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Abstract

The inappropriate deposition of extracellular matrix within the heart (termed cardiac fibrosis) is 

associated with nearly all types of heart disease, including ischemic, hypertensive, diabetic, and 

valvular. This alteration in the composition of the myocardium can physically limit cardiomyocyte 

contractility and relaxation, impede electrical conductivity, and hamper regional nutrient diffusion. 

Fibrosis can be grossly divided into 2 types, namely reparative (where collagen deposition replaces 

damaged myocardium) and reactive (where typically diffuse collagen deposition occurs without 

myocardial damage). Despite the widespread association of fibrosis with heart disease and general 

understanding of its negative impact on heart physiology, it is still not clear when collagen 

deposition becomes pathologic and translates into disease symptoms. In this review, we have 

summarized the current knowledge of cardiac fibrosis in human patients and experimental animal 

models, discussing the mechanisms that have been deduced from the latter in relation to the 

former. Because assessment of the extent of fibrosis is paramount both as a research tool to further 

understanding and as a clinical tool to assess patients, we have also summarized the current state 

of noninvasive/minimally invasive detection systems for cardiac fibrosis. Albeit not exhaustive, 

our aim is to provide an overview of the current understanding of cardiac fibrosis, both clinically 

and experimentally.

INTRODUCTION

The heart is a perpetually working muscle whose function is to pump oxygenated blood 

throughout the body in order to maintain the viability of all organs, including the heart itself. 

It is a complex organ that is made up of a variety of cells including cardiomyocytes, vascular 

smooth muscle cells, endothelial cells, macrophages, and others. Fibroblasts are among the 

most abundant cell types in the heart. While the exact percentage remains controversial, they 

have been reported to comprise as many as half of the cells in the heart in rodent species.1 

Although cardiac fibroblasts serve a variety of purposes, their main role is to generate and 

maintain a scaffold infrastructure that holds the heart together, transduces the shortening of 

individual cardiomyocytes into efficient muscle pump activity, and helps anchor in place 

other cardiac cells that regulate cardiomyocyte function.2,3 Given the close association 
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between the heart’s fibrous tissue infrastructure and cardiomyocytes, which are the 

contractile units of the heart, changes in the properties of the fibrous mesh can adversely 

affect both the heart’s pumping function and its filling properties. Not surprisingly, 

alterations in either the quality or quantity of the fibrous tissue infrastructure contribute 

substantially to the development and severity of heart failure.

REPARATIVE VS REACTIVE FIBROSIS

To provide the scaffold necessary to hold the heart together and coordinate its function as a 

pump, cardiac fibroblasts must ultimately produce a variety of provisional and structural 

proteins, the most important of which are the collagens, particularly collagen I (Col I) and 

collagen III (Col III). Collectively, these extracellular matrix (ECM) proteins define the 

fibrous meshwork of the heart. Abnormalities in the ECM can occur due to abnormal 

quantities of ECM proteins (both excesses and deficiencies), alterations in ECM quality (eg, 

changes in crosslinking), and changes in the proportion of the various individual components 

of the ECM (including both alterations in the proportion of noncollagen to collagen matrix 

components4 and in the relative amounts of Col I to Col III). Regulation of the amount and 

composition of the ECM is a dynamic process involving both the production and 

degradation of collagen molecules. Cardiac fibrosis, which is a cause or companion of many 

cardiovascular diseases, occurs when there is an imbalance between these processes so that 

the production of ECM proteins exceeds their degradation.

There are 2 types of fibrosis in the heart.5 Cardiac fibrosis that develops in response to a loss 

of cardiomyocytes is considered to be reparative fibrosis. This type of fibrosis is stimulated 

by myocyte necrosis and is an essential reparative response to injury and cell death. In the 

heart, perhaps the most prominent and relevant example of this is the generation of a 

replacement scar for a segment of myocardium that has undergone extensive cardiomyocyte 

death as a consequence of a myocardial infarction (MI). The timely formation of an 

adequate replacement scar in the infarct zone is a critical response and the failure for this to 

occur enhances the likelihood of post-MI myocardial rupture, a complication that is usually 

fatal. Replacement of devitalized bulging myocardium in the infarct zone by stiffer, less 

distensible fibrous tissue also limits post-MI dilatation. In controlling the increase in 

ventricular radius, deposition of a replacement scar helps to limit increases in wall stress in 

the chamber. As wall stress is an important stimulus for further maladaptive remodeling of 

the ventricle, expeditious formation of the replacement scar would also be expected to 

impact a patient’s subsequent clinical course.

In contrast to replacement fibrosis, reactive fibrosis is the term used for the diffuse 

deposition of collagen throughout the myocardium. It occurs in the absence of cell death and 

can be stimulated by prolonged periods of stress or by exposure to profibrotic mediators. 

Imposition of a pressure load on the heart, as occurs with aortic stenosis or systemic 

hypertension,6,7 increases wall stress in the left ventricle and has been shown to promote 

reactive fibrosis in the chamber. Activation of neurohormonal systems, both intracardiac and 

systemic, which give rise to increased levels of mediators that stimulate cardiac fibroblasts 

to produce ECM proteins (eg, angiotensin II (Ang II), aldosterone, catecholamines), also 

produces reactive fibrosis in the heart.8,9 Furthermore, diseases or conditions that trigger an 
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inflammatory response, either systemically or locally, can cause reactive fibrosis to develop. 

As will be discussed subsequently, these include obesity, diabetes, metabolic syndrome, 

infections of the heart, drugs, and radiation. The pattern of ECM deposition in reactive 

fibrosis, while more diffuse than with reparative fibrosis, can vary. Depending on the 

stimulus, reactive fibrosis can develop in a relatively homogeneous pattern throughout the 

myocardium (interstitial fibrosis), while in other situations it may be more prominent in the 

tissue surrounding intracardiac blood vessels (ie, perivascular fibrosis). In systemic 

hypertension, there is a gradient of fibrosis in the left ventricle from the endocardial to 

epicardial surface, reflecting the gradient in wall stress seen in the chamber as a result of the 

increased pressure load.

The distinction between reparative and reactive fibrosis is important as these processes have 

different triggers, mechanisms, and consequences. However, distinct separation between 

them in the complex environment of human heart disease is not straightforward. For 

instance, while it is widely recognized that reparative fibrosis is responsible for the 

generation of replacement scar in the setting of an MI, it probably also plays a role in the 

development of the diffuse intracardiac fibrosis caused by microischemia in patients with 

small vessel disease.10,11 The 2 forms of fibrosis also likely coexist in many patients. An 

example of this is in the post-MI heart, where in addition to the reparative fibrosis that 

develops to generate replacement scar, there is diffuse reactive fibrosis in segments of 

myocardium that are distant from the infarct zone.12

EFFECTS OF FIBROSIS ON THE HEART

Whereas reparative fibrosis serves an important role in maintaining the integrity of the heart 

after an MI, reactive fibrosis is clearly a less beneficial process. In the normal heart, 

cardiomyocytes are integrated into contractile units by a well-defined fibrous network. This 

fibrous mesh helps transduce the function of individual cells into an effective organ pump. 

Excess amounts of ECM can adversely affect contractile performance of the heart by 

disrupting normal electrical conduction pathways. The resulting conduction abnormalities 

seen on electrocardiograms (eg, bundle branch block patterns) alter the well-ordered 

coordination of mechanical activity that is needed for optimal cardiac function.13 Excessive 

fibrous tissue in the heart also affects the transduction of force from individual 

cardiomyocytes into forceful and well-coordinated pump function.14 The deposition of 

fibrous tissue around small nutrient blood vessels in the heart (ie, perivascular fibrosis) can 

further impair cardiac function by causing local areas of microischemia to develop. Cardiac 

fibrosis has been shown to play a major role in determining the level of myocardial stiffness 

in patients affected by heart failure with preserved ejection fraction (HFpEF).15,16 Zile et al 

found that in biopsy specimens of human left ventricular myocardial tissue taken from 

patients with HFpEF, there were increases in collagen volume fraction of ~5-fold compared 

to that in patients with hypertension alone, due mainly to increases in insoluble collagen. 

They further showed a significant positive correlation between the level of collagen-

dependent tissue stress and echocardiography-derived measures of diastolic dysfunction (late 

atrial diameter and estimated pulmonary artery wedge pressure).17 Excess amounts of 

collagen in the ECM can also impact diastolic function by impairing elastic recoil of the 

myocardium as the myocytes relax. Deposition of ECM throughout the heart can predispose 
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to arrhythmias, both through reentry and other mechanisms. While there is a recognized 

association between interstitial fibrosis, ventricular arrhythmias, and sudden cardiac death,
18-21 fibrosis in the wall of the atria has been described as playing a role in the development 

of atrial fibrillation.22-24

CAUSES OF FIBROSIS IN THE HUMAN HEART

The loss of cardiomyocytes stimulates the development of reparative fibrosis in the heart. 

Coronary artery disease that leads to the development of an MI is the prototypic initiator of 

reparative fibrosis but other conditions that result in cell death can cause this to occur. 

Disease in small intramyocardial coronary arteries that causes areas of microischemia can 

result in a more diffuse distribution of reparative fibrosis. Cardiac contusion resulting in 

myocardial necrosis can stimulate the development of a replacement scar in areas where 

cardiomyocytes have been lost. Infection of the heart by viruses and other pathogens and 

toxic effects of absorbed or ingested agents (eg, alcohol) can also lead to cardiomyocyte loss 

and development of replacement fibrosis.

Reactive fibrosis is seen in the heart as individuals age25,26 and it plays an important role in 

causing stiffening of the heart and development of HFpEF. This process is accentuated by 

conditions that increase pressure load on the heart. Thus, patients with systemic 

hypertension or aortic stenosis are prone to develop stiff left ventricles due to the deposition 

of interstitial fibrosis.6,7 Reactive fibrosis in noninfarcted zones of the heart is also a key 

component in post-MI cardiac remodeling, and it is stimulated by a host of factors including 

global increases in left ventricular wall stress as well as neurohormonal and other 

inflammatory influences.27 Diffuse cardiac fibrosis has been found in patients with diabetes, 

obesity, and metabolic syndrome.28-30

A variety of drugs that act as serotonergic receptor agonists including anorectics, 

antimigraine drugs, anti-parkinson drugs, and recreational drugs have been associated with 

myocardial and cardiac valvular fibrosis.31,32 Carcinoid tumors of the gut that secrete large 

amounts of serotonin into the systemic venous circulation33 and ingestion of foods with high 

serotonin content have been associated with fibrosis in the right side of the heart. Cardiac 

fibrosis has been shown to be stimulated by smoking and can develop as a result of passive 

second hand inhalation of cigarette smoke.34 It has also been reported in patients with heart 

disease due to genetic mutations as well as in athletes.20,35

Cardiac fibrosis can be seen in cancer patients treated with a variety of chemotherapeutic 

agents such as anthracyclines/anthraquinones, cyclophosphamide, trastuzumab, and other 

monoclonal antibody-based tyrosine kinase inhibitors and antimetabolites.36 It can also 

develop as a consequence of radiation therapy when there is exposure of the heart.

ANIMAL MODELS OF CARDIAC FIBROSIS AND MECHANISMS INVOLVED

Most, if not all, of the mechanisms of cardiac fibrosis have been elucidated through animal 

models and in vitro cell culture systems. A summary of some of the experimental animal 

models that have been used to represent the human condition are shown in Table I. Albeit 
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not exhaustive, some critical mechanistic details that have been garnered from these models 

are outlined below.

Transforming growth factor-β.

The pleiotropic transforming growth factor-β (TGF-β) family, consisting of TGF-β1, −β2, 

and −β3, possesses diverse functions within the body, and its stimulating effects on fibrosis 

(especially TGF-β1) are well known.60,61 In fact, TGF-β1 has been called the master 

regulator of fibrosis. TGF-βs are expressed by many cell types, but they are secreted as 

inactive, latent forms. These latent forms consist of the homodimeric TGF-β subunits, each 

noncovalently bound to its N-terminal prodomain (termed TGF-β latency-associated protein 

[LAP]), and with the latter linked to latent TGF-β binding protein (LTBP, existing as 4 

isoforms) by disulfide bonds (reviewed in62). The N-terminus of LTBP contains an ECM 

binding domain that anchors the inactive complex to the ECM. The homodimeric TGF-β 
cannot bind its receptor until it is released from this inactive complex. There are multiple 

mechanisms capable of activating latent TGF-β, including protease release (eg, matrix 

metalloproteinase (MMP)-2 and MMP-963), thrombospondin-1 binding,64 reactive oxygen 

species,65 pH extremes that denature LAP,66 integrin binding,67 and mechanical separation 

of LTBP and LAP on stiff matrices.68

Binding of TGF-β1 to its cell-surface, type II receptor (TβRII) causes recruitment and 

transphosphorylation of the type I receptor (ALK5 and/or ALK1 in some cell types69). In 

the canonical pathway, this leads to Smad phosphorylation and activation (eg., Smad2 and 

Smad3 are activated by ALK5, while Smad1, Smad5, and Smad8 are activated by ALK1). 

These activated Smads then bind to Smad4, and the complex translocates into the nucleus to 

modify transcription. Inhibitory Smads (Smad6 and Smad7) can be upregulated 

subsequently to feedback negatively on the signaling pathway. In the noncanonical 

pathways, TβRII can activate other signaling pathways, such as those involving mitogen-

activated protein kinases (MAPKs), phosphatidylinositol-3-kinase activation of AKT, and 

activation of RhoA leading to stabilization of F-actin. (See Derynck and Zhang70 for a more 

thorough review of TGF-β signaling.)

TGF-β has pleiotropic effects throughout the body. Within the heart, it is known to stimulate 

cardiac fibroblasts to exhibit a profibrotic phenotype. These changes include myofibroblast 

conversion (see below) with resultant increases in collagen secretion,71 decreases in collagen 

degradation,72,73 and increases in synthesis of other profibrotic mediators (eg, see next 

section below). Regarding cardiomyocytes, TGF-β is known to induce a hypertrophic 

response.74,75 The effects of TGF-β on endothelial cells are complex, inducing 

angiogenesis, angiostasis, or endothelial-to-mesenchymal transition (EndMT), depending on 

the conditions.76,77 The TGF-β family has been implicated to some extent in all animal 

models of heart disease involving fibrosis. This includes MI,78,79 pressure overload,80 Ang 

II-induced cardiomyopathy,81 and diabetic cardiomyopathy.82 With respect to MI, although 

TGF-β is considered to negatively affect cardiomyocyte physiology and promote fibrosis, it 

has been shown to be cardioprotective in ischemia/reperfusion injury.83,84 It is likely that 

such differences are due to low levels of TGF-β being necessary for proper tissue 

homeostasis, while high levels lead to cardiomyopathy and fibrosis, as has been postulated 
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previously by other investigators.60 In addition, signaling differences between cell types can 

affect outcome,85 and latent vs active TGF-β forms are frequently not distinguished, thus 

confounding interpretation. Interestingly, both p38α MAPK86 and Smad387 signaling have 

been implicated in myofibroblast conversion in fibrotic animal hearts, suggesting the 

involvement of both noncanonical and canonical TGF-β signaling.

Examples of other mediators of cardiac fibrosis.

Angiotensin II.—Acting mainly via its type I receptor (AT1R), Ang II is known to induce 

profibrotic responses from cardiac fibroblasts, including increased ECM synthesis.88-91 At 

least some, if not all of these effects are believed to occur indirectly via expression of TGF-

β181,92,93 and/or transient receptor potential cation channel subfamily C member 6 

(TRPC6), the latter of which activates calcineurin/nuclear factor of activated T-cells (NFAT) 

signaling.94

Endothelin-1.—Via endothelin receptor type A, endothelin-1 (ET-1) has been shown to 

increase the collagen production of cultured human cardiac fibroblasts.95 ET-1 has been 

implicated in the cardiac fibrosis observed with aging,96 streptozotocin-induced 

experimental diabetes,97 and Ang II infusion.98 ET-1 has also been shown to be mitogenic to 

cultured neonatal rat cardiac fibroblasts, a process that was dependent on the production of 

intracellular reactive oxygen species.99

Connective tissue growth factor.—Connective tissue growth factor (CTGF, also called 

CCN2) expression is associated with fibrosis in human heart failure patients100 and 

experimental animal models.101 CTGF expression can be induced by stimulation of cardiac 

fibroblasts and cardiomyocytes with TGF-β and its upregulation has been implicated in the 

profibrotic responses to TGF-β.102 In 2015, Accornero et al published a rather thorough 

investigation of the effects of CTGF on cardiac fibrosis using multiple mouse models and 

concluded that CTGF was of minimal importance.103 However, more recently, Ang II-

induced cardiac fibrosis was shown to be dependent on the autocrine production of CTGF 

from fibroblasts, but not myocytes,104 and intraperitoneal injection of an anti-CTGF 

monoclonal antibody was able to improve post-MI left ventricular remodeling, including 

remote-site interstitial fibrosis, in a mouse model.105 The reasons for these discrepancies are 

unknown, but certainly deserve more study.

Catecholamines.—Chronic adrenergic stimulation of the heart can lead to myocyte 

hypertrophy and cardiac fibrosis. Mouse and human cardiac fibroblasts are known to express 

β2-adrenergic receptors,106,107 which typically activate adenylate cyclase with the resulting 

cyclic AMP being inhibitory to profibrotic fibroblast activity.108 However, chronic β2-

adrenergic receptor stimulation leads to G protein-coupled receptor kinase 2 (GRK2)-β-

arrestin-dependent uncoupling of β-adrenergic signaling, which enhances the profibrotic 

phenotype. This β-arrestin-dependent process also appears to be active in fibrotic, diseased 

hearts.109,110

Growth on stiff matrices.—Growth on stiff substrates (eg, tissue culture plastic) is well 

known to activate fibroblasts. In addition to the activation of AT1R111 and TGF-β, the latter 
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necessitating the involvement of integrins,68 Rho-dependent formation of F-actin stress 

fibers on stiff matrices dissociates monomeric G-actin-myocardin-related transcription 

factor-A (MRTF-A) complexes, allowing MRTF-A to remain in the nucleus. Nuclear 

MRTF-A can then act in concert with serum response factor and/or TGF-β-activated Smads 

to upregulate the transcription of profibrotic markers, such as α-smooth muscle actin (α-

SMA) and collagen genes.112-114

Source of collagen-secreting cells.

The cell types that have been implicated as responsible for collagen secretion in the diseased 

heart are numerous, and include resident interstitial fibroblasts (and myofibroblasts), cells 

derived from EndMT (or epithelial-to-mesenchymal transition (EMT)), inflammatory cells 

(see below), glioma-associated oncogene (Gli)+ pericytes, and infiltrating fibrocytes 

(typically circulating CD34+, CD45+, Col I+ bone marrow progenitor cells, but see Pilling 

et al115 for more selective markers). Fibrocytes were shown to be involved in fibrosis of 

ischemia/reperfusion cardiomyopathy in mice,116 and ablation of pericytes ameliorated 

cardiac fibrosis induced by ascending aortic constriction in mice.117 EndMT has been 

implicated in pressure overload-induced (transverse aortic constriction [TAC]) cardiac 

fibrosis in mice, as assessed by Tie1Cre and FSP1-GFP cell lineage tracking.118 However, 

Tie1, which was previously thought to be endothelial-specific, was shown to be expressed 

also by subsets of hematopoietic cells,119,120 and FSP1, which was believed to be fibroblast-

specific, was subsequently shown to be expressed in hematopoietic, endothelial, and 

vascular smooth muscle cells.121 Indeed, a thorough analysis of COL1A1-expressing cells 

after aortic banding in mice, avoiding conclusions based on Tie1 and FSP1, did not find a 

contribution of EndMT to fibrosis.122 In addition, more recent reports in mice using in-depth 

lineage tracing have found that myofibroblasts in injured hearts and COL1A1-expressing 

fibroblasts in infarcted hearts are derived from transcription factor 21+ (Tcf21+) tissue-

resident fibroblasts123 and resident fibroblasts of epicardial origin,124 respectively. Although 

all lineage tracing experiments have limitations, these latter 2 studies used models that are 

considered to be among the best currently available. This strongly suggests that most, if not 

all, collagen-producing cells in diseased hearts arise from resident fibroblasts. However, in 

the latter report,124 fibrocytes were noted on the epicardial surface of the hearts near the 

ligation suture, indicating that other cell types could be involved in certain remodeling 

situations.

Inflammatory cell infiltration.

Inflammatory cells are known to be involved in cardiac fibrosis that is associated with MI. 

These cells can be resident tissue macrophages125 as well as infiltrating inflammatory cells, 

such as neutrophils, monocytes, and macrophages.126 This inflammation can be broadly 

divided into 2 phases: the initial proinflammatory phase involved in inflammatory cell 

recruitment and removal of dead tissue, and the reparative phase involved in tissue healing.
127 Disruption of either of these phases (by augmentation or inhibition) can be detrimental, 

leading to excessive fibrosis, chamber dilatation, or even infarct rupture. Inflammation has 

also been shown to be involved in cardiac fibrosis induced by other pathological states. For 

example, CXCR2-expressing monocytes, macrophages, and neutrophils were involved in the 

cardiac remodeling (including fibrosis) observed in Ang II-treated (1μg/kg/min) 
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hypertensive mice.128 Using lineage tracking, Ivey et al recently showed that resident 

fibroblast proliferation and inflammatory cell increases both peaked at one week, regardless 

of fibrotic insult (ie, TAC, isoproterenol injection, or coronary artery ligation), suggesting a 

connection between them.129 We have previously shown that inflammatory cytokines, such 

as tumor necrosis factor-α, can upregulate AT1R,130,131 making cultured rat cardiac 

fibroblasts more responsive to Ang II stimulation,89 so the potential for crosstalk between 

cell types exists. Overall, inflammatory cells are certainly involved in cardiac fibrosis that is 

associated with myocardial damage (ie, reparative fibrosis). Their influence on reactive 

fibrosis is still uncertain. However, immunoinflammatory dysfunction has been implicated in 

the increased reactive cardiac fibrosis and diastolic dysfunction associated with aging in 

mice.132

Activated fibroblasts and myofibroblasts.

Fibroblasts in the normal adult heart are considered quiescent, although as noted recently by 

Mouton et al, they are not truly quiescent, expressing genes necessary for ECM homeostasis.
133 Fibroblasts in diseased hearts become “activated” to various degrees, a term that has 

broad meaning. Experimental MI is one of the best understood models of cardiac fibrosis 

because it produces overt, well-defined collagen deposition. Using this model, both Fu et 

al134 and Mouton et al133 have drawn similar conclusions in that “activation” of cardiac 

fibroblasts involves proliferation/migration that precedes, and overlaps with, ECM 

production and maturation. However, the latter investigators noted that proinflammatory 

genes were upregulated at earlier time points (ie, <3 days), while the former group reported 

that infarct-resident cells at later time points (ie, 2—4 weeks) gained a unique phenotype, 

which the investigators termed “matrifibrocyte,” to help maintain scar integrity. These 

“matrifibrocytes” had lost α-SMA expression, while retaining elevated COL1A1 and 

COL3A1 expression. How fibroblasts “activate” in other models of cardiac fibrosis, 

especially those involving reactive fibrosis, is less clear, but ultimately it is the accumulation 

of ECM proteins that is critical.

Overall, myofibroblasts are considered to be strongly activated fibroblasts and the major 

collagen producers in many fibrotic tissues. Indeed, myofibroblasts have been found in many 

animal models of cardiac fibrosis, including coronary artery ligation,86,129,135 TAC,87 and 

isoproterenol injection.129 By definition, these cells have acquired the capacity to synthesize 

the contractile α-SMA. However, not all Col I-expressing cells are positive for α-SMA in 

fibrotic heart tissue, estimated at 89% 5 days after permanent coronary artery ligation,129 

61% after 7 days of isoproterenol,129 and 15% at both 7 and 28 days after TAC.122 There 

could be many reasons for this lack of overlap. For example, fibroblasts can convert to 

protomyofibroblasts, which have actin stress fibers, enhanced collagen expression, and extra 

domain A (EDA)-fibronectin expression, but they do not express α-SMA.136 Platelet-

derived growth factor is one factor that has been shown to initiate the conversion of 

fibroblasts to protomyofibroblasts137; active TGF-β is then necessary to convert 

protomyofibroblasts to myofibroblasts.68,136 In addition, as indicated with the 

“matrifibrocyte” experiments above, a myofibroblast could downregulate α-SMA expression 

while still maintaining elevated collagen secretion. Therefore, fibroblasts that have been 

activated to increase collagen synthesis do not necessarily need to be myofibroblasts, and a 
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mix of cell phenotypes could be responsible for collagen secretion in fibrotic regions of the 

heart, depending on the animal model or human disease state. A simplified summary of 

fibroblast activation, taking into consideration some of the mechanisms mentioned above, is 

shown in Fig 1.

MicroRNAs.

MicroRNAs (miRNAs) have also been implicated in affecting cardiac fibrosis. For example, 

miR-21 has been shown to promote TGF-β1-mediated fibroblast to myofibroblast transition 

in rat cardiac fibroblasts138 and potentially to regulate fibrosis at the MI zone by its 

expression in cardiac macrophages.139 miR-22 has been shown to be upregulated in the 

border zone of MI mice and to increase fibroblast functions via downregulating caveolin-3 

expression in cultured neonatal rat cardiac fibroblasts.140 miR-130a was shown to be 

upregulated in the hearts of Ang II-infused mice and its upregulation promoted profibrotic 

gene expression and myofibroblast transformation, possibly by targeting peroxisome 

proliferator-activated receptor-γ (PPARγ).141 miR-155 was shown to be involved in cultured 

fibroblast activation and Ang II-induced cardiac fibrosis in mice; the investigators concluded 

that miR-155-dependent downregulation of suppressor of cytokine signaling 1, which 

augmented TGF-β signaling, was responsible.142 Zhao et al demonstrated that paracrine 

transfer of miR-328 from cardiomyocytes to cardiac fibroblasts could activate the TGF-β 
pathway and increase fibrosis in mice.143 In addition, miR-133a downregulation was 

associated with fibrosis after TAC in mice, possibly increasing serum response factor, CTGF, 

and COL1A1 expression.43 It seems that any miRNA that can target critical factors during 

fibroblast activation has the potential to influence fibrotic outcomes.

Other considerations.

Fibroblast activation plays a major role in cardiac fibrosis, but other processes can certainly 

modulate outcomes. Lysyl oxidase (LOX)-mediated collagen crosslinking, a normal process 

to strengthen collagen fibrils and fibers, can lead to excessive stiffening of fibrotic tissue, 

impeding cardiac function.144,145 Tissue transglutaminase, another secreted enzyme that can 

crosslink collagen albeit differently than LOX, has been associated with diastolic 

dysfunction in the hearts of mice subjected to TAC. These effects were reportedly due to 

both enzymatic and non-enzymatic functions of tissue transglutaminase.146 Our group has 

previously shown that cardiac fibroblasts display a different expression pattern of 

endoplasmic reticulum-localized, single-stranded procollagen-modifying enzymes when 

they are ascorbate-starved vs when they are ascorbate-replete.147 Given that ascorbate may 

be limiting in ischemic and/or oxidative environments, this could have implications for their 

functioning in vivo, although the complexities of this system make study and predictions 

difficult.

Animal model limitations.

Although much information has been garnered from experimental models of cardiac fibrosis, 

there are still limitations to extrapolating the conclusions derived from these models to 

human patients. In addition to questions of species variations as well as physiological 

discrepancies due to heart size differences, the models themselves can have limitations. For 

example, the frequently used TAC model of pressure overload may be more similar to aortic 
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coarctation in adults than the more common aortic stenosis or hypertension that it is 

presumed to represent. Where experimental models are most limiting is arguably in 

reflecting human reactive fibrosis. Diffuse interstitial fibrosis could develop over many years 

in humans, remaining subclinical throughout most of that time. Such passage of time is 

difficult to mimic in animal models due to time and budget constraints as well as species 

longevity. It is imperative in this situation to gain a better understanding of how fibrosis 

progresses in human patients and how those changes correlate to symptoms.

Various methods have been used to assess myocardial fibrosis in humans. The gold standard 

is direct evaluation of myocardial tissue by endomyocardial biopsy and histopathologic 

assessment.148 This method is invasive, carries risks to patients, and has the additional 

drawback of potential sampling errors.149 The use of noninvasive and/or minimally invasive 

techniques for monitoring cardiac fibrosis in humans would be greatly beneficial both as a 

research tool to further understanding and as a clinical tool to assess patients. Although the 

technologies are still arguably in their infancy, the last sections of this review will deal with 

the current state of these critical detection systems, namely serum cardiovascular fibrosis 

markers and imaging.

CARDIOVASCULAR FIBROSIS MARKERS IN HUMANS

Biomarkers of cardiovascular fibrosis.

The most recent American Heart Association/American College of Cardiology/Heart Failure 

Society of America guidelines for the management of heart failure give a class IIb 

recommendation for measurement of biomarkers of myocardial fibrosis for additive risk 

stratification in patients with either acute decompensated or chronic heart failure.150 

Specifically, the document notes that biomarkers of myocardial fibrosis, including soluble 

suppression of tumorigenicity 2 (ST2) receptor, galectin-3 (Gal-3), and highly sensitive 

cardiac troponin (hsTn) are predictive of outcomes in heart failure patients, and are additive 

to the established natriuretic peptides in their prognostic value. The adoption of markers of 

fibrosis into the guidelines reflects the findings of a large body of translational and clinical 

studies, while also acknowledging that large-scale, prospective studies validating their 

clinical utility are still lacking. Below is a concise overview of these 3 clinically relevant 

serum markers and some preclinical markers of cardiac fibrosis.

Galectin-3.

Gal-3 is a β-galactoside-binding lectin and a matricellular protein with important roles in 

cell adhesion, inflammation, and tissue fibrosis.151 Gal-3 is expressed by fibroblasts and 

inflammatory cells, including activated macrophages, and is involved in myofibroblast 

activation via the TGF-β signaling pathway.152-154 It is also linked to collagen production, 

macrophage infiltration, and cardiac hypertrophy.153 Upregulation of Gal-3 has been 

demonstrated in animal models of myocardial,155 vascular,156 renal,157 and hepatic154 

fibrosis.

Gal-3 expression is low in normal myocardium in humans, but is upregulated in various 

pathologic conditions.158 In a rat model of hypertensive heart failure, Gal-3 expression was 
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increased at an early stage of hypertrophy, before clinical heart failure, specifically in the 

rats that eventually developed heart failure.153 In addition, infusion of Gal-3 into the 

pericardial space of normal rats induced fibrosis and heart failure,153 while inhibition of 

Gal-3 may protect against fibrosis, adverse cardiac remodeling, and the development of heart 

failure.155,159

Some analyses have suggested that circulating levels of Gal-3 may not correlate with human 

myocardial levels of Gal-3 and tissue fibrosis,160 while other clinical studies have suggested 

a link. In patients with giant coronary aneurysms due to Kawasaki disease, both circulating 

Gal-3 levels and myocardial expression of Gal-3 (in densely fibrotic areas of the 

myocardium and arterial media) are elevated.161 Regardless of its association with tissue 

fibrosis, higher circulating Gal-3 levels are associated with increased risk of death or 

readmission for heart failure in patients with either acute or chronic heart failure.162 Higher 

Gal-3 levels are also associated with incident heart failure risk and mortality among 

individuals with acute coronary syndrome,163 and among apparently healthy community-

dwelling individuals.164-166 The clinical uptake of Gal-3 testing is still low; however, Gal-3 

remains an important research tool for evaluating links between myocardial dysfunction and 

fibrosis and inflammation.

Soluble ST2.

ST2 is a member of the interleukin (IL)-1 receptor-like family of proteins. It is expressed as 

both a transmembrane form (ST2L) and a soluble receptor (sST2). Expression of both 

isoforms of ST2 is upregulated in cardiomyocytes and fibroblasts in response to mechanical 

stress. The ligand for ST2 is IL-33, which is also upregulated in response to mechanical 

stress. The IL-33/ST2L interaction triggers a cascade via NF-κB that protects against 

inflammation, myocardial fibrosis, and cardiac hypertrophy. However, sST2 acts as a decoy 

receptor; when sST2, which lacks transmembrane and intracellular components, binds to 

IL-33, it does not initiate the beneficial signaling cascade.167 Thus, high levels of sST2 are 

associated with increased tissue fibrosis and organ dysfunction.168

In animal models, blocking IL-33/ST2L interactions results in excess tissue fibrosis and 

myocardial hypertrophy after exposure to TAC-induced cardiac strain. In contrast, treatment 

with recombinant IL-33 reduced hypertrophy and fibrosis and improved survival after TAC 

in wild type but not ST2 null mice.167

In acute and chronic heart failure, and in individuals at risk for heart failure, increased sST2 

levels are associated with a worse prognosis.168 A recent meta-analysis with patient-level 

data showed that this prognostic ability is independent of natriuretic peptide and hsTn levels.
169 Unlike Gal-3, sST2 is gaining some traction in clinical use as several clinical cohorts 

have provided some degree of validation for its prognostic use, albeit primarily with 

retrospective analyses. Like Gal-3, the specific clinical response warranted by an elevated 

sST2 level remains to be elucidated and confirmed with prospective trials.

hsTn as an indirect indicator.

Although cardiac troponin is known primarily as a marker of myocyte injury and necrosis, 

myocyte necrosis ultimately leads to replacement fibrosis and several lines of evidence have 
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shown an association between cardiac troponin and myocardial fibrosis. Troponin is a 

regulatory protein within the contractile apparatus of striated muscles, which helps modulate 

calcium-mediated actin-myosin interactions. Two of the 3 subunits of the troponin complex, 

T and I, have cardiac isoforms that are distinct from the skeletal isoforms. Thus, 

measurement of either cTnT or cTnI is highly specific for cardiomyocyte injury.170

Cardiac troponin is released from cells in the setting of cardiomyocyte necrosis and cell 

membrane degradation, but low levels of release are also seen in the absence of cell necrosis. 

Although the precise mechanisms of these elevations in the absence of necrosis remain 

unclear, inflammatory factors leading to degradation and fragmentation of troponin 

combined with increased membrane permeability may be one explanation.171

With the evolution of hsTn assays that can now detect circulating cardiac troponin in the 

majority of healthy individuals, it has become clear that even within the “normal” range, 

higher hsTn is associated with incident heart failure and mortality.162,172 In a large 

multiethnic cohort of individuals initially free of cardiovascular disease, baseline levels of 

hsTnT were associated with longitudinal changes in left ventricular structure that were 

consistent with adverse remodeling. In addition, hsTn levels were associated with 

replacement myocardial fibrosis, as imaged by late gadolinium enhancement (LGE) on 

cardiac magnetic resonance imaging.173 The pattern of enhancement was not typical of an 

ischemic pattern. hsTn levels have also been associated with fibrosis in patients with severe 

aortic stenosis174 and with hypertrophic cardiomyopathy.175,176

Clinically, the use of hsTn is now entrenched in medicine for diagnosis of MI as well as 

prognosis in acute coronary syndromes and in heart failure.177 Its association with fibrosis in 

subclinical presentations of disease is a more recent discovery, and whether the identification 

of this association may lead to early targeted preventative therapies remains an area of 

interest.

Preclinical markers of collagen metabolism.

While not currently in clinical use, a large number of markers associated with collagen 

synthesis and degradation have been evaluated for an association with myocardial fibrosis.
178 HFpEF is characterized by increased interstitial deposition and crosslinking of Col I, 

with a small increase in the Col I/Col III ratio. Three classes of proteins reflecting the 

metabolism of collagen have received significant attention, in particular MMPs, tissue 

inhibitors of metalloproteinases (TIMPs), and procollagen terminal peptides/telopeptides 

(markers of collagen turnover). These markers have been associated with various 

cardiovascular disease risk factors,179-181 left ventricular structural changes (TIMP-1),182 

left ventricular remodeling after MI (type I collagen C-terminal telopeptide [CITP]),183 

hypertension-induced HFpEF and heart failure with reduced ejection fraction (HFrEF) 

(MMP-1:TIMP-1 ratio),184 and incident cardiovascular events and mortality (TIMP-1 and 

N-terminal peptide of procollagen type III).185

Despite these associations, it is unknown whether any of these markers will come to have 

significant clinical impact, but studies are beginning to evaluate this possibility. Recently, the 

CITP:MMP-1 ratio, a marker inversely associated with the degree of myocardial collagen 
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crosslinking, was studied as an effect modifier for response to spironolactone. Among 381 

patients with stable NYHA class II or III HFpEF who were randomized to daily 

spironolactone or placebo, a low CITP: MMP-1 ratio (suggesting a high degree of 

myocardial collagen crosslinking) identified a population who were resistant to the 

beneficial effects of spironolactone on left ventricular diastolic dysfunction as assessed by 

E/e′.186 In contrast, subjects with a high CITP:MMP-1 ratio showed improvement in 

diastolic function with spironolactone treatment. This study suggests that biomarker 

phenotyping of patients will assist with the search for therapeutic options in HFpEF, and that 

the degree of fibrosis is a critical factor to consider.

Other markers associated with regulation of collagen turnover, including TGF-β1,60 growth 

differentiation factor-15, osteopontin,187 and others,178 have been associated with 

myocardial fibrosis in animal models and preliminary studies, but they lack clear and 

consistent clinical applications.

DETECTION OF MYOCARDIAL FIBROSIS IN HUMAN PATIENTS BY 

IMAGING

Echocardiography.

Echocardiography is perhaps the oldest noninvasive imaging technique for assessment of 

myocardial fibrosis. The altered acoustic impedance by fibrosis can be quantified by 

backscatter techniques188 and has been validated by direct biopsy in patients with aortic 

stenosis and dilated cardiomyopathy.189,190 This method is reliable and widely available, but 

limited by image quality, and hence is currently typically not used. More recently, strain 

imaging by speckle tracking has been used in a variety of diseases in which left ventricular 

functional abnormalities may be present. Strain provides a local measure of left ventricular 

function, which may be adversely affected by fibrosis. However, because strain imaging is 

only functional, it does not provide a direct assessment of the tissue. In patients with 

hypertrophic cardiomyopathy, it has been demonstrated that a reduction in strain is 

associated with an increase in fibrosis as determined by quantification of delayed 

gadolinium enhancement with magnetic resonance imaging (MRI), but this has not been 

directly validated against biopsy.191

Positron emission tomography.

Utilizing positron emission tomography with 15O-labeled water and carbon monoxide 

(C15O) allows quantification of perfusion and can indirectly assess fibrosis through a 

perfusable tissue index. This index assesses the amount of myocardium perfused by water, 

with fibrotic myocardium exchanging water less rapidly. This method has been compared to 

patients with known dilated cardiomyopathy and presumed fibrosis, but has not been 

validated by direct biopsy. A reduction in perfusable tissue index is considered 

representative of a higher degree of fibrosis.192,193

Cardiac MRI.

For defining cardiac anatomy, cardiac MRI (also abbreviated as CMR) provides high levels 

of accuracy and has been shown to have significant utility in noninvasive characterization of 
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myocardial tissue and etiologies for heart failure.194 LGE is one of the most widely utilized 

modalities for assessment of focal myocardial scar and fibrosis. LGE imaging is able to 

depict differences in signal intensity in T1-weighted images obtained approximately 10 

minutes after the administration of a gadolinium-based contrast agent. In fibrotic tissue, T1 

recovery times are shortened due to higher concentrations of gadolinium in the extracellular 

space while in normal myocardium gadolinium washes out more quickly. As a result of this 

difference, an inversion time can be chosen so that normal myocardium appears dark and 

fibrotic myocardial tissue appears bright on inversion recovery images.195 This technique 

has been well validated and correlated to the severity and extent of myocardial fibrosis.196

There is a great deal of clinical experience with LGE and it is widely available on clinical 

cardiac MRI systems. However, this technique has several important limitations. LGE only 

provides a relative signal that measures fibrosis compared to other regions of myocardium. 

Hence, it is most useful when there are regions of myocardium that are known or expected to 

be normal and importantly, it is less useful in detecting myocardial fibrosis that is diffuse (ie, 

reactive fibrosis). Moreover, there is a lack of correlation with collagen volume assessed by 

biopsy samples in diffuse fibrosis.194 LGE is also not specific for fibrosis as increased signal 

can be seen in regions with edematous or inflamed tissue.197 Finally, LGE is largely a 

qualitative process with evaluation performed by visual assessment of images obtained 

(although tools do exist for quantitative characterization of LGE). This results in inter- and 

intraobserver variability and challenges in comparing results to follow-up examinations or 

between individual patients.198

Quantitative evaluation of myocardial fibrosis can be assessed by MRI with T1 mapping 

techniques. Various sequences have been developed to directly measure the longitudinal 

relaxation time, which measures how quickly proton spins within myocardial tissue re-

equilibrate due to interactions with the surrounding tissue after being excited with a 

radiofrequency pulse. Areas of fibrosis cause T1 shortening compared to that of normal 

myocardium and the results can be displayed using parametric pixel illustration maps of 

relaxation times (Fig 2).199,200 This method can acquire a set of interpretable images with a 

single breath hold acquisition; it is reproducible and with reportedly high levels of 

intraobserver agreement.201 T1 mapping has been validated by comparisons with biopsies in 

patients with cardiomyopathy, valvular disease (aortic stenosis, aortic regurgitation, and 

mitral regurgitation), and myocarditis. Postcontrast enhanced T1 mapping in combination 

with native (noncontrast) T1 mapping and the hematocrit level allows calculation of the 

extracellular volume (ECV) fraction. As elevated quantities of ECV are associated with 

increased fibrosis and collagen deposition, this is helpful in further quantifying the degree of 

fibrosis.202 Measurements of ECV have been validated with histologic analyses of biopsy 

specimens for several different diseases.203

T1 mapping in specific disease states.

T1 mapping has been shown to have prognostic utility in a number of diseases. In patients 

with dilated cardiomyopathy, native T1 values and ECV have been shown to be predictive of 

composite all-cause mortality and heart failure events.205 Elevated native T1 mapping values 

have also been shown to be an independent predictor of adverse outcomes in patients with 
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moderate or severe aortic stenosis.206 Surveillance with T1 mapping in adult cancer patients 

3 years after treatment with anthracycline-based chemotherapies showed elevated 

proportions of ECV when adjusted for other known risk factors. The longterm implications 

of elevations in ECV on left ventricular function in this patient population are not yet 

known.207 The relationship between cardiovascular risk and fibrosis in men and women has 

also been investigated using T1 mapping. There is evidence that a greater degree of fibrosis 

is associated with higher cardiovascular disease risk scores in men. However, this finding 

was not seen in women, and the exact role that T1 mapping may play in risk assessment is 

still unclear.208

CONCLUSIONS AND PERSPECTIVES

We have reviewed the current understanding of cardiac fibrosis in human disease, 

experimental models of cardiac fibrosis, and the mechanisms involved, as well as the current 

techniques available to assess cardiac fibrosis in patients. Many gaps in knowledge still 

remain, with the greatest deficiencies existing in the jump from animal models to human 

patients and the development of techniques to adequately assess fibrotic regions without 

biopsy. Myocardial fibrosis is almost universally seen in all forms of heart disease and the 

degree of cardiac dysfunction is generally proportional to the degree of ECM deposition.209 

However, in later stages of heart disease and/or when collagen deposition becomes 

symptomatic, the resulting fibrosis may no longer be reversible.210,211 With continued 

understanding, the hope one day is to be able to intervene and halt or slow aberrant ECM 

deposition before symptoms appear and this point of no return is reached.
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Abbreviations:

Ang II angiotensin II

AT1R angiotensin II type 1 receptor

CITP type I collagen C-terminal telopeptide

CMR cardiac MRI

Col I collagen I

Col III collagen III

COL1A1 collagen type I alpha 1 chain

COL3A1 collagen type III alpha 1 chain

CTGF connective tissue growth factor
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ECM extracellular matrix

ECV extracellular volume

EDA extra domain A

EMT epithelial-to-mesenchymal transition

EndMT endothelial-to-mesenchymal transition

ET-1 endothelin-1

Gal-3 galectin-3

HFpEF heart failure with preserved ejection fraction

HFrEF heart failure with reduced ejection fraction

hsTn highly sensitive cardiac troponin

IL interleukin

LAP TGF-β latency associated protein

LGE late gadolinium enhancement

LOX lysyl oxidase

MAPK mitogen-activated protein kinase

MI myocardial infarction

miRNA microRNA

MMP matrix metalloproteinase

MRI magnetic resonance imaging

MRTF-A myocardin-related transcription factor-A

ST2 suppression of tumorigenicity 2

ST2L transmembrane ST2

sST2 soluble ST2

TAC transverse aortic constriction

Tcf21 transcription factor 21

TGF-β transforming growth factor-β

TIMP tissue inhibitor of metalloproteinases

α-SMA α-smooth muscle actin
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Fig 1. 
Simplified pictorial representation of cardiac fibroblast activation. Actin stress fibers are 

depicted in the protomyofibroblast as thin lines and contractile α-smooth muscle actin-

containing fibers are depicted in the myofibroblast as thick lines (with thick gray arrows 

denoting contractile tension). Fibroblast activation in the heart involves a complex mix of 

pathways, but the most important result is the increased deposition of ECM. EDA-Fn, extra 

domain A fibronectin; ??, questionable contribution, limited contribution, or contribution 

only in certain contexts.
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Fig 2. 
Example cardiac magnetic resonance images in common cardiac conditions showing late 

gadolinium enhancement, native (precontrast) and postcontrast T1 mapping, and calculated 

extracellular volume (ECV) fractions. Red arrows identify areas of subendocardial delayed 

enhancement. White arrows identify midwall delayed enhancement. Reproduced, with 

permission, from Everett et al.204 (For interpretation of the references to color in this figure 

legend, the reader is referred to the Web version of this article.)
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