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Glycan biosynthesis relies on nucleotide sugars (NSs), abun-
dant metabolites that serve as monosaccharide donors for gly-
cosyltransferases. In vivo, signal-dependent fluctuations in NS
levels are required to maintain normal cell physiology and are
dysregulated in disease. However, how mammalian cells regu-
late NS levels and pathway flux remains largely uncharacterized.
To address this knowledge gap, here we examined UDP-galac-
tose 4�-epimerase (GALE), which interconverts two pairs of
essential NSs. Using immunoblotting, flow cytometry, and
LC-MS– based glycolipid and glycan profiling, we found that
CRISPR/Cas9-mediated GALE deletion in human cells triggers
major imbalances in NSs and dramatic changes in glycolipids
and glycoproteins, including a subset of integrins and the cell-
surface death receptor FS-7-associated surface antigen. In par-
ticular, we observed substantial decreases in total sialic acid,
galactose, and GalNAc levels in glycans. These changes also
directly impacted cell signaling, as GALE�/� cells exhibited
FS-7-associated surface antigen ligand-induced apoptosis. Our
results reveal a role of GALE-mediated NS regulation in death
receptor signaling and may have implications for the molecular
etiology of illnesses characterized by NS imbalances, including
galactosemia and metabolic syndrome.

Glycosylation, the enzymatic attachment of carbohydrates to
proteins, lipids, and other biomolecules, is an abundant modi-
fication conserved across all clades of life (1). In mammals, gly-
cosylation influences nearly every cell biological process,
including protein quality control and secretion, adhesion and
migration, and host–pathogen interactions (2–4). Consistent
with this central role in mammalian physiology, aberrant gly-
cosylation contributes to the pathology of myriad human dis-
eases, such as developmental defects, diabetes, obesity and

metabolic syndrome, cancer, neurodegeneration, and athero-
sclerosis (5–13).

Virtually all glycoconjugates are assembled from nucleotide-
sugars (NSs),3 metabolites that donate “activated” monosaccha-
rides to glycosyltransferases (2). In recent years, several groups
observed that specific stimuli or signaling events, such as feed-
ing or ischemic stress, trigger increased NS biosynthesis in
mammalian cells, likely facilitating protein secretion and sup-
porting the remodeling of cell-surface glycans (14, 15). Many
glycosyltransferases are sensitive to NS concentrations, so
changes in NS levels affect not only bulk levels of glycosylation
but also specific glycosyltransferase substrate choices (16 –21).
These observations highlight the critical role of NS regulation
in shaping downstream glycoconjugate biosynthesis and func-
tion. However, although the biochemistry of NS biosynthetic
enzymes is well-understood, little is known about how cells
regulate flux through NS metabolic pathways in response to
signals or disease states. Furthermore, the impact of NS fluctu-
ations on key glycosylation pathways and downstream cellular
phenotypes is poorly understood, representing a major knowl-
edge gap in cell biology.

As a first step toward understanding the mechanisms and
functions of human NS regulation, we focused on UDP-galac-
tose 4�-epimerase (GALE) as a model enzyme. Mammalian
GALE interconverts two pairs of substrates: the hexose NSs
UDP-Glc/UDP-Gal and the corresponding N-acetylhexo-
samine NSs UDP-GlcNAc and UDP-GalNAc (Fig. 1A) (22–24).
Through these reversible epimerizations, human GALE bal-
ances the pools of four NSs essential for the biosynthesis of
thousands of glycoproteins and glycolipids (2, 23, 24). Interest-
ingly, however, GALE is not absolutely required for the biosyn-
thesis of any of its four substrates, each of which could hypo-
thetically be derived from independent salvage or de novo
metabolic routes in nutrient-replete cells (2, 22). Because it acts
only by interconverting existing NSs, GALE is an excellent
model enzyme to study the role of dynamically balancing NS
pools in cell physiology. Furthermore, GALE is significant to
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human health because it operates in the liver and hypothalamic
neurons of healthy mammals to regulate Glc metabolism and
satiety after feeding (14, 25, 26) and because partial loss-of-
function GALE mutations cause a subtype of the congenital
disease galactosemia and a rare form of thrombocytopenia
(27–29).

To characterize the role of GALE in cell physiology, we used
CRISPR/Cas9 methods to create GALE�/� human cell systems.
Our results reveal that GALE is required to maintain NS levels
and to biosynthesize a wide range of glycoproteins and glyco-
lipids, even under nutrient-replete conditions. In particular, we
show that GALE is essential for N-glycosylation of several cell-
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surface proteins, including a subset of integrin cell adhesion
proteins and the apoptotic death receptor Fas. Moreover,
GALE deletion results in Fas hypoglycosylation and hypersen-
sitivity to Fas ligand (FasL)–induced cell death, highlighting a
previously unknown function of NS metabolism in apoptotic
pathways. Our results reveal a requirement for human GALE in
supporting glycoconjugate biosynthesis and cell-surface signal-
ing and establish loss-of-function culture systems as a powerful
tool for dissecting the role of NS regulation in human cell
biology.

Results

Human GALE is required to balance NS levels

GALE is the final enzyme in the Leloir pathway, a highly
conserved metabolic route for the assimilation of Gal (Fig. 1A,
bottom) (30). To determine the role of GALE in NS metabolism
and glycoconjugate biosynthesis, we used CRISPR/Cas9 meth-
ods to construct multiple, single-cell-derived GALE�/� clones
from human cell lines and confirmed successful ablation of
GALE protein (Fig. 1B). Based on prior studies of the Leloir
pathway in human patients and experimental model systems
(31, 32), we hypothesized that GALE�/� cells might display NS
imbalances under standard culture conditions and/or in the
presence of supplementary Gal. In particular, Gal consumption
is closely tied to adverse symptoms in galactosemic patients and
laboratory models (33, 34). Therefore, we sought to determine
the impact of Gal on viability and NS metabolism in our cell
models. Gal supplementation did not impair cell viability in
control or GALE�/� cells (Fig. 1C). However, both GALE�/�

HeLa and 293T cells accumulated high levels of UDP-Gal in the
presence of supplementary Gal, whereas control cells showed
only a modest increase (Fig. 1D, left panels). We concluded that
GALE is required to maintain normal NS levels in nutrient-
replete human cells in the absence or presence of supplemen-
tary Gal.

Interestingly, GALE�/� cells also exhibited reduced basal
levels of UDP-GalNAc, which was partially rescued by Gal
addition in HeLa (but not 293T) cells (Fig. 1D, right panels).
This effect of Gal was unexpected because there is no known
human biosynthetic route to produce UDP-GalNAc from
Gal. Therefore, we examined the expression of the GalNAc
salvage pathway galactokinases GALK1 and GALK2 in HeLa
cells to determine whether Gal supplementation or GALE
genotype might indirectly impact GalNAc salvage. However,
neither GALE deletion nor Gal supplementation affected
GALK1 or 2 levels in HeLa cells (Fig. 1E). These results indi-

cate that Gal supplementation increases UDP-GalNAc levels
through an unknown but GALE- and Gal-dependent mech-
anism in HeLa cells.

GALE is required for glycoprotein and glycolipid biosynthesis

Given the major NS imbalances observed in GALE�/� cells
(Fig. 1D), we hypothesized that they might display defects in the
biosynthesis of glycoproteins and glycolipids containing Gal or
GalNAc, such as mucin-type O-glycoproteins and gangliosides
(35–37). Furthermore, a reduction in Gal/GalNAc moieties
is predicted to decrease terminal glycan structures such as
sialic acids, which are typically added to Gal or GalNAc res-
idues of mature glycans (38). Flow cytometry assays with
jacalin (a lectin that binds the Gal�1–3GalNAc Thomsen–
Friedenreich antigen core of mucin-type glycoproteins (39)),
wheat germ agglutinin (which binds terminal GlcNAc (40)
and, with lower affinity, sialic acid (41)), and Sambucus nigra
lectin (SNA, which binds sialic acids (42)) indicated that
GALE�/� cells indeed have reduced levels of each species
compared with control cells (Fig. 2A). Consistent with these
observations, monosaccharide composition analysis
revealed a substantial decrease in total sialic acid, Gal, and
GalNAc levels in glycans isolated from GALE�/� cells com-
pared with controls (Fig. 2B).

We next profiled global glycolipids and protein N- and
O-linked glycans via LC-MS. GALE�/� and control cells bore
similar levels of many lipids and glycolipid precursors, such as
phosphatidylinositol, ceramide, and cardiolipin (Figs. S1–S4).
However, the levels of Gal/GalNAc-containing glycolipids,
such as sulfatides and several gangliosides, were greatly reduced
or undetectable in GALE�/� cells compared with controls (Fig.
2C and Figs. S2 and S4). These results demonstrate the impor-
tance of GALE in maintaining the glycolipidome.

In parallel, we analyzed N- and O-linked glycans from cell-
surface glycoproteins. Consistent with our lectin staining
results, we observed striking deficiencies in both mucin-type
O-glycoproteins and Gal/GalNAc-containing N-linked glycan
structures in GALE�/� cells (Figs. 3 and 4 and Figs. S5–S8).
Gal-responsive defects in glycoprotein synthesis have been
observed in galactosemia subtypes, caused by mutations in
other Leloir pathway enzymes (43), but relatively little is known
about how loss of GALE impacts glycan synthesis in the pres-
ence of Gal. To test the importance of GALE in this context, we
analyzed the impact of Gal supplementation on the N- and
O-linked glycan profiles of GALE�/� cells. We found that cells
treated with Gal, but not those treated with mannitol (a non-

Figure 1. Human GALE is required for NS metabolism. A, human GALE epimerizes two pairs of NSs, UDP-Gal/UDP-Glc and UDP-GalNAc/UDP-GlcNAc.
The major routes of UDP-Gal and UDP-GalNAc biosynthesis from monosaccharide salvage are outlined. UDP-Glc and UDP-GlcNAc can be biosynthesized
from glucose. AGX1, UDP-GalNAc pyrophosphorylase; GALK, galactokinase; GALT, galactose-1-phosphate uridylyltransferase; HBP, hexosamine biosyn-
thetic pathway; UGBP, UDP-Glc biosynthetic pathway. B, GALE was deleted using CRISPR/Cas9 methods and one of three GALE-targeting sgRNAs
(denoted 1–3) in 293T (left panel) and HeLa (right panel) cells. Single-cell derived clones (denoted A or B) were lysed and analyzed by Western blotting.
C, control and GALE�/� HeLa clones were treated with 250 or 500 �M Gal or mannitol for 72 h. Cell viability was measured by MTS assay and normalized
to mannitol controls. n � 3 biological replicates. Error bars represent standard deviation. No statistically significant difference exists between control
and GALE�/� cells (two-way ANOVA). D, control and GALE�/� HeLa cells (top panels) or 293T cells (bottom panels) were treated with 250 �M Gal or
mannitol (osmolarity control) for 72 h, and UDP-Gal (left panels) and UDP-GalNAc (right panels) were quantified by high-performance anion exchange
chromatography (HPAEC). n � 2 biological replicates for all measurements except HeLa UDP-GalNAc. Error bars represent standard deviation. Zero
values indicate that the NS level falls below the detection limit of the HPAEC assays (0.15 �mol of UDP-Gal/mg protein and 3 �mol of UDP-GalNAc/mg
protein at the cell lysate concentrations employed, as judged by serial dilution of standards and manual evaluation of the resulting peak). E, control or
GALE�/� HeLa clones were treated with 250 �M Gal or mannitol for 72 h, and lysates were analyzed by Western blotting. GALK1 is the primary kinase for
dietary Gal, whereas GALK2 is the primary kinase for GalNAc.
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metabolizable osmolyte control), closely resembled the glycans
of control cells (Fig. 5 and Figs. S7–S10). We concluded that
human GALE is required to support the biosynthesis of a broad
range of glycoproteins and glycolipids.

GALE is required for cell-surface receptor glycosylation and
function

We reasoned that altered glycosylation in GALE�/� cells
might impact signaling through misglycosylated receptors.
Consistent with this hypothesis, we observed substantial
molecular weight shifts in several specific glycoproteins in
GALE�/� cells compared with controls, including death recep-
tors and integrins, major mediators of cell–matrix adhesion
(Fig. 6). Gal supplementation suppressed these molecular
weight changes in GALE�/� cells, indicating that they are
caused by hypoglycosylation in the absence of GALE rather
than an off-target or indirect effect of CRISPR manipulation
(Fig. 6, A and B). Interestingly, although most integrins are gly-
coproteins (44, 45), only a subset was impacted by GALE dele-
tion, suggesting specific roles of GALE activity in the biosyn-
thesis of particular glycoconjugates (Fig. 6B). Our LC-MS
studies indicated a relatively modest role of GALE in global
N-glycan biosynthesis compared with O-glycans (Figs. 3 and 4).
However, several key surface receptors, including Fas and
integrin �1, exhibited aberrant N-glycoforms, as treatment with
the glycosidase PNGase F, which cleaves N-glycans (46),
restored these proteins to their predicted molecular weights in
both control and GALE�/� cells (Fig. 6C).

To determine whether GALE is required to support glyco-
protein function, we focused on the death receptor Fas as a
model. Fas trimerization and activation by FasL trigger the for-

mation of the death-inducing signaling complex, which recruits
and activates upstream caspases, ultimately leading to down-
stream caspase-3 activation and apoptotic death (47, 48). No
role of GALE or NS metabolism has been reported previously
for death receptor signaling, but prior work has demonstrated
that changes in Fas sialylation affect death-inducing signaling
complex formation and the apoptotic cascade (49). Therefore,
we hypothesized that Fas hypoglycosylation might affect cell
death signaling in GALE�/� cells.

Neither GALE deletion nor Gal treatment altered the cell-
surface expression of Fas (Fig. 7A). Interestingly, however,
GALE�/� cells were significantly sensitized to FasL-induced
killing (Fig. 7B). This result reflects a specific effect on FasL-
induced death rather than general susceptibility to apoptosis
because no analogous effect was observed when cells were
treated with the broad-spectrum serine/threonine kinase
inhibitor staurosporine (Fig. 7C). Next, to confirm the mecha-
nism of sensitization to FasL in GALE�/� cells, we examined
the apoptotic executioner caspase-3 (47). Compared with con-
trols, GALE�/� cells exhibited increased caspase-3 cleavage
(indicative of its activation) at early time points after FasL expo-
sure (Fig. 7D). Finally, we examined the GALE-dependent gly-
can determinants that influence Fas signaling. Prior work by
Bellis and colleagues demonstrated that up-regulation of the
ST6Gal-I sialyltransferase in tumor cells potentiates Fas sia-
lylation, reducing its responsiveness to ligand activation
(49). Based on these reports and our monosaccharide com-
position and glycoprotein profiling data (Figs. 2, A and B, and
3-5), we hypothesized that the hypersensitivity of GALE�/�

cells to FasL was caused by Fas hyposialylation. Consistent

Figure 2. Human GALE is required for maintenance of the glycoproteome and glycolipidome. A, control and GALE�/� 293T cells (left panels) and
HeLa cells (right panels) were stained with fluorescently (FITC) tagged jacalin, SNA, or WGA lectins, and 10,000 cells from each sample were analyzed by
flow cytometry. The predominant glycan ligand of each lectin is indicated between the corresponding panels. B, monosaccharide composition analysis
of N- and O-linked glycans was performed on control and GALE�/� HeLa cells. C, summary of glycolipid species identified in control and GALE�/� 293T
cells (left panel) and HeLa cells (right panel) via LC-MS. Red asterisks indicate glycolipid species dramatically reduced in GALE�/� cells. See also Figs. S1–S4.
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with this idea, Gal supplementation reversed the sensitivity
to FasL in GALE�/� cells (Fig. 7E), indicating a GALE-de-
pendent causal link between receptor glycosylation (Figs. 3,
4, and 6, A and C) and activity (Fig. 7). Taken together, these
results demonstrate that GALE is required to support the
biosynthesis of sialylated N-glycans on Fas and other surface

proteins and that loss of GALE function dysregulates glyco-
protein receptor signaling.

Discussion

Regulation of human NS levels has profound implications for
normal physiology and disease, but it remains poorly under-

Figure 3. Human GALE is required for global O-linked glycoprotein biosynthesis. A, summary of O-glycan species identified in control and GALE�/� HeLa
cells via LC-MS. m/z values are given for each species. See also Fig. S5. B, summary of O-glycan species identified in control and GALE�/� 293T cells via LC-MS.
m/z values are given for each species. MONO, monoisotopic mass; perMe, permethylated; redEnd, reducing end; xLi or xNa, lithium or sodium adduct with x ions.
See also Fig. S6.
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stood. Our results shed new light on the role of GALE, a model
NS metabolic enzyme, in the biosynthesis and function of a
wide range of glycoconjugates.

GALE governs human NS levels

GALE�/� cells have significantly reduced levels of UDP-Gal-
NAc and UDP-Gal compared with controls (Fig. 1D). Based on
these observations, we propose that GALE is required for bio-
synthesis and balancing of these key NSs despite the presence of
free Gal and Gal/GalNAc-containing glycoproteins in serum,

which could hypothetically be salvaged in a GALE-independent
manner (50, 51). Our results support some conclusions of prior
studies performed in other systems. For example, consistent
with the idea that GALE is required to balance NSs, and in
agreement with data from galactosemic patients and earlier
experimental models (32, 34, 52), we observed a large increase
in UDP-Gal in GALE�/� cells in the presence of supplementary
Gal (Fig. 1D). On the other hand, our results challenge some
conclusions of prior work. For instance, in GALE-deficient
human patients and some model systems, Gal is acutely toxic,

Figure 4. Human GALE is required for global N-linked glycoprotein biosynthesis. A, summary of N-glycan species identified in control and GALE�/� 293T
cells via LC-MS. m/z values are given for each species. See also Fig. S7. B, summary of N-glycan species identified in control and GALE�/� HeLa cells via LC-MS.
m/z values are given for each species. freeEnd, nonreducing end; Fuc, fucose; Man, mannose; MONO, monoisotopic mass; perMe, permethylated; redEnd,
reducing end; xLi or xNa, lithium or sodium adduct with x ions; Xyl, xylose. See also Fig. S8.

Figure 5. Gal supplementation restores protein glycosylation in GALE�/� cells. A, summary of O-glycan (left panel) and N-glycan (right panel) species
identified by LC-MS in GALE�/� HeLa cells treated with 250 �M Gal or mannitol (osmolarity control) for 72 h. m/z values are given for each species. See also Figs.
S8 and S9. B, summary of O-glycan (left panel) and N-glycan (right panel) species identified by LC-MS in GALE�/� 293T cells treated with 250 �M Gal or mannitol
(osmolarity control) for 72 h. m/z values are given for each species. freeEnd, nonreducing end; Fuc, fucose; Man, mannose; MONO, monoisotopic mass; perMe,
permethylated; redEnd, reducing end; xLi or xNa, indicates lithium or sodium adduct with x ions; Xyl, xylose. See also Figs. S7 and S10.
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leading to severe symptoms or impairing cell health and prolif-
eration (34, 53, 54). It has been proposed that the accumulation
of intermediate metabolites or toxic byproducts might account
for these harmful effects (55). However, we found no evidence
of Gal toxicity in our GALE�/� cell systems (Fig. 1C). It may be
that the accumulation of intermediate metabolites affects only
specific cell or tissue types, perhaps because of other differences
in Gal metabolism. Testing this hypothesis will be an important
focus of future studies.

GALE is required to support glycoconjugate biosynthesis

Although aberrant glycosylation has been reported in other
subtypes of galactosemia (43, 56–63), little is known about how
loss of GALE affects glycan synthesis in human cells in the pres-
ence or absence of supplementary Gal. Here we show that
GALE deletion dramatically affects glycoconjugate biosynthe-
sis with greatly reduced Gal, GalNAc, and sialic acid content in
cell-surface glycans of GALE�/� cells (Fig. 2, A and B), impact-
ing both N- and O-linked glycoproteins (Fig. 3). Moreover, our

glycolipid profiling suggests that GALE is essential for biosyn-
thesisofsuchspeciesasmyelingangliosides,includinglactosylcer-
amide and sulfatides (Fig. 2C). GM3 ganglioside is a regulator of
leptin signaling and has been linked to development of insulin
resistance (64, 65), sulfatides are major components of myelin
and are believed to play crucial roles in neuronal differentiation
(66, 67), and deficiencies in lactosylceramide biosynthesis cause
locomotor deficits and abnormal brain development in mice
(68). Therefore, GALE-dependent glycolipid biosynthesis may
be required for normal nutrient responses and neuronal phys-
iology in vivo. Our data may also provide a functional explana-
tion for the previously reported postprandial transcriptional
up-regulation of GALE in multiple tissue types (14, 25), sug-
gesting that GALE could be critical for balancing NS pools and
supporting glycoprotein and glycolipid biosynthesis after
feeding.

Our results may also have unexpected implications for our
understanding of human cell metabolism. For example, we
observed that Gal supplementation largely restored biosynthe-

Figure 6. GALE is required for glycosylation of specific cell-surface receptors. A, control and GALE�/� 293T cells (left panel) and HeLa cells (right panel) were
treated with 250 �M Gal or mannitol for 72 h, and lysates were analyzed by Western blotting. Each pair of lanes (�Gal) represents a distinct clone. B, control or
GALE�/� HeLa clones were treated with 250 �M Gal or mannitol for 72 h, and lysates were analyzed by Western blotting. Integrins �5 and �1 (left panel) but not
�5 (right panel) are hypoglycosylated in GALE�/� cells. C, lysates from control and GALE�/� HeLa cells were treated with PNGase F and analyzed by Western
blotting, indicating GALE-dependent N-glycosylation of Fas (left panel) and integrin �1 (right panel). Within treatment groups (�PNGase F), each lane represents
a distinct clone. Ctrl, control.
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Figure 7. GALE is required for Fas N-glycosylation and function. A, control or GALE�/� HeLa cell clones were treated with 250 �M Gal or mannitol for 72 h,
stained with an anti-Fas antibody, and analyzed by flow cytometry. B, control and GALE�/� HeLa cell clones were treated with the indicated concentrations of
FasL for 24 h, and cell viability was measured by MTS assay. n � 3 biological replicates. Error bars represent mean � S.E. p � 0.05 for all FasL concentrations of
6 ng/ml or more, comparing control with GALE�/� (two-way ANOVA, post hoc one-way ANOVA). C, control or GALE�/� HeLa cell clones were treated with the
indicated concentrations of staurosporine for 24 h, and cell viability was measured by MTS assay. n � 3 biological replicates. Error bars represent S.E. D, control
and GALE�/� HeLa cell clones were treated with 2.5 ng/ml FasL for the indicated times, and lysates were analyzed by Western blotting. E, control or GALE�/�

HeLa clones were treated with 250 �M mannitol or Gal for 72 h and then with the indicated concentrations of FasL for an additional 24 h. Cell viability was
measured by MTS assay. n � 3 biological replicates. Error bars represent S.E. p � 0.05 comparing mannitol-treated versus Gal-treated GALE�/� cells at 5.5 ng/ml
and 9.1 ng/ml FasL (three-way ANOVA, post hoc Tukey’s honest significant difference test).
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sis of UDP-GalNAc– and GalNAc-bearing glycans in GALE�/�

cells (Figs. 1D and 5). These results were surprising because Gal
is thought not to enter the well-characterized pathway for
UDP-GalNAc biosynthesis (69, 70). We suggest two possible
explanations for these observations. First, Gal supplementation
may up-regulate the activity of salvage enzymes such as GALK1
and2,allowingcellstomoreefficientlyrecycleGalNAcmonosac-
charides from serum glycoproteins. Our results indicate that
expression of GALK1 and GALK2 is unaffected by Gal treat-
ment or GALE deletion (Fig. 1E), but future studies of GALK
enzymatic activity will be needed to further test this hypothesis.
Second, very high levels of Gal may result in its noncanonical
entry into the hexosamine biosynthetic pathway, which biosyn-
thesizes UDP-GlcNAc from Glc. In this scenario, sufficient
UDP-GalNAc may be produced to restore glycoprotein biosyn-
thesis. This hypothesis remains to be tested, but significant
substrate promiscuity has been documented previously in
mammalian hexosamine metabolism (71–73). Experiments
are ongoing to investigate these two mutually compatible
possibilities.

GALE loss triggers receptor hypoglycosylation and dysfunction

Our results demonstrate that GALE is required to support
cell-surface receptor signaling even in nutrient-replete human
cells, with significant effects on death receptor function (Fig. 7).
Aberrant glycosylation has long been known to affect apoptotic
receptor signaling. For example, oncogene activation up-regu-
lates sialyltransferase expression and glycoprotein sialylation in
colon adenocarcinomas, promoting cell migration and resis-
tance to galectin-mediated apoptosis (74 –76). Similarly, hyper-
sialylation of Fas by ST6Gal-I protects tumor cells from Fas-
mediated apoptosis (49). Given the dramatic loss of global
sialylation in GALE�/� cells (Figs. 2, A and B, 3, and 4), we
propose that Fas hyposialylation accounts for their hypersensi-
tivity to FasL-induced apoptosis (Fig. 7B). Consistent with this
notion, we observed GALE-dependent differences in FasL-me-
diated caspase-3 activation (Fig. 7D). Importantly, however,
these results are not attributable to a general predisposition to
apoptosis because no such hypersensitivity was observed in
response to staurosporine (Fig. 7C). The effect of Gal supple-
mentation on FasL response in GALE�/� cells is less pro-
nounced at high FasL doses (Fig. 7E). This observation may be
due to subtle variations in Fas N-glycosylation between Gal-
treated control and GALE�/� cells and/or glycan-independent
activation of Fas above a certain threshold concentration of
FasL.

Beyond Fas, we also observed aberrant glycosylation of a sub-
set of integrins in GALE�/� cells (Fig. 6, B and C). Glycosylation
is well-known to impact the function of several integrins, par-
ticularly �1 (75, 77–84), and a very recent study suggested that
GALE in particular may be necessary for integrin �1 function in
platelet homeostasis (29). Based on this work and our own
results, we speculate that GALE activity may be required in
some contexts for normal integrin-mediated attachment to the
extracellular matrix, cell adhesion and migration, or tissue
homeostasis. Experiments are underway to test this hypothesis.

Finally, our results may have implications for understanding
global protein N-glycosylation in both model systems and

galactosemic patients. Past studies of mammalian GALE have
largely focused on its role in O-glycan biosynthesis (35, 85–87).
Therefore, it is especially noteworthy that we discovered alter-
ations in the N-glycans of several cell-surface receptors (Fig.
6C). Altered N-glycans have been implicated in other subtypes
of galactosemia based on observations in both human patients
(43) and animal models (56). However, the role of mammalian
GALE in supporting N-glycan biosynthesis has received little
attention in any clinical or experimental context. We propose
that altered N-glycans may contribute to the pathology of
GALE-deficient galactosemia and that GALE may play a critical
role in healthy tissue under normal conditions that trigger gly-
cosylation changes, such as feeding or stress (14, 15).

Conclusions

NS metabolic enzymes have been extensively characterized
at the biochemical level. However, the mechanistic basis and
functional effects of dynamic changes in NS pools in cells and
organisms remain poorly understood. We deleted GALE, a key
node in NS metabolism, in human cell systems as a model for
NS dysregulation. Our data demonstrate that human GALE is
required for normal glycoconjugate biosynthesis and receptor
signaling even in nutrient-replete cells. Moreover, we antici-
pate that the dramatic absence of cell-surface Gal, GalNAc, and
sialic acid in GALE�/� cells, combined with the ability to
restore normal glycosylation with simple Gal supplementation,
will make GALE�/� cells an attractive model system for study-
ing glycan function in normal cell physiology, metabolic syn-
drome, thrombocytopenia, and galactosemia.

Experimental procedures

Cell culture

293T and HeLa cells were cultured in DMEM containing 10%
FBS, 100 g/ml streptomycin, and 100 units/ml penicillin in 5%
CO2 at 37 °C. For monosaccharide supplementation experi-
ments, cells were preconditioned with 250 �M mannitol or Gal
(Sigma-Aldrich) for 72 h, with replenishment of monosaccha-
ride every 24 h.

Generation of GALE�/� cell lines

GALE�/� HeLa and 293T cell lines were constructed essen-
tially as described previously (88). Briefly, cells at �50% conflu-
ency were stably transduced with a LentiCas9 virus obtained
from the Duke Functional Genomics Facility in the presence of
4 �g/ml Polybrene. After overnight incubation, the medium
was replaced, and cells were allowed to recover for 48 h before
selection with 3 �g/ml (HeLa) or 5 �g/ml (293T) blasticidin.
Cells were passaged until an uninfected control plate had no
live cells remaining. Following selection, cells were infected
with lentiviruses bearing one of three single guide RNA
(sgRNA) sequences targeting the GALE coding sequence or a
“safe harbor” AAVS1-targeting control sgRNA (89). After
sgRNA infection, cells were selected for stable sgRNA expres-
sion with 1.5 �g/ml (HeLa) or 0.5 �g/ml (293T) puromycin
with continued presence of blasticidin. Following drug selec-
tion, clonal lines were generated via limiting dilution and
assayed for GALE deletion via Western blotting. The GALE
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sgRNA sequences used were as follows: GALE-1, GAGAAGG-
TGCTGGTAACAGG; GALE-2, GGAGGCTGGCTACTTG-
CCTG; GALE-3, GCCAGGTGCCATGGCAGAGA.

Western blotting

Protein samples were quantified by BCA assay according to
the manufacturer’s protocol (Thermo Fisher). Samples with
equalproteinamountswereseparatedbySDS-PAGEusingstan-
dard methods (90) and electroblotted onto a PVDF membrane
(Thermo Fisher, 88518). After blocking in Tris-buffered saline
with 0.1% Tween (TBST) and 2.5% dry milk, the blots were
incubated overnight at 4 °C in primary antibody with 5% BSA in
TBST. The following day, the blots were washed three times in
TBST, incubated with an appropriate horseradish peroxidase–
conjugated secondary antibody (Southern Biotech, 1:5000) for
1 h at room temperature, washed three times in TBST, and
developed via ECL according to the manufacturer’s instruc-
tions (WesternBright ECL, Advansta). The following primary
antibodies were used: GALE (Abcam, ab 118033, 1:1000), tubu-
lin (Sigma-Aldrich, T6074, 1:10,000), Fas (Cell Signaling,
C18C12, 1:1000), caspase-3 (Cell Signaling, 8G10, 1:1000),
FAS-associated protein with death domain (Abclonal, A5819,
1:5000), integrin �5 (Cell Signaling, 4705, 1:1000), integrin �1
(Santa Cruz, sc-13590, 1:1000), integrin �5 (Cell Signaling,
D24A5, 1:1000), and GAPDH (Cell Signaling, 14C10, 1:5000).

Flow cytometry

For both lectin- and antibody-labeled flow cytometry, cells
were harvested in 135 mM KCl/15 mM sodium citrate with 10
min of gentle rocking and resuspended in PBS with 2% BSA at 1
million cells/ml. For lectin labeling, cells were rotated for 30
min at 4 °C with fluorescent lectin in PBS/BSA, washed three
times with PBS/BSA, and fixed with 2% paraformaldehyde for
20 min before analysis on a FACSCanto II cytometer (BD Bio-
sciences). The lectins used were fluorescein-SNA (Vector Lab-
oratories, FL-1301-2, 5 �g/106 cells), fluorescein-wheat germ
agglutinin (Vector Laboratories, FL-1201, 50 �g/106 cells), and
fluorescein-jacalin (Vector Laboratories, FL-1121, 50 �g/106

cells).
For antibody labeling, aliquots of cells were incubated with

primary antibody for 30 min at 4 °C and then washed three
times with PBS/BSA. Then the cells were washed twice with 2%
BSA/PBS and incubated with a secondary antibody for 30 min.
After the final incubation, the cells were fixed with 2% parafor-
maldehyde for 20 min before analysis on a FACSCanto II
cytometer (BD Biosciences). The antibodies used were Fas
(Biolegend, 3056020, 0.5 �g/106 cells) and goat anti-mouse
Alexa Fluor 488 (Thermo, A11001, 1 �g/106 cells).

Glycolipid profiling

Lipid extraction was performed using a modified Bligh-Dyer
method (91). Briefly, cell pellets were resuspended in 1.6 ml of
PBS and transferred into a 17-ml glass tube with a Teflon-lined
cap. Then 4 ml of methanol and 2 ml of chloroform were added
to create a single-phase Bligh-Dyer solution (chloroform:meth-
anol:PBS, 1:2:0.8). The mixture was vigorously vortexed for 2
min and then sonicated in a water bath at room temperature for
20 min. After centrifugation at 3000 � g for 10 min, superna-

tants were transferred to fresh glass tubes and acidified by add-
ing 100 �l of 37% HCl. After mixing, acidified solutions were
converted into two-phase Bligh-Dyer systems by adding 2 ml of
PBS and 2 ml of chloroform. After centrifugation at 3000 � g
for 10 min, the lower phase was collected and dried under nitro-
gen. Lipid extracts were stored at �20 °C until LC-MS analysis.
For lipidomic analysis, samples were dissolved in 200 �l of solu-
tion of chloroform:methanol (2:1), and 20 �l was injected for
normal-phase LC-MS analysis.

Normal-phase LC was performed on an Agilent 1200 Qua-
ternary LC system equipped with an Ascentis silica HPLC col-
umn (5 �m, 25 cm � 2.1 mm, Sigma-Aldrich). Mobile phase A
was chloroform:methanol:aqueous NH4OH (800:195:5 by vol-
ume), mobile phase B was chloroform:methanol:water:aqueous
NH4OH (600:340:50:5 by volume), and mobile phase C was
chloroform:methanol:water:aqueous NH4OH (450:450:95:5 by
volume). The elution was performed as follows. 100% mobile
phase A was held isocratically for 2 min and then linearly
increased to 100% mobile phase B over 14 min and held at 100%
B for 11 min. The gradient was then changed to 100% mobile
phase C over 3 min, held at 100% C for 3 min, and finally
returned to 100% A over 0.5 min and held at 100% A for 5 min.
The LC eluent (total flow rate of 300 �l/min) was introduced
into the electrospray ionization source of a high-resolution
TripleTOF 5600 mass spectrometer (Sciex). The instrument
settings for negative-ion electrospray ionization and MS/MS
analysis of lipid species were as follows: ion spray voltage �
�4500 V, curtain gas � 20 psi, ion source gas 1 � 20 psi, de-
clustering potential � �55 V, and focusing potential � �150
V. MS/MS analysis used nitrogen as the collision gas. Data anal-
ysis was performed �55 V; FP,using Analyst TF1.5 software
(Sciex).

Glycan profiling

Frozen cell pellets were resuspended in methanol:water
(4:1.5) and sheared using a 20-gauge needle-equipped syringe.
Delipidation was achieved by adding chloroform to a final ratio
of 2:4:1.5 chloroform:methanol:water. Samples were incubated
for 2 h, centrifuged, decanted, and incubated in the same chlo-
roform/methanol/water mixture overnight. The next day, sam-
ples were centrifuged, resuspended in 4:1 acetone:water, and
incubated on ice for 15 min. The samples were centrifuged, and
the supernatant was decanted and incubated with acetone:wa-
ter. Delipidated protein was dried under nitrogen and stored at
�20 °C until analysis.

For N- and O-glycan analysis, 2– 4 mg of dried protein pow-
der was used per sample. N- and O-glycans were released enzy-
matically or chemically, respectively, and isolated as described
previously (92). Following cleanup, glycans were permethylated
as described previously (93), dried under nitrogen, and stored at
�20 °C until analysis.

Permethylated glycans were resuspended and mixed with an
internal standard before analysis via reverse-phase LC-MS/MS
on a Thermo Scientific Velos Pro mass spectrometer as
described previously (92). Glycan structures were manually
interpreted based on in-house fragmentation rules, augmented
by GlycoWorkbench and GRITS Toolbox semiautomated soft-
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ware solutions (94, 95). All glycan structures are depicted using
standard symbol nomenclature for glycobiology (96).

Glycan monosaccharide analysis

CompletehydrolysisofisolatedN-andO-glycanstomonosac-
charides was performed using 2 M TFA prior to analysis by
HPAEC with pulsed amperometric detection (PAD). 100 �g of
dry glycan sample was dissolved in 50 �l of ultrapure water and
50 �l of 4 M TFA and mixed thoroughly. The samples were
hydrolyzed at 100 °C for 4 h. The hydrolyzed samples were
cooled to room temperature and then centrifuged at 2000 rpm
for 2 min. Acid was removed by complete evaporation under
dry nitrogen flush, followed by two rounds of coevaporation
with 100 �l of 50% isopropyl alcohol each time. Dry samples
were resuspended in 142 �l of ultrapure water, and 70 �g of
sample was injected for HPAEC-PAD analysis.

For neutral and amino sugar analysis, HPAEC-PAD profiling
was performed on a Dionex ICS-3000 system equipped with a
CarboPac PA1 column (4 � 250 mm), guard column (4 � 50
mm), and PAD using standard Quad waveform supplied by the
manufacturer. An isocratic mixture of 19 mM NaOH with 0.95
mM NaOAc was used at a flow rate of 1 ml/min for 20 min.
Neutral and amino sugars were identified and quantified by
comparison with an authentic standard mixture of L-fucose,
D-galactosamine, D-glucosamine, D-galactose, D-glucose, and
D-mannose using Thermo Scientific Chromeleon software
(version 6.8).

For sialic acid analysis, 50 �g of sample was hydrolyzed at
80 °C using 2 M acetic acid for 3 h. Released sialic acids were
isolated by spin filtration using a 3000-kDa molecular mass cut-
off centrifugal device (Nanosep 3K Omega, PALL Life Sciences,
OD003C34). The flow-through containing released sialic acid
was dried and derivatized using 1,2-diamino-4,5-methylene-
dioxybenzene (DMB) (Sigma-Aldrich, D4784-10MG) as
described previously (97). Fluorescent DMB-derivatized sialic
acids were analyzed by reverse-phase HPLC using a Thermo-
Dionex UltiMate 3000 system equipped with a fluorescence
detector. Samples were isocratically eluted with 9% acetonitrile
(9%) and 7% methanol in ultrapure water over 30 min using an
Acclaim 120-C18 column (4.6 � 250 mm, Dionex) at a flow rate
of 0.9 ml/min. The excitation and emission wavelengths were
set at 373 nm and 448 nm, respectively. DMB-derivatized sialic
acids were identified and quantified by comparing the elution
times and peak areas with known authentic standards of
N-acetylneuraminic acid and N-glycolylneuraminic acid using
Chromeleon software (version 6.8).

Cell viability assays

Cells were plated into 96-well plates at 5000 cells/well in
phenol red–free DMEM and allowed to recover for 24 h. FasL
(Adipogen, AG-40B-0130-C010) or staurosporine (LC Labs,
S-9300, 0.1– 0.2 �M) was added and incubated for the indicated
times. Then cell viability was assessed by adding soluble form-
azan (MTS assay, Promega) at a 1:1 dilution according to the
manufacturer’s protocol and incubating for 1 h at 37 °C, 5%
CO2 before measuring absorbance at 490 nm.

NS analysis

Cells were cultured to confluency in 10-cm culture dishes,
detached using 0.25% trypsin at 37 °C, and washed three times
with PBS at 4 °C. Cells were lysed in methanol on dry ice, vig-
orously vortexed, and centrifuged to pellet proteinaceous sol-
ids. Pellets were resuspended in 8 M urea, and total protein was
quantified by BCA assay. Methanol supernatants (containing
NSs) were SpeedVac-dried and resuspended in 80 mM Tris-HCl
(pH 7.4). Samples were separated on a Dionex CarboPac PA1
column (Thermo) using a Dionex ICS-5000	 SP HPAEC
instrument and photodiode array. 10 �l of each sample was
injected onto the column after pre-equilibration with 1 mM

NaOH (solvent A). Samples were eluted at a flow rate of 1
ml/min using solvent A and solvent B (1 mM NaOH and 1 M

NaOAc) as follows: 0 –100% B for 0 –28 min and 100% B for 2
min. Samples were quantified using absorbance at 260 nm and
compared with a series of authentic UDP-Gal or UDP-GalNAc
standards at known concentrations (Sigma-Aldrich). Peak
areas were integrated using Chromeleon software, and cellular
NS concentrations were calculated using standard curves and
total protein amounts.

Quantification and statistical analysis

No randomization was performed for these studies. Quanti-
tative experiments (e.g. MTS viability assays) were performed
with a minimum of three biological replicates originating from
independent cultures; for HPAEC metabolite analysis, a mini-
mum of two biological replicates from independent cultures
was employed. The number of biological replicates and statis-
tical tests used are given in the figure legends. All Western blots
are representative of at least two experiments from biologically
independent samples.
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