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Abstract

Physician stress, and resultant consequences such as burnout, have become increasingly 

recognized pervasive problems, particularly within the specialty of Emergency Medicine. Stress 

is difficult to measure objectively, and research predominantly relies on self-reported measures. 

The present study aims to characterize digital biomarkers of stress as detected by a wearable 

sensor among Emergency Medicine physicians. Physiologic data were continuously collected 

using a wearable sensor during clinical work in the emergency department, and participants 

were asked to self-identify episodes of stress. Machine learning algorithms were used to classify 

self-reported episodes of stress. Comparing baseline sensor data to data in the 20-minute period 

preceding self-reported stress episodes demonstrated the highest prediction accuracy for stress. 

With further study, detection of stress via wearable sensors could be used to facilitate evidence-

based stress research and just-in-time interventions for emergency physicians and other high-stress 

professionals.

1. Introduction

Emergency Medicine (EM) physicians care for high acuity patients in a variety of 

difficult working conditions and have demonstrated significantly higher levels of stress 

than other medical specialties (Bragard, Dupuis, and Fleet 2015). Multiple factors inherent 

to EM contribute to this including fluctuating work schedules, pressure to rapidly make 
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critical decisions, volume of cases, exposure to violence, death of patients, and academic 

responsibilities. A long-term consequence of physician stress, known as “burnout”, has 

increasingly become a recognized critical issue within the health care system. In 1981, 

Maslach and Jackson defined burnout as “a syndrome of emotional exhaustion and 

cynicism” (Maslach and Jackson 1981) which prompted three decades of research on 

the topic. In physicians, this phenomenon is associated with increased medical errors, 

depression, substance abuse, mental health issues, early retirement, and an alarming rate of 

suicide (Drummond 2015; Williams et al. 2007). The current estimate of burnout among 

United States physicians is estimated at a staggering 50% (Lall et al. 2019; Rothenberger 

2017).

Burnout is a multifactorial problem that is difficult to address due to its subjective 

nature. Individual variations in physician life circumstances, work environments, patient 

populations, and daily life choices, all influence day-to-day perceptions of stress and 

well-being. A study evaluating Emergency Medicine physicians and nursing staff found 

that burnout was associated with increased cognitive and emotional demands, and was 

coupled with decreases in freedom at work, social support, sense of coherence, and mental 

health (Ilic et al. 2017). Since these underlying stressors seem to be individualized and 

numerous, evidence-based recommendations for stress detection and intervention have been 

limited. A 2016 meta-analysis reviewed 52 studies that looked at structural changes to 

the work environment and individuals focused interventions. Structural level interventions 

included shortening shifts, shortening physician rotation times, and unspecified clinical 

work process modifications. In contrast, individual interventions included facilitated small 

group curricula, stress management, self-care training, communication skills training, and 

mindfulness exercises as a means to reduce physician burnout (West et al. 2016). While 

many of these studies saw a decrease in burnout as measure by a self-administered 

questionnaire (Maslach Burnout Inventory), we currently lack evidence-based guidelines 

to determine which interventions would most benefit an individual physician, and which 

could be effectively deployed in various physician work environment.

Wearable sensors have the potential to provide individualized, objective correlates of stress. 

These non-invasive devices can collect physiologic changes indicative of sympathetic 

nervous system (SNS) activity (such as heart rate, electrodermal activity (EDA), skin 

temperature, electromyography (EMG), and accelerometry) and correlate them with 

emotional state. Several published studies have explored the use and feasibility of wearable 

sensors when studying human emotion (Fletcher et al. 2011; Adams et al. 2014; Healey and 

Picard 2005; Hui and Sherratt 2018). Multiple investigators have specifically evaluated the 

utility of mobile sensors to detect stress in both controlled and natural environments (Sano et 

al. 2018; Garcia-Ceja, Osmani, and Mayora 2016). For example, Hui et al., used a controlled 

environment with audiovisual headsets to evoke specific emotional responses by providing 

controlled stimuli and found that EDA, heart rate, and skin temperature to be the most 

useful for detection of emotional response (Hui and Sherratt 2018). Multiple investigators 

have specifically evaluated the utility of mobile sensors to detect stress in both controlled 

and natural environments (Sano et al. 2018; Garcia-Ceja, Osmani, and Mayora 2016). Once 

optimized, sensor-based stress detection strategies can be used to direct interventions to 

reduce the negative impacts of stress and improve overall emotional health. For example, 
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recognition of stress via a wearable sensor could be used to trigger cognitive behavioral 

therapy (CBT)-style interventions via a mobile phone application, as has been proposed in 

other populations (Fletcher et al. 2011).

While strides have been made to use wearable sensors to identify stress in highly controlled 

environments, limited evidence exists for the application of these technologies to “real 

world” settings. Liu et al., used a wearable wrist-based sensor to study stress in patients with 

dementia by correlating staff logs of perceived patient stress/anxiety with wearable sensor 

data. The investigators found that participants had unique baseline biometric patterns, and 

that deviations from baseline correlated with observer-reported stress and anxiety (Liu et al. 

2018). While these objective measures of stress are promising, the highly controlled nature 

of such studies limit generalizability.

Interventions designed to combat stress in physicians have been shown to be beneficial 

in reducing negative consequences (Panagioti et al. 2017), but optimal targets for these 

interventions are unclear. While periods of objectively detected stress in Emergency 

Medicine physicians are an attractive target for such interventions, characteristics of the 

work environment create barriers to the application of stress detection data from more 

controlled environments. By the nature of their work environment, Emergency Medicine 

physicians are subject to rapid fluctuations in physical activity and a high baseline level 

of stress, both which may create challenges for detection paradigms. As an initial step, the 

present study seeks to determine if physiologic features obtained from a wearable sensor 

worn by EM physicians during clinical work can detect episodes of stress in this dynamic 

environment.

2. Methods

2.1. Study Design

This was a prospective observational study approved by the Institutional Review Board 

of the authors’ institution. Participants were board-certified Emergency Medicine attending 

(supervising) physicians in a large, urban tertiary care hospital emergency department (ED).

2.2. Hardware

The E4 (Empatica, Milan, Italy), a water-resistant research-grade device, was used for 

biometric data collection (Figure 1). The device continuously detects and records three 

dimensional accelerometry, EDA, skin temperature, and heart rate variability. Data was 

stored in the sensor’s on-board integrated memory until downloaded to a Health Insurance 

Portability and Accountability Act (HIPAA)-compliant cloud-based server.

2.3 Study Protocol

Enrolled participants were asked to wear the E4 on their non-dominant wrist during a total 

of nine clinical shifts worked in the ED (typically 8-10 hours in duration), over a six-month 

time period. The collection of data over a prolonged period was employed to mitigate any 

effect of seasonal changes in baseline stress levels in the work environment. Participants 
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were asked to use the device’s event marker button to annotate any perceived episodes of 

stress.

2.4. Biometric Data Collection

Data from the E4 was collected continuously during wear. Accelerometry (in units g) 

was recorded in three axes (x, y, and z axes) at a rate of 32 Hz. Skin temperature (in 

degrees Celsius) was sampled at a rate of 4 Hz. Electrodermal activity (in microSiemens) 

was sampled at a rate of 4 Hz. Heart rate (in beats per minute) was obtained via 

photoplethysmography sensors (PPG) at a sampling frequency of 64 Hz. Event annotations 

tagged by participants were recorded in a separate time-stamped data file. Empatica software 

products (Empatica Manager and Empatica Connect) were used for graphical and numerical 

data acquisition from the E4 device.

2.5. Non-Biometric Data Collection

Demographic data, including ratings of overall job satisfaction and perceived daily level of 

stress, were collected via a brief paper survey upon study enrollment. Given the subjective 

nature of emotional states and variation in scenarios that elicit diverse emotional states 

between individuals (Hui and Sherratt 2018), we used self-reporting as a mechanism 

to identify periods of stress. Participants were asked to keep a written log with short 

descriptions of stressful events that they tagged during their shifts. Upon completion of each 

recorded shift, participants were also asked to complete a brief questionnaire regarding use 

of the device and overall perceived stress throughout the shift.

2.6. Biometric Data Segmentation

2.6.1. Pre and Post-Stress Segments.—Using the accelerometer, EDA, and heart 

rate data generated during the data collection period, two 20-minute segments of the 

data were extracted for each stress event recorded. One 20-minute segment was taken 

immediately before the stress event annotation (pre-stress), and one 20-minute segment was 

taken immediately following the stress event annotation (post-stress). In total, 111 20-minute 

intervals were collected for the post-stress event dataset, and 108 20-minute intervals were 

collected for the pre-stress event dataset. Some pre and post-stress event segments were not 

collected for use during machine learning classification, since these segments overlapped 

with the beginning, end, or invalid (device removal) sections of the signal data.

2.6.2. Baseline Segment.—The baseline dataset was generated by extracting 20-

minute data segments from the accelerometer, EDA, and heart rate data during periods 

where no stress events were reported or suspected. The selection of the start points for these 

20-minute intervals was arbitrary, as long as the start points were over an hour before or 

after a stress event and did not overlap with the start, end, or invalid periods of the signal. 

Segments from sessions free of stress events were also utilized in the determination of 

baseline data. In total, 86 baseline intervals were collected.
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2.7. Feature Extraction

MATLAB (MathWorks, Natick, MA) was used to fit the instantaneous amplitudes of each 

participant’s biometric data during the 20-minute segments to a distribution and calculate 

each segment’s multiscale entropy (MSE) (Costa, Goldberger, and Peng 2005) to test if the 

MSE and distribution mean, variance, shape, scale, and D ([Shape2 + Scale2]0.5) parameters 

could be used to detect stress events. Specifically, the data for each 20-minute interval was 

centered around the mean of the data, and the Hilbert transform (S 1996) was applied to 

each of these adjusted 20-minute intervals to generate a centered analytic signal (Chintha 

et al. 2018). The magnitude of the analytic signal’s data points was taken to generate the 

amplitudes for each point along the signal. These amplitudes were distributed in a similar 

manner to that of a gamma distribution, hence this data was fitted to a gamma distribution 

by determining the distribution’s shape and scale parameters. These values were then used 

to calculate the distribution’s mean, variance, and D values. The MSE value was calculated 

using the untransformed data for each 20-minute interval.

2.8. Machine Learning Classification Determination

2.8.1. Classification Cases and Parameters.—Using the MATLAB Classification 

Learner application, three binary classification cases were tested to determine if any of the 

supported classification models could accurately classify the data for each case. The three 

cases were: pre-stress event vs post-stress event, baseline vs pre-stress event, and baseline vs 

post-stress event. For each case, there were five sensor signals analyzed: the accelerometer 

x-axis (ACC-X), y-axis (ACC-Y), and z-axis signals (ACC-Z), the electrodermal activity 

sensor signal (EDA), and the heart rate signal (HR). For each of these signals, there were 

six features used to represent them: the distribution mean, variance, shape, scale, and D 

parameters, and the MSE value. This resulted in a total of 30 features that could be used 

to train the 25 models supported by the Classification Learner application. These models 

fall into the following categories: decision trees, discriminant analysis, logistic regression, 

naïve Bayes classifiers, support vector machines, nearest neighbor classifiers, and ensemble 

classifiers.

2.8.2. Classifier Train/Test Method.—Due to the limited size of the dataset, it was 

not split into testing and training sets. Alternatively, 10-fold cross validation was applied to 

the entire dataset in order to prevent overfitting the data. This validation process split the 

randomized dataset into 10 folds, each containing 10% of the dataset. The classifiers were 

then trained on nine of the folds and tested on the last fold. This process was repeated until 

each fold was used to test the model, and the resulting classifier’s test error was the average 

of each of the 10 trained models.

2.8.3. Feature Selection.—The process of selecting features to use during classifier 

training utilized brute-force feature selection (Rudnicki, Wrzesień and Paja 2015). This 

method is characterized by adding and removing features one at a time until some of the 

models’ validation accuracies improve.
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2.9. Event Annotation Data Analysis

Thematic analysis was used to code and analyze descriptions of stressful events noted on 

participant logs. The coding structure was first developed based on deductive codes from the 

anticipated responses and then inductive codes from review of the annotations themselves. 

Once the coding scheme was developed, the event logs were coded by two investigators 

(EK, SC).

3. Results

3.1 Participant Characteristics and Protocol Compliance

Eight participants were enrolled and completed the entire the study protocol (Table 1). Mean 

age of the sample was 42.9 years (range 34-60 years), and fifty percent of the sample 

identified as female. Participants reported a mean job satisfaction score of 4.1 (on 1-5 Likert 

scale with 5 being the highest satisfaction) and reported their mean daily stress level at 3 (on 

1-5 Likert scale with 5 being the highest level of daily stress). All participants were married 

and reported a mean daily work commute of 1.4 hours (range 0.5-2.5 hours).

Participants collected an average of 4,582 minutes of data over the duration of the study. 

Mean number of events tagged per participant were 15 (range 4-26 events). Four sessions 

(5.5%) were incomplete due to unintentional noncompliance (e.g. participant forgot to 

power the sensor on at the beginning of the shift, participant turned off the sensor 

prematurely).

3.2. Machine Learning

3.2.1. Pre-Stress Event Vs Post-Stress Event Analysis.—For this analysis, the 

pre-stress event cases were designated as class 1, while the post-stress event cases were 

designated as class 2. After multiple feature combinations were tested, a linear discriminant 

model, trained using the features included in Table 2, provided the highest accuracy rating 

without being overwhelmingly biased to classify one class over the other. The confusion 

matrix in Figure 2 shows the number of events correctly (green) and incorrectly (red) 

classified for each class. Designating the post-stress events as the positive case, the model’s 

sensitivity (percentage of true positive cases correctly classified) and specificity (percentage 

of true negative cases correctly classified) were 58% and 53% respectively, while the 

model’s positive predictive value (percentage of all positive predictions correctly classified) 

and negative predictive value (percentage of all negative predictions correctly classified) 

(Parikh et al. 2008) were 56% and 55% respectively. Overall, the model’s accuracy was 

54.8%, and the performance of the model is represented graphically by the receiver 

operating characteristic (ROC) curve with an area under the curve (AUC) of 0.56 (Figure 3). 

The AUC performance metric can range between 0 and 1, with 1 being ideal.

3.2.2. Baseline Vs Pre-Stress Event Analysis.—For this analysis, the baseline cases 

were designated as class 0, while the pre-stress event cases were designated as class 1. After 

multiple feature combinations were tested, a bagged trees model, trained using the features 

included in Table 3, provided the highest accuracy rating without being overwhelmingly 

biased to classify one class over the other (Figure 4). Designating the pre-stress events as 
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the positive case, the model’s sensitivity and specificity were 74% and 63% respectively, 

while the model’s positive predictive value and negative predictive value were 71% and 66% 

respectively. Overall, the model’s accuracy was 69.1%, and the performance of the model 

was represented graphically by the ROC curve with an AUC of 0.72 (Figure 5).

3.2.3. Baseline vs Post Stress Event Analysis.—For this analysis, the baseline 

cases were designated as class 0, while the post-stress event cases were designated as class 

2. After multiple feature combinations were tested, a kernel naïve Bayes model, trained 

using the features included in Table 4, provided the highest accuracy rating without being 

overwhelmingly biased to classify one class over the other (Figure 6). Designating the 

post-stress events as the positive case, the model’s sensitivity and specificity were 68% 

and 60% respectively, while the model’s positive predictive value and negative predictive 

value were 69% and 59% respectively. Overall, the model’s accuracy was 64.5%, and the 

performance of the model was represented graphically by the ROC curve with an AUC of 

0.66 (Figure 7).

3.3 Content Analysis of Event Annotations

Based on the written logs provided by participants, several themes arose regarding 

descriptions of self-reported stress events, including patient interactions, encounters with 

patient family members, co-worker interactions, performance of complex procedures, caring 

for critically ill patients, physical discomfort, and systems issues. The breakdown of events 

in each category and illustrative quotes are outlined in Table 5.

4. Discussion

Our data from this pilot study suggest that specific features in wearable sensor data can 

be used to identify EM physician stress in the clinical environment. Overall, participants 

were accepting of a wearable sensor to tag stress events during their clinical practice. All 

participants successfully wore the sensors and recorded sessions during clinical shifts, and 

there was only a 5% incidence of failure to capture complete data. Using a variety of 

machine leaning approaches, the best algorithm to detect stress compared to baseline data 

utilized the data collected twenty minutes prior to a reported stress episode (accuracy of 

approximately 70%); this suggested that wearable sensors can detect stress before it is 

reported or even recognized by the individual.

The best performing classification scheme was to use the pre-stress (or more accurately the 

“pre-annotation”) state compared to baseline, which is intuitively logical. This time likely 

represented a period of building physiologic stress, where the time of annotation represents 

when the participant actually recognized the stress. In other words, we suspect that when 

participants were experiencing a stressful event, the initial focus would be on the situation 

at hand. Subsequently, they would become consciously aware of their emotional state and 

engage with the sensor to annotate. Furthermore, ED shifts may represent a period of 

somewhat chronic stress; the baseline in the ED may not be what and individual’s baseline 

measurement outside the ED would be. This “elevated baseline” may make detection more 

difficult by decreasing the delta.
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Content analysis of the event annotations confirmed somewhat expected, largely 

environmental issues that correlate with the detected stress episodes and make emergency 

physicians an excellent population to target for just-in-time stress reduction interventions. 

As discussed in the results above, emergency physicians interact with a variety of patients, 

family members, and other professionals in a rapid fire, high stakes environment. Caring for 

critically ill patients, exposure to hostility and violence, technical difficulties with electronic 

medical record systems, and negotiation of an inefficient health care system all contribute 

to personal stress, while the constant need to multitask amplifies the stress associated 

with any one of these scenarios. In the future, content analysis could be used to identify 

stressors and to validate theorized/anecdotal stressors on an individual and institutional level 

with objective data. These could then be targets for workplace interventions and process 

improvements geared towards decreasing the number of stress inducing factors in the work 

environment. The process of identifying and addressing modifiable stressors in an evidenced 

based fashion has the potential to bring about meaningful change that directly reduces 

physician stress.

In addition to data gathering and intervention planning, the stress identifying algorithm built 

through this process offers a means of identifying physician stress in real time. Even while 

participating in a study that presumably increased awareness of stress, our data suggests 

that participants may have had a delayed recognition of the stress state. Early recognition 

would provide a prime target of de-escalation and may increase overall wellness. Other 

investigators have demonstrated this in various populations. For example, a study by Rajan 

S. et al., used a wrist-worn sensor, which measured motion in three axes and EDA, on 

adolescent mothers to demonstrate the ability to detect stress in a real-world scenario (Rajan 

et al. 2012). In this study, data was streamed directly to the participants’ phone and was 

accessible to them throughout the recorded session. Multiple study participants reported 

monitoring their biometric data on their smart phones and using it as a guide for behavioral 

modifications that they had learned from mindfulness exercises and cognitive behavioral 

therapy training prior to study participation. Our data could be applied to a similar paradigm 

but with an automated alert function using our stress detection algorithm. This would be 

an important tool for helping physicians become more aware of their emotional state and 

cue them to initiate personal and institutional interventions aimed at decreasing stress in 

physicians.

Additional work is needed before these finding can impact physician wellness. Larger 

validation studies with a similar population across various clinical sites is a critical next 

step. This would allow for refinement of the algorithms. If the pre-event marker vs baseline 

biometric pattern can be confirmed, this work can be applied to different clinical settings 

to capture a more diverse population and to understand individual and subgroup level 

factors that may influence detection accuracy (e.g. gender, race, baseline stress level). The 

long-term goal of this work is to pair just-in-time interventions to manage physician stress 

to improve job satisfaction, work productivity, career longevity, and patient care. Decreasing 

stress can ultimately improve outcomes for physicians and their patients.
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5. Limitations

This was a small preliminary that was designed to determine proof of concept; therefore, we 

were unable to evaluate patterns within subgroups. As such, there may be different features 

based on gender or perceived level of stress that we were not able to capture. An area 

of future work would be a similar study using a larger population over several ED sites. 

This would improve the accuracy of our stress detecting algorithm and provide sufficient 

power to perform subgroup analyses. The self-report nature of study design creates potential 

for measurement bias in that participants many have neglected to self-report some stressful 

events, thus we lack pure ground truth data to validate our measures. Busy EM physicians 

are already burdened with a tremendous workload (hence the motivation of the study), 

creating a challenge to obtain perfectly accurate real time annotations. In addition, some 

forms of stress in the ED are not momentary; for example, caring for a critically ill patient 

or interacting with a patient’s particularly difficult family member could create stress over a 

period of hours, creating a challenge in our detection paradigm.

There are also several important limitations in our data capture and classification methods. 

Due to the self-report nature of the study, some of the time segments selected as the baseline 

may have overlapped with some unreported stress events, thereby potentially affecting 

the abilities of the machine learning classifiers to accurately classify a stress event. By 

performing 10-fold cross-validation during the training of the machine learning classifiers, 

overfitting of the data should be reduced, but may still be present to a lesser extent when 

compared to training the models with no validation or test dataset.

6. Conclusion

Wearable sensors have potential to be used in the clinical setting for monitoring of physician 

stress. Wearable sensor data 20-minutes prior to a self-reported stress episode was indicative 

of stress when compared to an individual’s baseline. Larger studies are needed to better 

characterize this phenomenon and to identify opportunities for interventions based on stress 

detection.
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Figure 1: 
Empatica E4
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Figure 2. 
Pre-stress event vs post-stress event confusion matrix
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Figure 3. 
Pre-stress event vs post-stress event ROC curve
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Figure 4. 
Baseline vs pre-stress event confusion matrix

Kaczor et al. Page 14

Proc Annu Hawaii Int Conf Syst Sci. Author manuscript; available in PMC 2020 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Baseline vs pre-stress event ROC curve
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Figure 6. 
Baseline vs post-stress event confusion matrix
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Figure 7. 
Baseline vs post-stress event ROC curve

Kaczor et al. Page 17

Proc Annu Hawaii Int Conf Syst Sci. Author manuscript; available in PMC 2020 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kaczor et al. Page 18

Table 1.

Study participant characteristics and participation

Subject Age Sex Total Minutes of
Recorded Data

# of Event
Annotations

1 38 F 4,550 10

2 34 F 5,483 20

3 42 F 4,233 6

4 48 M 5,016 21

5 44 M 4,563 26

6 60 F 4,117 26

7 40 M 4,440 4
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Table 2.

Features used to train final pre-stress vs post-stress event analysis model

Data Source Features

ACC-X Mean, Variance, Shape, Scale, D

ACC-Y Mean, Variance, Scale

ACC-Z Mean, Variance, Shape, Scale

EDA Variance, Shape, Scale, MSE

HR Mean, Shape, Scale, MSE
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Table 3.

Features used to train final baseline vs pre-stress event analysis model

Data
Source

Features

ACC-X Mean, Variance, Shape, Scale

ACC-Y Mean, Variance, Shape, Scale

ACC-Z Mean, Variance, Shape, Scale

EDA Variance, Shape, Scale, MSE

HR Mean, Scale, D, MSE
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Table 4.

Features used to train final baseline vs post-stress event analysis model

Data Source Features

ACC-X Mean, Variance, Shape, Scale, D

ACC-Y Mean, Variance, Shape, Scale

ACC-Z Mean, Variance, Shape, Scale, D

EDA Mean, Variance, D, MSE

HR Mean, Shape, MSE
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Table 5.

Themes of event annotations

Theme # of
tags

Illustrative Quotes

Patient/Family 
Interactions

22
“Agitated patient-threatened to murder provider”
“Crazy patient. Restraints, police, drugs [sedation] necessary”
“Mentally challenged patient yelling at me while his staff member tells me she doesn’t want to take 
him home”

Coworker Interactions 23
“Stressful phone call – arguing with consultant”
“Same intern asked 4 times how Tylenol [acetaminophen] is dosed”
“Social worker interrupted conversation, was rude to patients”

Performance of 
Complex Medical 
Procedures

9
“Difficult intubation” [Trouble placing a breathing tube]
“Stressful central line [Large catheter in the major veins of the body] placement”

Critically Ill Patients 21
“STEMI [heart attack] coming…and septic [severe infection] patient”
“Pediatric trauma, stroke activation, and STEMI [heart attack] activation simultaneously”
“Patient screaming/vomiting/decompensating, concern for ICH [intracranial bleeding]”.

Physical discomfort 4
“Need to eat/use bathroom – too busy”
“I feel palpitations after getting belly pain. [My] kid’s sick with belly aches. I’m thinking I have it 
too”

Systems issues 21
“[ the electronic medical record) is slow again”
“Can’t get into [radiograph image digital review system] or [Microsoft] outlook, intern also can’t get 
into [radiograph image digital review system]”
“I was infuriated with IT and let them know it…”.

Other Category/No 
description

22
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