-
spective multicenter investigation on the genetic epidemiology 
of COPD. Between 2007 and 2011, 10 192 individuals aged 
45–80 years with a smoking history of at least 10 pack-years 
were enrolled in this Health Insurance Portability and Account-
ability Act–compliant study (13). Individuals with respiratory 
conditions other than asthma and COPD were excluded. In-
stitutional review board approval of the research protocol was 
obtained at all clinical centers, a total of 21 sites in the United 
States. Written informed consent was obtained from all study 
participants (1). In addition to CT, clinical evaluation included 
baseline spirometry, 6-minute walk test, and standardized ques-
tionnaires including St George’s Respiratory Questionnaire and 
modified Medical Research Council dyspnea score (14,15). Air-
flow obstruction was classified according to Global Initiative for 
Lung Disease stages, including the Preserved Ratio Impaired 
Spirometry group where reductions in forced expiratory volume 
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emphysema value, and 
smoking history stratified 
by emphysema scores. 
Quantitative emphysema 
value was computed as 
the percentage of lung 
voxels with CT attenua-
tion less than -950 HU 
(LAA-950). x2 tests of in-
dependence were used to 
compare Global Initiative 
for Lung Disease stage 
and other categoric char-
acteristics between em-
physema severity scores.

In the COPDGene 
test cohort, linear mixed 
models adjusted for age, 
race, sex, weight, height, 
smoking pack-years, cur-
rent smoking status at 
enrollment, education 
level, and a random term 
for study site were used to 
test relationships between 
emphysema grades (deter-

mined by the deep learning algorithm and/or visually) and FEV1%, 
FEV1/FVC ratio, 6-minute walk distance, modified Medical Re-
search Council dyspnea score, and St George’s Respiratory Ques-
tionnaire. Nested models were compared by using asymptotic x2 
tests to determine whether inclusion of deep learning emphysema 
score significantly improved prediction of baseline clinical mea-
sures compared with a model using only visual emphysema score. 
Additional models including adjustment for LAA-950 were also 
fit to test whether emphysema grade was significantly associated 
with baseline clinical parameters independent of LAA-950.

Median length of follow-up in the COPDGene testing 
cohort was 7.95 years (range, 30 days to 10.56 years). In the 
ECLIPSE cohort, it was 2.90 years (range, 69 days to 2.90 
years). Kaplan-Meier plots were used to visualize mortality by 
emphysema scores in both cohorts. In the COPDGene testing 
cohort, multivariable analysis of risk of death by emphysema 
grades was performed by using shared frailty models, an exten-
sion of Cox proportional hazard models that account for vari-
ability between study sites (5). A normally distributed random 
effect was included as linear predictor to account for correlation 
in the data due to clustering of the participants by study site.

Statistical calculations were performed by using R (version 
3.4.4; R Foundation for Statistical Computing, Vienna, Aus-
tria). A P value of , .05 was considered to indicate statistical 
significance.

Results

Participant Characteristics
Figure 2 shows participant selection in the COPDGene and 
ECLIPSE cohorts. The COPDGene testing cohort consisted of 

Algorithm Testing
The testing cohort consisted of 7143 COPDGene participants 
that did not overlap with the training or validation sets and 
for whom mortality data, pulmonary function tests, and vi-
sual scores were available. The external testing cohort consisted 
of 1962 ECLIPSE participants with available CT, pulmonary 
function tests, and mortality data.

Statistical Analysis
Accuracy of deep learning classifications compared with visual 
scores was evaluated by using weighted k statistics, with all lev-
els of disagreement weighted equally. Calibration of the deep 
learning algorithm outputs with respect to visual scores was 
evaluated by using a resampling-based test (20). Calibration 
generally refers to the agreement between probabilities pre-
dicted by a classification algorithm and the true class member-
ship probabilities. Accuracy and calibration are two different 
aspects of performance evaluation. Good accuracy does not 
ensure good calibration and vice versa (21). In this application, 
true class membership probabilities are unknown, so calibra-
tion testing compared the predicted probability with observed 
probabilities based on visual scores. The resampling test is simi-
lar to a Hosmer-Lemeshow test, which is typically used to test 
calibration of binary models, in that a significant P value sug-
gests evidence that prediction probabilities diverge from ob-
served probabilities. See Appendix E1 (online) for details.

Descriptive statistics between emphysema scores and de-
mographic and functional parameters were computed. One-
way analysis of variance was used to test for significant differ-
ences in FEV1 percentage predicted or FEV1%, FEV1/FVC 
ratio, St George’s Respiratory Questionnaire, quantitative CT 

Figure 1:  Diagram shows deep learning algorithm. Algorithm combines convolutional neural network (CNN) and long short 
term-memory (LSTM) architectures. Output, cpred, is weighted average of predicted probabilities (pi) for each classification category 
(ci) produced at output layer. Classification categories for parenchymal emphysema are as follows: 0 = absent, 1 = trace, 2 = mild, 
3 = moderate, 4 = confluent, or 5 = advanced destructive. 2D = two-dimensional.
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convolutional neural network. 
Table 1 compares visual and 
deep learning emphysema clas-
sification scores in COPDGene 
test participants. Weighted k 
statistic comparing visual and 
deep learning scores was mod-
erate (k = 0.60; P , .001).
The deep learning algorithm 
classified 34% of scans as one 
category more severe and 13% 
of scans as one category less 
severe than visual scores (per-
centage calculated as number 
of deep learning classifications 
within one category of visual 
score divided by total num-
ber of test cases). The greatest 
discordance was in individuals 
without visual evidence of em-
physema that were classified by 
the deep learning algorithm as 
having trace emphysema (ie, 
the two leftmost cells along 
the first row of Table 1). Com-
pared with participants classi-
fied by both visual assessment 
and deep learning as having no 
emphysema (n = 637), those 
classified as having trace em-
physema by deep learning but 
no emphysema at visual as-
sessment (n = 1495) had lower 
FEV1% predicted (90.7 [95% 
confidence interval {CI}: 89.9, 
91.6] vs 93.9 [95% CI: 92.8, 
94.9]; P , .001), lower FEV1/
FVC ratio (0.77 [95% CI: 
0.76, 0.77] vs 0.79 [95% CI: 

0.79, 0.80]; P , .001), more severe dyspnea by using modified 
Medical Research Council score (0.85 [95% CI: 0.79, 0.92] vs 
0.71 [95% CI: 0.63, 0.80]; P = .0114), and greater LAA-950 
(2.31 [95% CI: 2.17, 2.45] vs 2.01 [95% CI: 1.82, 2.20]; P = 
.0125). See also Table E3 (online).

Calibration testing of the deep learning probability predic-
tions compared with visual scores resulted in a P value that was 
less than .001. This indicates that it is unlikely that the prob-
abilities predicted by the deep learning algorithm could generate 
the distribution of visual scores such as was observed. In other 
words, the prediction probabilities produced by the last layer of 
the deep learning model diverge from the observed probabilities 
based on visual scores.

Table 2 shows mortality, demographics, functional param-
eters, and comorbidities according to deep learning classifica-
tions in the COPDGene test cohort. As seen in a prior study, 
participants with moderate or more advanced emphysema were 
relatively older, more likely to be non-Hispanic white than 

7143 participants (3734 men and 3409 women). The mean age 
6 standard deviation at enrollment was 59.8 years 6 8.9, with 
a mean of 59.9 years 6 8.9 for men and 59.7 years 6 9.0 for 
women. Characteristics of COPDGene participants included in 
the training and validation cohort are described in Table E1 (on-
line). The external testing cohort consisted of 1962 ECLIPSE 
participants (1188 men and 774 women). Mean age at enroll-
ment was 62.4 years 6 8.4, with means of 62.3 years 6 8.4 for 
men and 60.1 years 6 8.4 for women. Table E2 (online) com-
pares COPDGene and ECLIPSE testing cohorts.

Algorithm Testing
Computation time for automatic classification was about 1 
minute per participant scan. Figure 3 shows representative CT 
images and gradient-weighted class activation maps, or Grad-
CAM, calculated by using the last convolutional layer of the 
deep learning model. Grad-CAM heat maps indicate how in-
tensely a given input image activates different portions of the 

Figure 2:  Flowchart shows participant selection. (a) Among 10 192 participants enrolled in Genetic Epidemiology of 
COPD (COPDGene) phase 1, CT was missing in 501 participants. Sixty-four participants were excluded due to presence 
of interstitial lung disease (ILD) and 503 CT scans were excluded due to quality issues (eg, significant artifact or scanning 
protocol deviation). Total of 9652 had baseline CT with visual emphysema scores and mortality data. CT scans with visual 
scores were partitioned into subsets of 2407, 100, and 7143 scans for training, validation, and parameter tuning and test-
ing, respectively. Training scans were selected because they had not been included in previous analysis. Source.—Reference 
5. Deep learning algorithm failed to produce results on two CT scans. (b) Among 2746 participants enrolled in Evaluation 
of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE), 456 were missing CT and/or pulmonary 
function testing (PFT). Total of 318 CT scans were identified as unreadable on quality checks (primarily due to missing data 
or motion artifact) during original study. Source.—Reference 4. Deep learning algorithm failed to produce results on 10 CT 
scans. Total of 1962 participants with analyzable CT were included in testing cohort. CNN-LSTM = convolutional neural 
network and long short-term memory.



Deep Learning Enables Automatic Classification of Emphysema Pattern at CT

438	 radiology.rsna.org  n  Radiology: Volume 294: Number 2—February 2020 

clinical parameters by visual 
emphysema score.

In the COPDGene test 
cohort, linear mixed models 
were calculated with FEV1%, 
FEV1/FVC ratio, 6-minute 
walk distance, or St George’s 
Respiratory Questionnaire as 
the dependent variable; vi-
sual emphysema score as the 
independent variable; and ad-
justments made for age, race, 
sex, weight, height, smoking 
pack-years, current smoking 
status at enrollment, education 
level, and a random term for 
study site. Inclusion of the deep 
learning emphysema score as an 
additional predictor improved 
x2 goodness of fit measures in 

models with FEV1%, FEV1/FVC ratio, 6-minute walk distance, 
or St George’s Respiratory Questionnaire as the dependent vari-
able (P , .001). This remained true in comparisons of similar 
models that included adjustment for LAA-950 (P , .001 for 
each dependent variable), suggesting that deep learning emphy-
sema scores provide information beyond visual assessment and 
LAA-950.

There were 982 deaths in the COPDGene testing co-
hort. Figures 4a and 4b show Kaplan-Meier plots of survival 

African American, had a lower body mass index, and had a rela-
tively higher smoking exposure (but were less likely to be current 
smokers) (5). Emphysema severity classified by the deep learning 
algorithm was associated with progressively greater airflow ob-
struction, reduced 6-minute walk distance, and higher severity 
of dyspnea assessed by using modified Medical Research Council 
score. The presence and severity of emphysema was positively 
correlated with Global Initiative for Lung Disease stage (x2 = 
3966; P , .001). See also Table E4 (online), which shows these 

Figure 3:  Representative CT scans from Genetic Epidemiology of COPD (COPDGene) testing cohort. Top row: Axial noncontrast CT sections classified as (a) trace, 
(b) moderate, or (c) advanced destructive emphysema by using both visual scoring and deep learning algorithm. Bottom row: (d–f) Heat maps show gradient-weighted 
class activation maps corresponding to input images a–c. Red shows image regions that result in largest network activations for each input image. Color maps are scaled to 
show regions with at least 50% of maximum activation for each input image. Source.—Reference 32.

Table 1: Comparison of Visual and Deep Learning Emphysema Scores in the COPDGene Test 
Cohort (n = 7143)

Deep Learning Algorithm

Visual Score Absent Trace Mild Moderate Confluent Advanced Destructive
Absent 637*† 1495† 324 41 2 0
Trace 126 751* 377 66 2 0
Mild 35 380 678* 296 20 0
Moderate 2 23 166 643* 211 4
Confluent 0 1 4 154 428* 69
Advanced destructive 0 0 0 8 108 92*

Note.—Deep learning algorithm classified 34% of scans as one category more severe and 13% of 
scans as one category less severe than visual scores. Percentages were calculated as the number of 
deep learning classifications divided by the total number of participants in Genetic Epidemiology of 
COPD (COPDGene) test cohort (weighted k = 0.60; P , .001).
* 45% of deep learning classifications agreed with visual score.
† Greatest discordance was in individuals scored as having no emphysema at visual assessment but 
classified by the deep learning algorithm as having trace emphysema.
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Table 2: Mortality, Demographics, Functional Parameters, and Comorbidities in COPDGene Testing Cohort (n = 7143) according 
to Deep Learning Classification of Emphysema

Emphysema Grade: Deep Learning Algorithm

Parameter Absent Trace
Mild  
Centrilobular

Moderate  
Centrilobular Confluent

Advanced  
Destructive P Value*

No. of participants 800 (11) 2650 (37) 1549 (22) 1208 (17) 771 (11) 165 (2)
No. of deaths (n = 982) 33 (4) 197 (7) 159 (10) 238 (20) 268 (35) 87 (53)
Demographic data
  Age (y)† 57.1 6 8.2 57.7 6 8.6 59.3 6 8.7 63.1 6 8.6 64.7 6 7.7 64.9 6 8.1 ,.001
  Body mass index  
      (kg/m2)†

31.4 6 6.3 29.7 6 6.1 28.4 6 6.3 28.1 6 6.1 26.9 6 5.4 23.8 6 4.9 ,.001

  No. of men 235 (29) 1472 (56) 868 (56) 666 (55) 383 (50) 110 (67) ,.001
  Race
    Non-Hispanic white 622 (78) 1712 (65) 983 (63) 840 (70) 616 (80) 138 (84) ,.001
    African American 178 (22) 938 (35) 566 (37) 368 (30) 155 (20) 27 (16)
  No. of pack-years  
      smoked (n = 7104)†

33.7 6 17.8 37.9 6 20.7 45.1 6 24.8 53.1 6 28.2 54.2 6 26.1 54.4 6 24.8 ,.001

  Current smoker 337 (42) 1504 (57) 955 (62) 568 (47) 202 (26) 25 (15) ,.001
  Education high school  
      or less

187 (23) 924 (35) 670 (43) 501 (41) 297 (39) 55 (33) ,.001

Functional parameters
  GOLD stage (n = 7098) … … … … … x2 = 3966‡ ,.001
  Nonsmoker control 14 (2) 17 (1) 5 (0) 1 (0) 0 (0) 0 (0)
  PRISM 102 (13) 415 (16) 225 (15) 81 (7) 9 (1) 0 (0)
    0 618 (77) 1682 (63) 628 (41) 219 (18) 12 (2) 0 (0)
    1 28 (4) 168 (6) 175 (11) 147 (12) 53 (7) 2 (1)
    2 34 (4) 291 (11) 353 (23) 430 (36) 248 (32) 22 (13)
    3 3 (0) 50 (2) 127 (8) 259 (21) 279 (36) 62 (38)
    4 0 (0) 6 (0) 21 (1) 68 (6) 166 (22) 78 (47)
  FEV1% pred (n = 7098)† 93.3 6 14.4 88.8 6 17.8 79.5 6 20.9 66.3 6 23.5 47.8 6 20.8 33.3 6 16.4 ,.001
  FEV1/FVC ratio  
      (n = 7098)†

0.79 6 0.06 0.76 6 0.08 0.69 6 0.11 0.59 6 0.14 0.45 6 0.13 0.35 6 0.10 ,.001

  6-minute walk distance  
      (m) (n = 7070)†

470.5 6 96.9 449.7 6 113.8 417.9 6 116.0 390.4 6 117.8 350.7 6 122.1 311.4 6 117.8 ,.001

  SGRQ† 15.6 6 17.5 19.0 6 19.5 25.9 6 22.1 32.8 6 22.9 41.9 6 20.1 49.6 6 17.1 ,.001
  MMRC dyspnea score  
      (n = 7131)†

0.76 6 1.15 0.89 6 1.26 1.21 6 1.39 1.66 6 1.45 2.35 6 1.30 2.86 6 1.11 ,.001

  LAA-950 (%)† 1.97 6 2.38 2.20 6 2.71 3.25 6 4.23 8.01 6 7.47 20.96 6 10.35 38.39 6 8.93 ,.001
Comorbidities
  Chronic bronchitis 77 (10) 380 (14) 331 (21) 295 (24) 199 (26) 43 (26) ,.001
  Severe exacerbations  
      last year

30 (4) 157 (6) 155 (10) 201 (17) 159 (21) 50 (30) ,0.001

  Coronary artery disease 31 (4) 132 (5) 114 (7) 120 (10) 64 (8) 17 (10) ,0.001
  Diabetes 110 (14) 369 (14) 197 (13) 144 (12) 60 (8) 14 (8) ,0.001
  Congestive heart failure 6 (1) 49 (2) 61 (4) 53 (4) 30 (4) 4 (2) ,0.001

Note.—Unless otherwise specified, data are the number of participants, with percentage in parentheses. Percentages were calculated as the 
number of participants in table cell divided by the number of participants classified in that grade of emphysema (ie, values in top row). 
COPDGene = Genetic Epidemiology of COPD, FEV1% pred = forced expiratory volume in 1 second percent predicted for age and sex, 
FVC = forced vital capacity, GOLD = Global Initiative for Obstructive Lung Disease, LAA-950 = percentage of lung voxels with CT at-
tenuation less than -950 HU, MMRC = modified Medical Research Council, PRISM = Preserved Ratio Impaired Spirometry, SGRQ = St 
George’s Respiratory Questionnaire.
* P value for differences across emphysema grades, calculated with x2 test for categoric variables and with F test from analysis of variance for 
continuous variables.
† Data are means 6 standard deviation.
‡ Chi-squared test statistic comparing emphysema classification scores with GOLD stage.
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Figure 4:  (a) Graph shows relationship between 
visual parenchymal emphysema pattern and survival 
in Genetic Epidemiology of COPD (COPDGene) test 
cohort. Kaplan-Meier curves show lower survival associ-
ated with higher grade of emphysema severity in 7143 
participants included in mortality analysis. (b) Graph 
shows relationship between deep learning parenchymal 
emphysema pattern and survival in COPDGene test 
cohort. Kaplan-Meier curves show lower survival associ-
ated with higher grade of emphysema severity in 7143 
participants included in mortality analysis. Deep learning 
separates confluent and advanced destructive emphy-
sema better than does human scoring in terms of mortality 
discrimination.

stratified by visual or deep learning em-
physema score. Table 3 shows results of 
Cox multivariable analysis by using deep 
learning emphysema classifications. The 
base model, adjusted for race, sex, age, 
weight, height, smoking pack-years, cur-
rent smoking status, and education level 
shows that worsening of the emphysema 
grades classified by deep learning were as-
sociated with a higher mortality rate. Es-
timated hazard ratios were 1.5 (95% CI: 
1.0, 2.2), 1.7 (95% CI: 1.1, 2.5), 2.9 (95% 
CI: 2.0, 4.3), 5.3 (95% CI: 3.6, 7.7), or 
9.7 (95% CI: 6.3, 14.8) for trace, mild, 
moderate, confluent, or advanced destruc-
tive emphysema, respectively. Deep learn-
ing emphysema grade remained a predictor 
of mortality after adjustment for LAA-950, 
with estimated hazard ratios of 1.5 (95% 
CI: 1.0, 2.2), 1.6 (95% CI: 1.1, 2.4), 2.4 
(95% CI: 1.6, 3.5), 2.7 (95% CI: 1.8, 4.2), 
and 2.9 (95% CI: 1.7, 4.9) for trace, mild, 
moderate, confluent, or advanced destruc-
tive emphysema, respectively. See Table E5 
(online) for results of Cox multivariable 
analysis using visual emphysema scores in 
COPDGene. Table E6 (online) compares 
cause of death and emphysema severity 
scores in COPDGene.

Testing in the ECLIPSE Cohort
Figure 5 shows Kaplan-Meier plots of 
survival in the external testing cohort 
from the ECLIPSE study. There were 
155 deaths during the 3-year follow-up 
period (see Fig E1 [online] for plot of 
COPDGene data with comparable axes). 
Overall, more severe emphysema classi-
fied by using the deep learning algorithm 
was associated with greater mortality risk 
(log-rank P , .001), although there was 
no distinction in risk considering only 
the confluent and advanced destructive 
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criteria and used an outcomes-based approach 
to test it in separate cohorts (Genetic Epide-
miology of COPD [COPDGene] and Evalua-
tion of COPD Longitudinally to Identify Pre-
dictive Surrogate End-points [ECLIPSE]). We 
show that emphysema classification using this 
method was associated with impaired pulmo-
nary function tests, 6-minute walk distance, and 
St George’s Respiratory Questionnaire in both 
cohorts (P , .001 for each). When compared 
with visual classification of emphysema pattern 
by using the Fleischner criteria in the COPD-
Gene cohort, this automated method improved 
the fit of linear mixed models in the prediction 
of these clinical parameters (P , .001). Com-
pared with participants without emphysema, 
mortality was greater in participants classified 
by the deep learning algorithm as having em-
physema (adjusted hazard ratios were 1.5, 1.6, 
2.9, 5.3, and 9.7, respectively, for trace, mild, 
moderate, confluent, and advanced destructive 
emphysema; P , .01).

Quantitative CT assessment based on lung 
densitometry has been extensively validated as 
an objective index of emphysema extent (22,23). 
Other and more complex quantitative assess-
ments have shown promise in characterizing 
emphysema patterns. Regional analysis by us-
ing local histograms have classified emphysema 

subtypes, which are associated with functional impairment 
and with genetic abnormality (24). Unsupervised learning 
methods have identified prototypical CT textural patterns 
that predict traditional radiologic subtypes of emphysema 
(25,26). However, these techniques are not widely available, 
and we are unaware of previous studies demonstrating that 
such algorithms can predict mortality. Visual assessment has 
remained necessary to fully characterize the morphologic pat-
terns present in CT images and is considered complementary 
to traditional quantitative metrics (3,27,28). Similarly, we 
believe that the deep learning system presented in this article 
may complement quantitative densitometric assessment of 

emphysema groups (log-rank P = .43). Table 4 shows mor-
tality, demographics, and functional parameters by deep 
learning emphysema score. As was seen in the COPDGene 
cohort, more severe grades of emphysema were associated 
with greater airflow obstruction, reduced 6-minute walk 
distance, and more severe dyspnea in the ECLIPSE cohort 
(P , .001).

Discussion
We developed a deep learning algorithm that classifies em-
physema pattern at CT according to the Fleischner Society 

Table 3: Cox Multivariable Models for Predicting Mortality in COPDGene Test Cohort (n = 7143)

Model 1: Base Model Model 2: Base Model + LAA-950

Parameter Referent Group Hazard Ratio 95% CI P Value Hazard Ratio 95% CI P Value
Trace Absent 1.5 1.0, 2.2 .044 1.5 1.0, 2.2 .039
Mild Absent 1.7 1.1, 2.5 .009 1.6 1.1, 2.4 .013
Moderate Absent 2.9 2.0, 4.3 ,.001 2.4 1.6, 3.5 ,.001
Confluent Absent 5.3 3.6, 7.7 ,.001 2.7 1.8, 4.2 ,.001
Advanced destructive Absent 9.7 6.3, 14.8 ,.001 2.9 1.7, 4.9 ,.001
LAA-950 … … … … 1.04 1.03, 1.05 ,.001

Note.— Models are adjusted for age, race, sex, weight, height, smoking pack-years, current smoking status at enrollment, and education 
level. Models were fit by using deep learning emphysema classification scores. CI = confidence interval, COPDGene = Genetic Epidemiol-
ogy of COPD, LAA-950 = percentage of lung voxels with CT attenuation less than -950 HU.

Figure 5:  Graph shows relationship between deep learning parenchymal emphysema pattern 
and survival in Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points cohort 
(n = 1962). Follow-up period was 1060 days. Kaplan-Meier curves show lower survival associ-
ated with higher grade of emphysema severity.
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interpretation is that detection of trace emphysema and dis-
crimination of confluent and advanced destructive severity 
grades are difficult visual tasks. This resulted in more varia-
tion in visual scores at these levels in both the training and 
testing cohorts. A strength of deep learning is that convolu-
tional neural networks learn essential features associated with 
desired outputs and can tolerate label noise (31). The training 
process tends to regress toward the mean of features associated 
with output categories despite random variations in training 
data. We speculate that this characteristic of deep learning 
enables the algorithm to make predictions more consistently 
than a human observer. After an algorithm is trained and its 
parameters locked, it will produce the same output when 
presented with a given input image on different occasions. 
The same cannot be said for human observers. It is also likely 
that the deep learning algorithm detects features that are not 
appreciated visually but which form part of the underlying 
CT phenotype. This probably explains the identification of a 
large study sample of functionally impaired smokers without 
visual emphysema but classified as having trace emphysema 
by the deep learning algorithm. If further follow-up studies 
can confirm that these individuals have preclinical COPD, 
then they may represent an important target population for 
early intervention to prevent progression.

The observation that deep learning emphysema scores im-
prove the ability to predict diminished function and mortality 

emphysema severity. Other structured scoring systems have 
been used for visual classification of emphysema patterns 
(4,29), but to our knowledge, only the Fleischner system has 
been validated against mortality (5).

Other researchers have demonstrated impressive performance 
leveraging deep learning for analysis of chest CT. Walsh and col-
leagues (30) developed an algorithm that can classify fibrotic 
lung disease at CT with human-level performance. González 
and colleagues (18) developed a convolutional neural network 
capable of distinguishing participants with COPD and predict-
ing risk of adverse events. To manage memory constraints of 
current consumer-grade graphics processing units, both efforts 
used montages of four images sampled from volumetric CT. The 
use of a combined convolutional neural network and long short-
term memory architecture in our present study enables process-
ing of 25 full-resolution axial images from each participant dur-
ing training and at inference.

Our algorithm achieved moderate agreement with visual 
emphysema scores in the COPDGene test cohort. However, 
the predictions of the algorithm were more strongly associ-
ated with clinical parameters, including mortality, than were 
visual emphysema scores. This is an interesting observation, 
especially considering that the algorithm was specifically 
trained to predict visual scores. Calibration testing showed 
evidence that deep learning predictions diverged from visual 
scores, particularly at the extremes of the grading scale. One 

Table 4: Mortality, Demographics, and Functional Parameters in the ECLIPSE Cohort (n = 1962) Stratified by Deep Learning  
Emphysema Score

Emphysema Grade: Deep Learning Scoring

Parameter Absent Trace
Mild  
Centrilobular

Moderate  
Centrilobular Confluent

Advanced  
Destructive P Value*

No. of participants 48 (2) 334 (17) 425 (22) 521 (27) 482 (25) 152 (8) …
No. of deaths 1 (2) 6 (2) 16 (4) 53 (10) 57 (12) 22 (14) …
Demographic data
  Age (y)† 51.9 6 7.8 55.5 6 9.4 61.0 6 8.4 63.5 6 7.2 64.1 6 6.4 63.2 6 6.4 ,.001
  Body mass index† (kg/m2) 27.7 6 5.7 27.2 6 4.5 27.1 6 4.9 26.0 6 5.2 25.7 6 4.8 22.7 6 4.0 ,.001
  No. of men 12 (25) 161 (48) 283 (67) 340 (65) 283 (59) 109 (72) ,.001
  No. of pack-years smoked† 11.4 6 18.0 19.8 6 20.4 40.0 6 28.4 47.9 6 28.0 51.6 6 27.6 49.2 6 22.4 ,.001
  Current smoker 9 (8) 98 (29) 168 (40) 164 (31) 92 (19) 23 (15) ,.001
Functional parameters†

  FEV1% pred 108.6 6 17.0 95.9 6 26.5 66.5 6 27.1 46.9 6 18.6 40.7 6 14.9 32.2 6 11.5 ,.001
  FEV1/FVC ratio 0.78 6 0.06 0.73 6 0.11 0.58 6 0.14 0.46 6 0.11 0.40 6 0.10 0.34 6 0.08 ,.001
  6-minute walk distance (m) 569 6 37 419 6 114 403 6 123 381 6 117 362 6 120 320 6 133 ,.001
  SGRQ 7.9 6 7.1 18.4 6 19.5 34.8 6 23.0 45.3 6 19.3 49.9 6 16.8 53.9 6 15.8 ,.001
  MMRC dyspnea score 0.23 6 0.52 0.42 6 0.81 1.09 6 1.06 1.60 6 1.03 1.76 6 1.06 2.11 6 1.08 ,.001
  LAA-950 (%) 3.0 6 2.6 4.0 6 4.5 7.1 6 6.4 13.6 6 8.7 23.9 6 9.8 38.6 6 8.8 ,.001

Note.—Unless otherwise specified, data are the number of participants, with percentage in parentheses. Percentages were calculated as the 
number of participants in table cell divided by the number of participants classified in that grade of emphysema (ie, values in top row). 
ECLIPSE = Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points, FEV1% pred = forced expiratory volume in 1 
second percent predicted for age and sex, FVC = forced vital capacity, LAA-950 = percentage of lung voxels with CT attenuation less than 
-950 HU, MMRC = modified Medical Research Council, SGRQ = St George’s Respiratory Questionnaire.
* P value for differences across emphysema grades, calculated with x2 test for categoric variables and with F test from analysis of variance for 
continuous variables.
† Data are means 6 standard deviation.
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suggest that the automatic method consistently captures differ-
ent information than does visual assessment. These findings re-
inforce the validity of the Fleischner scoring system, suggesting 
that the criteria describe complex and clinically important pat-
terns that can be learned by example, but the inherent subjectiv-
ity in visual assessment leads to variation that can be reduced by 
using automation.

Additional testing in the ECLIPSE cohort demonstrates the 
ability of our algorithm to generalize to data outside the COPD-
Gene study. Although visual scoring using the Fleischner criteria 
was not performed in the ECLIPSE study, we saw associations 
between deep learning emphysema classifications and clinical 
parameters similar to those seen in the COPDGene testing co-
hort. The ECLIPSE data are a much smaller study sample, with 
a higher proportion of participants with COPD and a shorter 
follow-up interval. These differences may explain the similar 
mortality risks in the two most severe emphysema grades classi-
fied by the deep learning algorithm.

Our study had some limitations. The CT protocol in 
COPDGene is well defined and scans are carefully curated. 
Because it is trained using only COPDGene data, our model 
could be influenced by the specific CT protocol and selec-
tion biases present in this cohort. Furthermore, while the 
Fleischner system has been validated in COPDGene, other 
research studies have not used this system, and the Fleischner 
system is not used widely in clinical practice. Furthermore, 
there is criticism of deep learning methods that relate to the 
fact that these neural network models are “black boxes” that 
lack interpretability. An advantage of anchoring an algorithm 
to an established scoring system, such as the Fleischner cri-
teria, is that classification outputs are clearly defined and can 
be intuitively understood by clinicians. Although deep learn-
ing makes it feasible to train algorithms for direct prediction 
of risk from input CT, such approaches are more difficult to 
interpret clinically, validate, and test on an ongoing basis.

In conclusion, we developed a deep learning algorithm that 
can perform automatic objective classification of emphysema 
pattern at CT according to Fleischner Society criteria. The sys-
tem provides an interpretable output that can help identify in-
dividuals with greater mortality risk and may be more sensitive 
than visual assessment for detection of trace levels of emphy-
sema. Future work will further evaluate the generalizability of 
this model in additional data sets.
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